PV286 - Secure coding principles and

practices

Secure coding introduction + language level vulnerabilities:
Buffer overflow, type overflow, strings

Lukasz Chmielewski e chmiel@fi.muni.cz (based on the lecture by P. Svenda)

(email me with your questions/feedback) C R \.} CS
Centre for Research on Cryptography and Security, Masaryk University

Consultation hours: Friday 9.30-11.00 in A406 (but email me before). Centre for Research on

Cryptography and Security

www.fi.muni.cz/crocs

mailto:chmiel@fi.muni.cz

CR&,CS

This Lecture

« Course trivia: PV286+PA193
« Short Project Presentation (by Jan Kvapil)

* The lecture itself. If we do not finish, then please check:
— https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193 01 BufferOverflowStrings 2022.video5

 Materials:
— https://is.muni.cz/auth/el/fi/jaro2024/P\/286/um/

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://is.muni.cz/auth/el/fi/jaro2022/PA193/um/video/PA193_01_BufferOverflowStrings_2022.video5
https://is.muni.cz/auth/el/fi/jaro2024/PV286/um/

COURSE TRIVIA:
PV286+PA193 00 COURSE_ORGANISATION 2024

3 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

.aau Last 20 Scored Vulnerability IDs & Summaries CVSS Severity

CVE-2020-7558 - A CWE-787 Out-of-bounds Write vulnerability exists in IGSS Definition (Def.exe) V3.1: - "
version 14.0.0.20247 that could cause Remote Code Execution when malicious CGF (Configuration V2.0: 6.8 MEDIUM

Group File) file is imported to IGSS Definition.

Published: November 19, 2020; 5:15:14 PM -0500

CVE-2020-13877 - SQL Injection issues in various ASPX pages of ResourceXpress Meeting Monitor V3.1:

4.9 could lead to remote code execution and information disclosure. V2.0 -

Published: November 12, 2020; 4:15:10 PM -0500

CVE-2020-12353 - Improp . » Total Matches By Year MEDIUM N
version 2.6.2 ma'}lr allgw ar ° Percentage of CVEs Published

Wl Percentage Of CVEs

ACCess.
Published: November 12, 121

L

nist.gov,

Percentage

Problem?

B
1

=] - ™~ m o [T} =} ™~ [}) = - ™ " - Wy o r~] =) =] — ™ m
=} =} o (=} o [=} o o o o - - - - - =] = = - - ™~ %] o) [x]
[=1 = = = [=] (=1 = = [=] [=] = = = = = =1 [=1 = =1 = = [=] = =1
™ o~ ~ ~ o~ o o~ ™ [o ~ ~ ™ o o~ ~ ™ [o ~ ™ o ™~ ~
~ ~ ~ .

N S

N U -

2
<
S
%
S
Kl
K
K
K
K
<«
K
S
K
Nt
=
Nt
%
S
%

| PV286 - Secure coding — r [Pt r @CRoCS_MUNI

CR&,CS

What I1s the cost of insecure software ?

* |ncreased risk and failures due to generally increased usage of computers

« Fixing bug in released version is more expensive
— Testing, announcements...

» Liability laws
— Need to notify, settlements, GDPR...

* Reputation loss
— (unfortunately, does not seem to be at the moment)

» Cost of defense is decreasing
— better training (like this course ©), automated tools, development methods, new langs...
— but the complexity of software is also increasing

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

There iIs HUGE market for (undisclosed) vulnerabilities

6

Up to millions of dollars for single undisclosed exploit

Payed over defined period it stays undiscovered
— Product vendor is not notified and cannot fix

Ethics: export restrictions to sell exploit kits -

iOS FCP Upto

— But HackingTeam, Cellebrite, NSO... A 2000000

108

2.00 N
ZERODIUM Payouts for Mobiles™ [;“g;sm; Upto

Zero Click Zero Click $1500,000
108 /Androkd

FCP: Full Chain with Persistence e R

RCE: Remote Code Execution B Android

LPE: Local Privilege Escalation mm Any OS WhatsApp SMS/MMS Up to

SBX: Sandbox Escape or Bypass RCE+LPE RCE+LPE $1,000,000
10S /Androkt 10S/Anarold

| PV286 - Secure coding

CR&,CS

What software security means?

- Use of generic good development and security practices
— Education, testing, defence in depth, code review...
g — Safety (random errors CRC good enough) vs. security (intentional attacker recomputing CRC after malicious change)
— Security is process, not product (Secure Development Lifecycle)

Q) Have systematic deployment, maintenance and mitigation of issues (including the security relevant)
w ~ — Monitor, triage, fix, update process, detection of issues in 3rd party libs...

&) Usability - easy to use right, hard to misuse
‘ ¥ — Hard for developers to misuse or misconfigure (API security...), hard for end-users to make a mistake
- — If misuse, then limit its impact, secure defaults...

@) Automated and manual review and testing
&

— Continuous integration, pentesting, security code review

@1 Language-specific issues and procedures, corresponding tooling and automation
@@ — Buffer overflow (C/C++), code injection (Java)...

i é Use of secure cryptographic primitives

— Cryptographic libraries, random numbers, password handling, secure channels, key distribution...

Icons made by geotatah, eucalypt, freepik from www.flaticon.com

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Defensive programming

« Term coined by Kernighan and Plauger, 1981
— “writing the program so it can cope with small disasters”
— talked about in introductory programming courses
* Practice of coding with the mind-set that errors are inevitable, and
something will always go wrong
— prepare program for unexpected behavior and inputs
— prepare program for easier testing and bug diagnostics
« Defensive programming targets mainly unintentional errors (not
Intentional attacks)
— But increasingly given security connotation

8 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

WHERE TO LEARN ABOUT BUGS AND
RESULTING VULNERABILITIES?

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Attacker goals and related vulnerabilities

10

* Bug is unintended and unwanted behavior which attacker can use to:

1. Steal some data (keys in memory, content of files...)

2. Bypass some protection (access rights, authentication, hijack session)
3. Execute malicious code (custom payload, ROP...)

4. Cause denial of service (resource exhaustion, infinite loop, regex)

5.

* The real attack (exploit) often combines multiple steps

— E.g., DoS to deplete memory resulting in failed dynamic allocation, then write to null
pointer, then execute malicious payload

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Where to find relevant bug patterns and info

11

Taxonomies of vulnerabilities (systematic)

— Common Weakness Enumeration (CWE) https://cwe.mitre.org/

— Wikipedia (https://en.wikipedia.org/wiki/Memory safety ...)

List of real vulnerabilities detected and reported (complex real-world examples)
— Common Vulnerabilities and Exposures (CVE) https://cve.mitre.org/

Lists of frequent bugs (prioritization)

— The CWE Top 25 https://cwe.mitre.org/top25/archive/2020/2020 cwe_top25.html
— OWASP TOP10 https://owasp.org/www-project-top-ten/

— HackerOne TOP 10 https://www.hackerone.com/top-10-vulnerabilities

— Veracode TOP 10 by language https://info.veracode.com/state-of-software-security-volume-11-
flaw-frequency-by-language-infosheet-resource.html

— Significant differences between usage domains (web vs. embedded devices)
Bug patterns searched for by specific tool (understanding bugs & tool used)
— E.g., FindSecurityBugs (Java): https://find-sec-bugs.qgithub.io/bugs.htm

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/
https://en.wikipedia.org/wiki/Memory_safety
https://cve.mitre.org/
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://owasp.org/www-project-top-ten/
https://www.hackerone.com/top-10-vulnerabilities
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html
https://find-sec-bugs.github.io/bugs.htm

CR&,CS

Common Weakness Enumeration (CWE) s-gumeomsone

—. @ Use of Inherently Dangerous Function - (242)

- @ Use of Function with Inconsistent Implementations - (474)
- @ Undefined Behavior for Input to API - (475)

- & Use of Obsolete Function - (477)

- & Use of Potentially Dangerous Function - (676)

- @ Use of Low-Level Functionality - (s25)

- J Exposed Dangerous Method or Function - (749)

« Taxonomy of vulnerabillities https://cwe.mitre.org/
" 1l - . I ﬁﬂfﬂteﬁégagt?&gé%?f-}ﬁifif)
* List of vulnerability categories, sub-categories, | ghie

—= 18 Bad Coding Practices - (1006)
., . . —= 18 Behavioral Problems - (433)
examples and mitigation R
—m= k8 Communication Channel Errors - (417)
— Complexity Issues - (1226)
. ags . . g . ., . . — Concurrgncy Issues - (557)
— Baseline for vulnerability identification, mitigation and |- & credentals Management Erors - s
. —= Key Managgment Errors - (320)
prevention = g D
— Data Neutralization Issues - (137)
. . . . — Documentation Issues - (1225)
— Itself is great study material including examples - M File Handiing Tssues - (1219
— Encapsulation Issues - (1227)
—m= k% Error Conditions, Return Values, Status Codes - (239)

- — Expression Issues - (569)

 Example CWE-124 Buffer Und t

Xa p e u er n e rwrl e — Inafgrrr?;ti(;?l::an?;:ﬁnent Errors - (199)
— Initializa:tcilor; an(i Cleanup Errors - (452)
. . . T - Data Vali i -
— https://cwe.mitre.org/data/definitions/124.html . B Lockout Mechanism Errors - (1210
—+ Memory Buffer Errors - (1218)
— Numeric Errors - (189)

i 1 — Permission Issues - (275)
1 nt ma I n () { — Pointer Issues - (465)
// —m Privilege Issues - (265)

—= 18 Random Number Issues - (1213)
: . —m= I8 Resource Locking Problems - (411)

StrnCpY(deStBUfl &SrCBUf[flnd(SrCBUfl Ch)]l 1024)’ . —= [@ Resource Management Errors - (399)
—m= I Signal Errors - (387)
—= [@ State Issues - (371)
—= [@ String Errors - (133)
—= [@ Type Errors - (136)
— User Interface Security Issues - (355)
—= User Session Errors - (1217) I

¥ ——

12 | PV286 - Secure coding https:

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/124.html

CWE-124: Buffer Underwrite ('Buffer Underflow')

Weakness ID: 124
Abstraction: Base
Structure: Simple

Status: Incomplete

Presentation Filter: | Complete b |

r Description
v Extended Description

This typically occurs when a pointer or its index is decremented to a position before the buffer, when pointer arithmetic results in a position before the beginning of the valid memory
location, or when a negative index is used.

¥ Alternate Terms
Some prominent vendors and researchers use the teré "buffer underrun".)‘Buffer underflow" is more commonly used, although both terms are also sometimes
used to describe a buffer under-read (CWE-127).

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may
want to explore.

¥ Relevant to the view "Resear

buffer underrun:

¥ Relationships

ts" (CWE-1000)
Type ID _ Name

Childof © 787 Out-of-bounds Write

ChildOf @ 786

Access of Memory Locatilon Before Start of Buffer
Numeric Range Co ison Without Minimum Check

CanFollow @ 839

¥ Relevant to the view "Software Development” (CWE-699)
Nature Type ID Name
MemberOf 1218 Memory Buffer Errors
e
’» Modes Of Introduction
v Applicable Platforms

The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms,
chnologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

¥ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes
the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected

. to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that
it will be exploited to achieve 3 different imbpact.

https://cwe.mitre.org/data/definitions/124.html

¥ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes
the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected
to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that
it will be exploited to achieve a different impact.

Scope Impact Likelihood
Integrity Technical Impact: Modify Memeory; DoS: Crash, Exit, or Restart

Availability Out of bounds memory access will very likely result in the corruption of relevant memory, and perhaps instructions, possibly leading to a crash.

Integrity Technical Impact: Execute Unauthorized Code or Commands; Modify Memory; Bypass Protection Mechanism; Other

Confidentiality

Availability If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary code. If the corrupted memory is data rather than

Access Control instructions, the system will continue to function with improper changes, possibly in violation of an implicit or explicit policy. The consequences would

Other only be limited by how the affected data is used, such as an adjacent memory location that is used to specify whether the user has special privileges.

Access Control Technical Impact: Bypass Protection Mechanism; Other

Other

When the consequence is arbitrary code execution, this can often be used to subvert any other security service.

» Likelihood Of Exploit

¥ Demonstrative Examples

Example 2
The following is an example of code that may result in a buffer underwrite, if find() returns a negative value to indicate that ch is not found in srcBuf:

Example Language: C
int main() {

strncpy(destBuf, &srcBuflfind(srcBuf, ch)], 1024);
0>

¥ Observed Examples

RgPErence Description
E-2002-22 Unchecked length of SSLv2 challenge value leads to buffer underflow.
E-2007-458 Buffer underflow from a small size value with a large buffer (length parameter inconsistency, CWE-130)
CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be decremented before the buffer while looking for a non-whitespace character.
CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.
Product sets an incorrect buffer size limit, leading to "off-by-two" buffer underflow.

Negative value is used in a memcpy() operation, leading to buffer underflow.
Buffer underflow due to mishandled special characters

¥ Potential Mitigations

Requirements specification: The choice could be made to use a language that is not susceptible to these issues.

Phase: Implementation
I Sanity checks should be performed on all calculated values used as index or for pointer arithmetic.

- wmE 0 aw B _ _E"m"

CR&,CS

Frequent bugs — worth of prioritization (CWE/CVE)

https://cwe.mitre.org/top25/archive/2020/2020 cwe_top25.html

nk 1D | Name | score () | [13] [CWE-476 |NULL Pointer Dereference | 8.35
[1] ‘CWW Improper Neutralization of Input During Web Page 46.82 '.'| [14] \CWE-ZS? \[mproper Authentication | 8.17
Generation (Cross-site Scriptin [15] |CWE-434 |Unrestricted Upload of File with Dangerous Type 7.38
[2] CWE-787 |0ut-of—bounds Write | 46.17 [16] |CWE-732 |Incorrect Permission Assignment for Critical Resource| 6.95
‘ [3] ‘M |Improper Input Validation | 33.47 [17] |cwg-g4 |Improper Control of Generation of Code ('Code 6.53
| [4] |CWE-125 |Out-of-bounds Read | 26.50 — |Injection’) '
[5] |CWE-119 Improper Restriction of Operations within the Bounds | o | [18] ‘M Insufficiently Protected Credentials 5.49
= |of a Memory Buffer ' [19] |CWE-611 Improper Restriction of XML External Entity 533
[6] CWE-89 Improper Neutralization of Special Elements used in 20.69 Reference
—_— an SQL Command ('SQL Injection’) ' [20] |CWE-798 |Use of Hard-coded Credentials 5.19
[7] |CWE-200 Exposure of Sensitive Information to an 19 16 [21] |CWE-502 |Deserialization of Untrusted Data 4.93
Unauthorized Actor [22] |CWE-269 |Improper Privilege Management 4.87
2WES1D . - ncontrolled Resource Consumption :
| [8] |CWE-416 |Use After Free | 18.87 [23] |CWE-400 |Uncontrolled R C ti 4.14
| [9] |CWE-352 |Cross-Site Request Forgery (CSRF) | 17.29 | [[24] |CWE-306 |Missing Authentication for Critical Function | 3.85
_ Improper Neutralization of Special Elements used in [25] |CWE-862 |Missing Authorization 3.77
[10] |CWE-78 an 0S Command ('OS Command Injection’) 16.44 | ‘ ‘ |
‘ [11] ‘CWE-190 |Integer Overflow or Wraparound | 15.81 S b . I I blt
°
[12] |CWE-22 Improper Limitation of a Pathname to a Restricted 13.67 Ccore y presence N Le_@ vuineraniites
- Directory ('Path Traversal') '

— Common Vulnerabilities and Exposures (CVE)

15 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Frequent bugs — worth of prioritization (web)

Top 10 Web Application Security Risks (Z)owRsp, https://owasp.org/www-project-top-ten/

1. Injection. Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is 6. Security Misconfiguration. Security misconfiguration is the most commonly seen issue. This is commonly
sent to an interpreter as part of a command or query. The attacker’s hostile data can trick the interpreter a result of insecure default configurations, incomplete or ad hoc configurations, open cloud storage,
into executing unintended commands or accessing data without proper authorization. misconfigured HTTP headers, and verbose error messages containing sensitive information. Not only must
2. Broken Authentication. Application functions related to authentication and session management are often all operating systems, frameworks, libraries, and applications be securely configured, but they must be
implemented incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to patched/upgraded in a timely fashion.

exploit other implementation flaws to assume other users’ identities temporarily or permanently. 7. Cross-Site Scripting XSS. XSS flaws occur whenever an application includes untrusted data in a new

3. Sensitive Data Exposure. Many web applications and APIs do not properly protect sensitive data, such as Web page without proper validation or escaping, or updates an existing web page with user-supplied data
financial, healthcare, and PII. Attackers may steal or modify such weakly protected data to conduct credit using a browser AP that can create HTML or JavaScript. XSS allows attackers to execute scripts in the
card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra protection victim’s browser which can hijack user sessions, deface web sites, or redirect the user to malicious sites.
such as encryption at rest or in transit, and requires special precautions when exchanged with the browser. B. Insec_ur_e D_eserialization. Insecu.re deserialization often_ leads to remote code execution. Even if _ _

4. XML External Entities (XXE). Many older or poorly configured XML processors evaluate external entity deserialization flaws do not result in remote code execution, they can be used to perform attacks, including
references within XML documents. External entities can be used to disclose internal files using the file URI replay attacks, injection attacks, and privilege escalation attacks.

)))] . . 9. Using Components with Known Vulnerabilities. Components, such as libraries, frameworks, and other
handler, internal file shares, internal port scanning, remote code execution, and denial of service attacks.

5. Broken Access Control. Restrictions on what authenticated users are allowed to do are often not properly
enforced. Attackers can exploit these flaws to access unauthorized functionality and/or data, such as
access other users’ accounts, view sensitive files, modify other users’ data, change access rights, etc.

software modules, run with the same privileges as the application. If a vulnerable component is exploited,
such an attack can facilitate serious data loss or server takeover. Applications and APIs using components
with known vulnerabilities may undermine application defenses and enable various attacks and impacts.
0. Insufficient Logging & Monitoring. Insufficient logging and monitoring, coupled with missing or ineffective
integration with incident response, allows attackers to further attack systems, maintain persistence, pivot to
° B e aW ar e . more systems, and tamper, extract, or destroy data. Most breach studies show time to detect a breach is
. over 200 days, typically detected by external parties rather than internal processes or monitoring.

— Differences between software domains (web, OS kernel, libraries...)
— Detection bias — bugs we can more easily detect seem to be more frequent

16 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)

https://owasp.org/www-project-top-ten/2017/A1 2017-Injection

1. Injection. Injection flaws, such as SQL, NoSQL, OS, and LDAP injection, occur when untrusted data is

sent to an interpreter as part of a command or query. The attacker’s hostile data can ftri e interpreter

into executing unint&dsded commands or accessing data without proper authorizatief.

° oal: Return records e DB 1or the provided customer ID (custID
String query = "SELEC FROM accounts WHERE custID='" + regflest.getParameter ("id")

ANWAV/aN
+ ;

« User/attacker will provide customer 1.as follows:
— http://example.com/app/accountView™agd=' or '1'='1l

« Resulting SQL command after expansion (exeCwtad by database engine)
— SELECT * FROM accounts WHERE custID='' or 'l1'='1l’

« Mitigation
— Don't try to detect and fix injection by checking input arguments yourself!
— Read about defenses, use dedicated secure API (e.g., PreparedStatement in this case)
— https://cheatsheetseries.owasp.org/cheatsheets/SQL _Injection_Prevention_Cheat_Sheet.html

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection

CR&,CS

CWE flaw types by language

https://info.veracode.com/state-of-software-security-volume-11-flaw-frequency-by-language-infosheet-resource.html

.Net C++ Java Javascript PHP Python

CR&CS

Bugs patterns searched by tools

 Bugc

& C @ © & https;//find-sec-bugs.github.io/bugs htm B oo% see ww L IN @O ® dl

escrl ptl O n O} Home HowTo ~ Bug Patterns Download

° Example Of vu I nerable COde ytrusted session cookie value %
o R efe re n CeS to Ot h e r I i Sts The method HttpSeer;t;equest.getRequestedSessionId() typically returns the value of the cookie 1sess1onID. This value is normally only accessed by

the session management logic and not normal developer code.

— ‘ :W E OWAS P The value passed to the client is generally an alphanumeric value (e.g., JSESSIONID=jp6q311g2myn). However, the value can be altered by the client. The
I e ——

| PV286 -

following HTTP request illustrates the potential modification.

GET /somePage HTTP/1.1

Host: yourwebsite.com

User-Agent: Mozilla/5.8

Cookie: JSESSIONID=Any value of the user's choicel!l??''"">

As such, the JSESSIONID should only be used to see if its value matches an existing session ID. If it does not, the user should be considered an
unauthenticated user. In addition, the session ID value should never be logged. If it is, then the log file could contain valid active session IDs, allowing an

insider to hijack any sessions whose IDs have been logged and are still active.

P —

References
OWASP: Session Management Cheat Shee
CWE-20: Improper Input Validation

https://find-sec-bugs.github.io/bugs.htm

cs.fi.muni.cz @CRoCS_

Secure coding

CR&,CS

Digging deeper and learning more...

Read top-level categories from CWE Software Development

— Get broad overview https://cwe.mitre.org/data/definitions/699.html
Read detalls about top vulnerabilities from OWASP or CWE list
— Likely the most common ones

Find, read about and test several vulnerabilities in detall

— Which applies to your favorite language (e.g., Java)

— And target domain (e.g., server database backend) in detail
— Learn more about system by understanding all details

Experiment with several automatic tools to detect such vulnerabllities
Think like an attacker, have fun ©

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://cwe.mitre.org/data/definitions/699.html

CR&,CS

Vulnerability disclosure basics

* Bug, Vulnerability, Proof of Concept (PoC), Exploit

— Bug = buffer overflow
— Vulnerability = execution of malicious code
— Proof of Concept = tool triggering buffer overflow and crashing program

— Exploit = tool trigger buffer overflow, executing custom payload and creating
root account on target machine

* Public disclosure, Uncoordinated public disclosure, Zero-day
« Responsible disclosure, disclosure period/deadline, bugbounty
- Whitehats, blackhats, red teams, blue teams

21 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

HOW TO PREVENT, DETECT AND
MITIGATE CODE BUGS?

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

How to prevent, detect and mitigate code bugs?

1. Protection on the source code level
— E.g., languages with/without implicit protection (containers/languages with array boundary checking)
— E.qg., input checking, sanitization, safe alternatives to vulnerable function like safe string manipulation
2. Protection by extensive testing (source code/binary/bytecode level)
— E.g., automatic detection by static and dynamic checkers
— E.g., code review, security testing
3. Protection by compiler (+ compiler flags)
— E.g., runtime checks introduced by compiler (stack protection)
4. Protection by execution environment
— E.g., DEP, ASLR, sandboxing, hardware isolation...
5. Protection by defense in depth
— All above in systematic secure development lifecycle, multiple layers of defense

23 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Microsoft’s Secure Development Lifecycle (SDL)

2. Establish security 5. Establish Design 8. Use Approved 11. Perform Dynamic 14, Create an Incident
Requirements Requirements Tools Analysis Response Plan
|SSu;es
1. Core Security 3. Create Quality 6. Perform Attack 9. Deprecate Unsafe 12. Perform Fuzz 15. Conduct Final Execute Incident
Training Gates/Bug Bars Surface Analysis/ Functions Testing Security Review Response Plan

™L MERICS ecueion

4. Perform Secunty 1. Use Threat 10. Perform Static 13. Conduct Attack 16. Certify Release 8'60
and Privacy Risk Maodeling Analysis Surface Review and Archive
Assessments

24 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Use secure-by default languages and libraries

* |deally, language is already designed to be more secure
— Partially true for newer languages like Go or Rust
— But new systematic issues may be found later

 Libraries
— Use functions from platform standard API (e.g., AndroidKeyStore provider)
— Use libraries which are hard to be used incorrectly
* E.g., Libsodium’s crypto_secretbox_easy() vs. OpenSSL vs. own custom code
— Monitor used libraries/packages for new vulnerabilities (dependbot)

* Don’t design or implement own libraries especially not cryptographic
— Developing own library code likely means repeating other’s mistakes
— Cryptographic code is extremely difficult to code securely

25 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Use of more secure versions of functions

« Consider language removing whole class of vulnerabillities
— E.g., Rust to replace memory-related errors in C

 |f language is fixed, then use more secure / hardened functions
— E.g., Secure C library ISO/IEC 9899:2011 char *gets
— E.g., Java.lang.Math precise arithmetic extensions char *buffer
— E.g., Smart pointers in C++)

char *gets s(
char *buffer,

 Follow best practices, standards and coding standards size_t sizeInCharacters

)
— E.g., CERT C Coding Standard
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

— (there are many of them, pick for your domain and/or already used in project)

26 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

CR&,CS

Utilize hardening by compiler and platform

@ Attack: Write attacker’s code on stack (e.g., via buffer overflow) and execute it

Protection: Data Execution Prevention (DEP) — memory pages with non-
executable bit set (checked by CPU when using IP)

@ Attack: Learn where sensitive info is placed, read from that address (or write)

@ Protection: Address Space Layout Randomization (ASLR) — addresses are
changed for every program run (hard to predict exact position)

@ Attack: Change return address and jump into unexpected functions (Return-
oriented programming (ROP))

@ Protection: Control flow integrity — build graph of allowed jumps from source
code, enforce during runtime A: G

(= "' = rat
27 | PV286 - Secure coding . : ges:im-muni.czc @CRoCS_MUNI

AUTOMATION AND TOOLING

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Static vs. dynamic analysis

« Static analysis
— Static Application Security Testing (SAST)
— Examine program’s code without executing it

— Can examine both source code and compiled code
* source code is easier to understand (more metadata)

— Can be applied on unfinished code
— Manual code audit is kind of “static” analysis
« Dynamic analysis
— Code is executed = program is “running”
— Input values are supplied, internal memory is examined...
— Code must compile/run, code coverage by inputs is crucial

* Important: no single tool will ever catch all issues

29 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Automated analysis tools limitations

* Don’t expect tools to catch all issues!

« Overall program architecture is not understood
— sensitivity of program path
— Impact of errors on other parts

« Application semantics is not understood
— |Is string returned to the user? Can string also contain passwords?

* Soclal context is not understood

— Who is using the system? High entropy keys encrypted under short guessable
password?

30 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Always design for testability

« “Code that isn't tested doesn't work - this seems to be the safe
assumption.” Kent Beck

« Code written in a way which Is easier to test
— Proper decomposition, unit tests, mock objects
— Source code annotations (with subsequent analysis)

« Code with extensive guality tests is easier to analyze by static and
dynamic tools
* References

— https://en.wikipedia.org/wiki/Design For Test
— http://www.agiledata.org/essays/tdd.html

31 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

https://en.wikipedia.org/wiki/Design_For_Test
http://www.agiledata.org/essays/tdd.html

CONTINUOUS INTEGRATION

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Tests, Continuous integration...

Running tools manually is insufficient for continuously developed projects
Include static and dynamic analysis into Continuous Integration process

Static analysis can be run on unfinished code chunks even before commit
— On developer side, on commits before merge...

Dynamic analysis requires sufficient code coverage => quality tests

Time-consuming analysis can be run “overnight” on server (after push)
— Or continuously like non-stop fuzzing of the current version of application

Tools for automatic monitoring of vulnerable components
— Well-known packages, libraries used by your project with known vulnerability
— E.g., GitHub’s Dependabot

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

Continuous Integration: GitHub&Travis Cl example

° Changes approved Show all reviewers

Te Sts O K 1 approving review Learn more.

° All checks have passed Hide all checks
2 successful checks

v @ Travis CI - Branch Successful in 3m — Build Passed Details

v & Travis ClI - Pull Request Successful in 3m — Build Passed Details

This branch has no conflicts with the base branch
Merging can be performed automatically.

Merge pull request A4 You can also openhis ilf GitHub Desktop or view command line instructions.

All checks have failed

1 failing check v

X & continuous-integration/travis-ci/| m Artifacts

10110
01001

&

34 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

. adding code analysis (e.g., CppCheck, Coverity)

O=—

=
O=—

Tests

35

¥ Cppcheck - Project: virt.copchect
File Edit View Check Help

CaEZ 0% ¥ BACIEED]

Travis CI

oo =

File Severity Line
» || Object Info.n

. » || VitPKCSILcpp
l t |

Summary

VirtPKCST1App.cpp

> @ VitPKCSIlApp.cpp error 61 Possible null pointer dereference: pAHTPtr - 0.,

VitPKCSI1Appcpp_style 168 The scope of the variable ‘tokenHash2' can b..

© VinPKCSIlAppcpp | style 1907 The scope of the variable 'userSectionKey cau

VitPKCSILAppcpp style 2116 The scope of the variable ‘dataHash’ can be f..
VitPKCSI1App.cpp style 2117 The scope of the variable ‘dataHash2" can be.
VitPKCSt1App.cpp style 630 An unsigned variable 'handle can't be negati
VitPKCSt1App.cpp style 2138 An unsigned variable 'protectedDataLen can

A VitPKCSI1App.cpp warning 373 String literal compared with varicble ‘pData'. ..
VitPKCSI1App.cpp style 16 Variable i is assigned a value that is never us.
VitPKCSI1App.cpp style 1508 Variable 'type is assigned a value that is neve.

VitPKCSI1App.cpp style 2001 Variable 'a'is assigned @ value that is never u...
A VinPKCSI1App.cpp warning 13 Member variable ‘CVitPKCSILAppim _curre

VitPKCSLLApp.cop performance 59 Prefer prefix +-+/-- operators for non-primit
VitPKCSLLApp.cop performance STL Prefer prefx +-+/-- operators for non-primit
@ VitPKCSLlApp.cop performance 1506 Prefer prefix + +/- operators for non-primiti
@ VitPKCSLlApp.cop performance 1515 Prefer prefix + /- operators for non-primiti

I

Summary: The scope of the variable 'userSectionkey’ can be reduced

Message: The scope of the ariable UserSactoni<ey’ can be reduced. Warning: It can be niafe to fix this message. Be careful. Espedily when there are
inner loops, Here is an example where cppcheck will write that the scope for T can be reduced:

void flintx)

[[its safe to move inti =0’ here
for fintn = 0 < 10¢ +4m {

| PV286 - Secure coding

[

<

1 of 19 issues selected

44892 Dereference null return

44891

Help ™

Guided Tour

Impact = Status First Detected Cwner Classification

08nzn4
oanz2n4
0gnzh4

Unassigned = Unclassified

Medium New

Dereference null return Medium Mew

>

< Page|_1|uf 1

M AlgTestiClientjava

System.out.println(™
System.out.println("\n\nWARNING: Your card should be free from o
System.out.println("Type 1 for yes, @ for no: “);

selectissue

42 returned_null: br.readLine() returns null.

CID 44903 (#4 of 4). Dereference null return value (NULL_RETURNS)
43. dereference: Dereferencing a pointer that might be null br.readLine() when calling decode .

answ = Integer.deccde(br.readline());
1
if (answ == 1) {
/ Avoilable memory
value.setlength(2);
if (cardManager.TestAvailableEEPROMMemory (value, file, (byte
else {
message = "WNERROR: Get available EEPROM memory failwn®;
System.out.println(message); file.write(message.getByte

>

Return to Dat

\nSTRONG WARNING: There is possibility tha

https://crocs.fi.muni.cz @CRoCS_MUNI

2nda.com ¥

Sey N
44903 Dereference null return value

If the function actually returns a null value, a NullPeinterException

will be thrown.

In algtestjclient. AlgTest)Client. main(java.lang.String[]): Return

W value of function which returns null is dereferenced without
checking (CWE-476)

¥

Bug

Classification: "
Severity; | Moderate v
Action: | Fix Required v

Ext. Reference: |

Ny

. [Petrs]

Apply + Next || Apply |

» Projects & Streams

» Detection History

10NN nn nnnnan nn oo onon annnm

CR&CS

Dependabot (GitHub)

& Unwatch ~ 12 W Unstar 27

|

@ Unwatch - 3 Ty Star 0 % Fork]

- . . i . . N {> Code C |ssues i1 Pull requests ('3 Actions E Projects 00 wiki @ Security 2 [~ Insights @ Settings
L Pull requests (*) Actions [Projects 0 wiki ® Security [~ Insights 83 Setting

Overview Dependabot alerts Off: Dependabot security updates + Dismiss all -

Security overview

Security policy
/A 20pen + 0O Closed Sort ~

/A symfony/http-foundation

a by GitHub crﬁ composerlock

Security advisories 0

. . Dependabot alerts 2
Security policy ‘ "

_ . o ~ . . & axios ‘::mnderate sever\ty:)
Define how users should report security vulnerabilities for this repository -

Code scanning alerts B by GitHub &5 packagejson

GitHub tracks known security vulnerabilities in some dependency manifest files. Learn more about Dependabot alerts.

Security advisories
View or disclose security advisories for this repository

Get started with code scanning

Dependabot alerts — Active .
View Dependabot alerts

Get notified when one of your dependendies has a vulnerability Automatically detect common vulnerabilities and coding errors

Code scanning alerts) CodeQL Analysis
Set up code scanning by GitHub {2

Automatically detect common vulnerability and coding errors

Security analysis from GitHub for C, C++, C#, Java, JavaScript,
TypeScript, Python, and Go developers.

Set up this workflow

Security analysis from the Marketplace

Codacy Security Scan CxSAST

by Codacy by Checkmarx

36 | PV286 - Secure coding

TYPICAL PROBLEMS FROM REAL
WORLD

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

ypical issues —where theory meets practice ©

* Insufficient knowledge/education of developers (mature developer would not do majority of issues)
— Education is time-consuming and expensive (complement with tooling, security champions)
* Legacy code
— Too many issues reported by tools to fix
— Fix itself can break things (so developers reluctant to fix what is “not” broken)
« Missing specification of the expected behavior
— Missing analysis, changing implementation target

— If implemented code is successful, then is used elsewhere in different condition (original assumptions will be
invalidated)

« Adding security only later (“Functionality first!”)
— It's happening all the time

* Heavy dependance on 3rd party libs
— No direct control over code, vulnerabilities outside our codebase, possibly unmaintained code (fix means fork)
— But re-implementing a wheel is usually a worse issue

« Using open-source code can be tricky, you usually must care about:
— Licenses (tools to help with like Whitesource, Blackduck)

— Open vulnerabilities, time-to-fix, how active is community
— In mature organizations, there's usually a open-source governance program that helps developers with choosing the right OSS tools

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

ypical issues —where theory meets practice ©

« Human issues
— No problem before we started to look for them
— Hard to admit own failures (If | cannot break it, nobody can. “But it is not exploitable”).
— Unresponsive/threatening companies
— Same with knowledge, lack of maturity, code guidelines, frameworks
e Security economics
— Problem is known, yet not fixed — these who need to pay for fix are not these who will suffer
— Frequently, developer’s KPI is functionality, not security
* Customers do not want to update (new version can break things)
— Big upgrades mean big risks, small releases/upgrades can help with that
« Trust, but Verify
— Many companies do not deliver what they promised
— Security is very common area: insecure updates, insecure installation procedures (curl & chmod & sudo)
* Improper adoption of new tech
— protobuf, JISON, JWT, serialization...
— New languages (like "go") are cool, but you need to learn new tooling, test frameworks, CI/CD pipelines, dependencies, ...

« The other side — open-source great tools become also commercial (and free version get semi-abandoned)

39 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&CS

Questions 2

/

40 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

DIGGING DEEPER...

41 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Motivation problem .

* Quiz — what Is Insecure In given program?
« Can you come up with attack?

#define USER_INPUT_MAX_LENGTH 20
char buffer[USER_INPUT_MAX_LENGTH];
bool isAdmin = false;

gets(buffer);

Classic buffer overflow
Detailed exploitation demo during labs this week

42 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&CS

Process memory layout

Higher addresses 4

Lower addrassas

43 | PV286 - Secure coding

botlom yr

of stack
STACK segment
(stack frames consisting of parameters,
retum addresses and local vanables)

w .

of stack

-

2 .

HEAP sagmeant
(dynamic variables,
managed by malloc(), free() elc.)

vanable sire

* free space

variable size

BSS segment
{uninitialized global and sialic vanables)

foced sire

DATA segment
(initialized global and stalic vanables)

fixed size

TEXT segment
{(program code)

fixed size

Virtual address space of a process

://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

Stack memory layout

— <

Lower addresses . .
Variable C

Variable B
Vanable A
Return address » Stack frame of function

>

Parameter p1

Parameter p2 Comesponding C code:

Parameter p3 int function(int pl, int p2, int p3)

7 | {
Some other value ﬁ int A, B, C;

®
o }
o

Value

Value

Higher addresses . Bottom of stack

44 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Stack overflow

Stack before overflow
- stack grows from higher lo lower addresses .
I # Position before
char *buffer(20] lﬁm] parameters | other data branch in
TEXT sagment
buffer writes from lower 1o higher addresses L —F
. >
low address high address

RA = relurmn address

A = ralurm address

45 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Type-overflow vulnerabilities - motivation .

* Quiz — what Is Insecure in given program?
- Can you come up with attack?

for (unsigned char i = 10; 1 >= 0; 1i--) {
/* L. K/

}

- And what about following variant?
— Be aware: char can be both signed (x64) or unsigned (ARM)

for (char i = 10; i >= 0; i-=) {
/* L. x/
}

47 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Type overflow — basic problem

* Types are having limited range for the values
— char: 256 values, int: 232 values
— add, multiplication can reach lower/upper limit

250 + 10 ==7?

« Signed vs. unsigned types

— for (unsigned char i = 10; 1 >= 0; i-=-) {/* ... */ }
* Type value will underflow/overflow

— CPU overflow flag is set

— but without active checking not detected in program

* Occurs also in higher-level languages (Java...)

— char wvalue

48 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

EXAMPLE: MAKE HUGE MONEY WITH
TYPE OVERFLOW

https://crocs.fi.muni.cz @CRoCS_MUNI

Make HUGE money with type overflow

Mining block reward

* Bitcoin block 74638 (15th Augus (was 50BTC at 2010, now smaller)

50

CBlock(hash= ; e = TS PR PO AR , hashMerl
nTime= , NBigs
CTransaction(hash=)
CTxIn(COutPoint(
CTxOut(nValue=)

CTransaction(hash=1d5
CTxIn(COutPoint(237fe8, 0), scriptSig=0xA87C02384E1F184B79C6AC)
CTxOut(nValue=92233720368.54275808, scriptPubKey=0P_DUP OP_H
nValue=92233720368.54275808, scriptPubKey=0P_DUP OP_H

SH160 O0xB
SH160 Ox1.

2 output transactions (each with 9*101° BTC) !l
Block hash: a’/eclc

R — o

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39
https://blockexplorer.com/tx/237fe8348fc77ace11049931058abb034c99698c7fe99b1cc022b1365a705d39

Bug dissection

« Bitcoin code uses integer encoding of nhumbers with
fixed position of decimal point (INT64)
— Smallest fraction of BTC is one Satoshi (sat) = 1/108 BTC
— 33.54 BTC == 33.54 * 108 => 3354000000

« BTW: Why using float numbers is not a good idea?

« CTxOut value:92233720368.54275808 BTC
= Ox7tfffffffff85eel

- INT64 MAX = Ox7ffffffffffffffs
- Sumof 2 CTx = OxffffEfEEEEE£0bdcO (overflow)

= -1000000,,5 = -0.01BTC
— Difference between input & output interpreted as miner fee

| PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&CS

Type overflow — Bitcoin s,

#include <iostream>
#include <iomanip>
using namespace std;
// Works for Visual Studio compiler, replace __int64 with int64 for other compilers
int main() {
const __ int64 valueMaxInt64 = Ox7fffffffffffrrfLL;
const float COIN = 100000000; // should be __int64 as well, made float for simple printing
__int64 valueln = 50000000; // value of input transaction CTxIn
cout << "CTxIn =" << valueln / COIN << endl;
__int64 valueOutl = 9223372036854275808L; // first out
cout << "CTxOutl = " << valueOutl / COIN << endl;
__int64 valueOut2 = 9223372036854275808L; // second out
cout << "CTxOut2 = " << valueOut2 / COIN << endl;

___int64 valueOutSum = valueOutl + valueOut2; // sum which overflow

cout << "CTxOut sum =" << valueOutSum / COIN << endl;

// Difference between input and output is interpreted as fee for a miner (0.01 BTC)
___int64 fee = valueln - valueOutSum;

cout << "Miner fee = " << fee / COIN << endl;

return O;

5CS_MUNI

CR&CS

BugFix — proper checking for overflow

https://qgithub.com/bitcoin/bitcoin/commit/d4c6b90ca3f9b47adb1b2724a0c3514f80635c84+#diff-118fcbaabal62bal7933c7893247df3aR1013

11 EEEEY main.h View v

«m-v
o
3
|
1
|

static const unsigned int MAX_BLOCK_SIZE = 1800884;

static const intéd COIN = 10B068804;

static const unsigned int MAX_BLOCK_SIZE = 1

static const intéd COIN = 108068004 ;
atic const int6d CENT = 1406808;

static const intéd CENT = 16860688; st
+static const int6d MAX_MONEY = 21680886 * COIN;
static const int COINBASE_MATURITY = 184; static const int COINBASE_MATURITY = 184;
static const CBighum bnProofCflorkLimit(~uint256({a@) >» 32); static const CBighum bnProofCflorkLimit(~uint256({a) »>» 32};
B @e -471,10 +472,18 CTra 1
if (vin.empty() || vout.empty(}) if (vin.empty() || wvout.empty(})

return error("CTransaction: :CheckTransaction() : wvin or vout empty"); return error("CTransaction: :CheckTransaction() : wvin or vout empty");

- /f Check for negative values + /f Check for negative or overflow output values
+ int64 nValueQut = 8;
foreach{const CTxOut& txout, wvout) foreach{const CTxOut& txout, wvout)
+ i

if (txout.nVWalue < @) if (txout.nVWalue < @)

return error{"CTransaction: :CheckTransaction{) : txout.nValue negative"}; return error{"CTransaction: :CheckTransaction{) : txout.nValue negative");
+ if (txout.nValue > MAX_MOMEY)
+ return error{"CTransaction: :CheckTransaction{) : txout.nValue tooc high");
+ nValueOut += txout.nValue;
+ if (nValueQut > MAX_MONEY)
+ return error("CTransaction: :CheckTransaction() : txout total too high");
= H

if (IsCoinBase()) if (IsCoinBase())

i i

//crocs.fi.muni.cz @CRoCS

https://github.com/bitcoin/bitcoin/commit/d4c6b90ca3f9b47adb1b2724a0c3514f80635c84#diff-118fcbaaba162ba17933c7893247df3aR1013

. 2
Questions C

* When exactly overflow happens?

* Why mining reward was 50.51 and not exactly 507
— CTxOut(nValue= 50.51000000

* How to check for type overflow?

56 | PV286 - Secure coding

https://crocs.fi.muni.cz @CRoCS_MUNI

= SOURCE CODE PROTECTIONS

https://crocs.fi.muni.cz @CRoCS_MUNI

Safe add and mult operations in C/C++

« Compiler-specific non-standard extensions of C/C++

« GCC: _builtin_add_overflow, _ builtin_mul_overflow ...
bool _ builtin_add_overflow (typel a, type2 b, type3 *res)
— Result returned as third (pointer passed) argument
— Returns true if overflow occurs
— https://gcc.gnu.org/onlinedocs/gcc/integer-Overflow-Builtins.html

« MSVC: Safelnt wrapper template (for int, char...)
— Overloaded all common operations (drop in replacement)
— Returns SafelntException if overflow/underflow

— https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

#include <safeint.h>
using namespace msl::utilities; // Normal use

Safelnt<int> cl = 1; Safelnt<int> c2 = 2; cl =cl + c2;

60 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

Safe add and mult operations in Java

- Java SE 8 introduces extensions to java.lang.Math

 ArithmeticException thrown if overflow/underflow

public static int addExact(int x, int y)

public static long addExact(long x, long y)
public static int decrementExact(int a)

public static long decrementExact(long a)
public static int incrementExact(int a)

public static long incrementExact(long a)
public static int multiplyExact(int x, int y)
public static long multiplyExact(long x, long y)
public static int negateExact(int a)

public static long negateExact(long a)

public static int subtractExact(int x, int y)
public static long subtractExact(long x, long y)
public static int tolntExact(long value)

61 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Format string vulnerabilities - motivation

* Quiz — what Is insecure in given program?
« Can you come up with attack?

int main(int argc, char * argv[]) {
printf (argv[1l]);
return 0O;

62 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Format string vulnerabilities

* Wide class of functions accepting format string
— printf("%s", X);
— resulting string Is returned to user (= potential attacker)
— formatting string can be under attacker’s control
— variables formatted into string can be controlled

« Resulting vulnerability
— memory content from stack is formatted into string
— possibly any memory if attacker control buffer pointer

63 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Information disclosure vulnerabilities

» Exploitable memory vulnerability leading to read access (not write access)
— attacker learns some information from the memory

 Direct exploitation
— secret information (cryptographic key, password...)

* Precursor for next step (very important with DEP&ASLR)

— module version
— current memory layout after ASLR (stack/heap pointers)
— stack protection cookies (/GS)

64 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Format string vulnerability - example .

« Example retrieval of security cookie and return address

int main(int argc, char* argv[]) {
char buf[64] = {};
sprintf(buf, argv[1]);

printf("%s\n", buf);
return O;
bs

argv[1l] submitted by an attacker

E.g., %x%x%xX....%Xx
. Don'’t let user/attacker Stack content is printed
W to provide own Including security cookie and RA

formatting strings

65 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Non-terminating functions - example .

- What is wrong with following code?

int main(int argc, char* argv[]) {
char buf[l6];
strncpy (buf, argv[l], sizeof (buf));
return printf ("%s\n",buf) ;

66 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

strncpy - manual

function

Strncpv “c3atring>

char * strncpy (char * deatination, conat char * source, 3ize t num);

Copy characters from string

Copies the first num characters of source to destination. If the end of the source C string (which is signaled by a

null-character) is found before num characters have been copied, destination is padded with zeros until a total of
num characters have been written to it.

hus, in this case,
w.

Mo null-character is implicitly appended at the end of destination if source is longer than num.

destination and source shall not overlap (see memmaove for a safer alternative when overlapping).

. Parameters

deatinaticn

Pointer to the destination array where the content is to be copied.
source

C string to be copied.
nuam

Maximum number of characters to be copied from source.
size_tis an unsigned integral type.

http://www.cplusplus.com/reference/cstring/strncpy/?kw=strncpy

67 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

Non-terminating functions for strings

* strncpy * Wwcsncpy
* snprintf * snwprintf
* vsnprintf * vsnwprintf
* mbstowcs * wcstombs

* MultiByteToWideChar WideCharToMultiByte

* Non-null terminated Unicode string more dangerous
— C-string processing stops on first zero " | Null termination specific for C, but
)

— any binary zero (ASCII) terminating/separating characters
— 16-bit aligned wide zero character (UNICODE relevant in any other language V4

68 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

Heap overflow

Buffer overflow in

first HeapHdr for all first HeapHdr allocation 1 overwrites
available memory | allocated header for allocation 2
e < | usable memory 5 (and possibly other)
= <4
allocation allocation 1
usable m¢mory 3 usable memory .
HeapHdr for| = = 2
- remaining fr| = -
memory assigne - N
by the kernel —»| freememon) allocation 2 PG free 2
SimpleHeap _ _| | usable meghory z | | free memory >
allod() g al 3 s
.| HeapHgr for the .| HeapHdr for the
remajning free memory remaining free memory
Linked list betw#en aIIocat%d blocks fred memory —» | free memory
SimpleHeap
Corrupted allocation 2 data are later : free()
processed by unlink() function

RoCS_MUNI

CR&,CS

char *gets|(

Secure C library — selected functions |, =~ 7

char *gets s(

* Formatted input/output functions char *buffer,

size t sizelInCharacters
— gets_s)i

— scanf_s, wscanf_s, fscanf_s, fwscanf s, sscanf s, swscanf_s, vfscanf_s, viwscanf_s,
vscanf_s, vwscanf_s, vsscanf_s, vswscanf_ s

— fprintf_s, fwprintf_s, printf_s, printf_s, snprintf_s, snwprintf s, sprintf_s, swprintf_s,
viprintf_s, viwprintf_s, vprintf_s, vwprintf_s, vsnprintf_s, vsnwprintf_s, vsprintf_s, vswprintf_s

— functions take additional argument with buffer length
* File-related functions
— tmpfile_s, tmpnam_s, fopen_s, freopen_s
 takes pointer to resulting file handle as parameter
* return error code

71 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Secure C library — selected functions

Environment, utilities

— getenv_s, wgetenv_s

— bsearch_s, gsort_s

Memory copy functions

— memcpy_sS, memmove_s, strcpy_S, WCSCpy_S, Sstrncpy_s, wcsncpy_S

Concatenation functions
— strcat_s, wcscat_s, strncat_s, wesncat_s

Search functions
— strtok_s, wcstok_s

Time manipulation functions...

72 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Secure C library

« Secure versions of commonly misused functions
— bounds checking for string handling functions
— better error handling

* Also added to new C standard ISO/IEC 9899:2011

* Microsoft Security-Enhanced Versions of CRT Functions
— MSVC compiler issue warning C4996, more functions then in C11

« Secure C Library

— http://docwiki.embarcadero.com/RADStudio/XE3/en/Secure_C Library

— https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-enhanced-versions-of-crt-functions
— https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt

— http://www.drdobbs.com/cpp/the-new-c-standard-explored/232901670

74 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

http://docwiki.embarcadero.com/RADStudio/XE3/en/Secure_C_Library
https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-enhanced-versions-of-crt-functions
https://docs.microsoft.com/en-us/cpp/c-runtime-library/security-features-in-the-crt
http://www.drdobbs.com/cpp/the-new-c-standard-explored/232901670

% COMPILER PROTECTIONS

https://crocs.fi.muni.cz @CRoCS_MUNI

char *buffer{20] Stack without canary word

Stack before overflow with canary

stack grows from higher lo

E] -
™ Position before
char “buffer{20] CY |RA| parameters other data TEXT segment
. buffer writes from lower 1o higher EIddI'ESSE‘S'. -

— randomized cookie
= kow aoorees O ey —— between local variables
gf} = relum address and return address

= canary

— function prolog (add
security cookie)

— and epilog (check
cookie)

d-h/

01832#
e CRoCS_MUNI

http://www.drdobbs.com/security/anatomy-of-a-stack-smashing-attack-and-h/2400

MSVC Compiler security flags - /GS

* /GS switch (added from 2003, improves in time)
— http://msdn.microsoft.com/en-us/library/8dbf701c.aspx
— multiple different protections against buffer overflow
— mostly focused on stack protection

+ /GS protects: ') IGSis applied in both
— return address of function V) DEBUG and RELEASE
— address of exception handler modes

— vulnerable function parameters (arguments)
— some of the local buffers (GS buffers)

« /GS protection is (automatically) added only when needed

— to limit performance impact, decided by compiler (/GS rules)
— #pragma strict gs check (on) - enforce strict rules application

78 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

http://msdn.microsoft.com/en-us/library/8dbf701c.aspx

/GS —what is NOT protected

« /GS compiler option does not protect against all buffer overrun
security attacks

« Corruption of address in vtable
— (table of addresses for virtual methods)

- Example: buffer and a vtable in an object, a buffer overrun could
corrupt the vtable

* Functions with variable arguments list (...)

\\gg/ Automatic tools add vital protections, but are NOT
replacement for secure defensive programming

83 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

GCC compiler - StackGuard & ProPolice

« StackGuard released in 1997 as extension to GCC
— but never included as official buffer overflow protection

« GCC Stack-Smashing Protector (ProPolice)
— patch to GCC 3.x
— Included in GCC 4.1 release
— -fstack-protector (string protection only)
— -fstack-protector-all (protection of all types)
— on some systems enabled by default (OpenBSD)
« -fno-stack-protector (disable protection)

85 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

r?h? Example: Stack canary

mowvg %PSPJ %Pbp
.cfi offset 6, -16
.cfi_de+_cfa_ﬂegiStEP b
subqg %48, %rsp

ase pointer onto stack

; stack pointer becomes new base pointer
; reserve space for
; local wariables on stack

; bring arguments from registers onto stack

movq %rdi, -48(%rbp) ; 1st argument from rdi to stack

; 55P's prolog: put canary onto stack

mowvg #fs: 48, ¥rax ; canary from Xfs:48 to rax
mowvg darax, -B(EPbp} ; canary from rax onto stack
xorl %EaxJ Feax ; st rax to zero

3 prepare parameters for strcpy()
-48(%rbp), %rdx ; 1st argument to
-32(%rbp), %rax ; 2nd argument to

movq
leaq

;3 call strcpy()

source address from rdx to rsi
destination address from rax to rdi
call strcpy()

xrsi
xrdi

mowvq
movq
call

dardx,
darax,
strocpy

; 55P's epilog: check canary

#include <string.h>

void vuln{const char *str)

¢ char IJu - \(’

strcpy(bn
¥

int main(int argc, char *argv[])
d

vuln(argv[1]);

return ©;

GCC -fstack-protector-all

movq -8(%rbp), %rax ;3 canary from stack to rax
xorq %fs:40, %rax ; original canary XOR rax
je .L3 ;3 if no overflow -»> XOR results in zero
K => jump to label .L3
; if overflow -» XOR results in non-zero
call __stack chk_fail ; =» call _ stack chk_fail()
LL3:
leave ; clean-up stack

ret ; return
.cfi endproc

89 | PV286 - Secure coding

bypass stack canary?

Can an attacker still

How to bypass stack protection cookie? .

» Scenario:
— long-term running of daemon on server
— no exchange of cookie between calls

1. Obtain security cookie by one call
— cookie is now known and can be incorporated into stack-smashing data

2. Use second call to change only the return address

@ What attacker can do with

® changed return address? .

91 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

7 PLATFORM PROTECTIONS

https://crocs.fi.muni.cz @CRoCS_MUNI

Data Execution Prevention (DEP)

« Motto: When boundary between code and data blurs (buffer
overflow, SQL injection...) then exploitation might be possible

- Data Execution Prevention (DEP)
— prevents application to execute code from non-executable memory region
— available in modern operating systems
e Linux > 2.6.8, WinXPSP2, Mac OSX, iOS, Android...
— difference between ‘hardware’ and ‘software’ based DEP

93 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Hardware DEP

Supported from AMD64 and Intel Pentium 4
— OS must add support of this feature (around 2004)

CPU marks memory page as non-executable
— most significant bit (63th) in page table entry (NX bit)
— 0 == execute, 1 == data-only (non-executable)

Protection typically against buffer overflows

Cannot protect against all attacks!

— e.g., code compiled at runtime (produced by JIT compiler) must have both instructions and
data in executable page

— attacker redirect execution to generated code (JIT spray)
— used to bypass Adobe PDF and Flash security features

94 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Software “DEP”

* Unrelated to NX bit (no CPU support required)

 When exception is raised, OS checks if exception handling routine
pointer is in executable area
— Microsoft’'s Safe Structured Exception Handling

« Software DEP is not preventing general execution in non-executable
pages
— different form of protection than hardware DEP

95 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

Address Space Layout Randomization (ASLR) .

« Random reposition of executable base, stack, heap and libraries address In
process’s address space
— aim is to prevent exploit to reliably jump to required address

« Performed every time a process is loaded into memory
— random offset added to otherwise fixed address
— applies to program and also dynamic libraries
— entropy of random offset is important (bruteforce)

« Operating System kernel ASLR (KkASLR)
— more problematic as long-running (random, but fixed until reboot)

* Introduced by Memco software (1997)

— fully implemented in Linux PaX patch (2001)
— MS Vista, enabled by default (2007), MS Win 8 more entropy (2012)

96 | PV286 - Secure coding https://crocs.fi.muni.czc @CRoCS_MUNI

CR&,CS

ASLR — impact on attacks

* ASLR introduced big shift in attacker mentality

 Attacks are now based on gaps in ASLR

— legacy programs/libraries/functions without ASLR support
I /DYNAMICBASE

— address space spraying (heap/JIT)
— predictable memory regions, insufficient entropy

é Can attacker execute desired

® functionality without changing code? .

101 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

Return-oriented programming (ROP)

« Return-into-library technique (Solar Designer, 1997)
— method for bypassing DEP
— no write of attacker’s code to stack (as is prevented by DEP)
1. function return address replaced by pointer to standard library function
2. library function arguments replaced according to attackers needs
3. function return results in execution of library function and given arguments
— Example: system call wrappers like system()
« Borrowed code chunks
— Problem: 64-bit hardware introduced different calling convention
« first arguments to function passed in CPU registers instead of via stack

— attacker tries to find instruction sequences from any function that pop values
from the stack into registers (automated search by ROPgadget)

— necessary arguments are inserted into registers
— return-into-library attack is then executed as before

102 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

A:

<func_prologues> @
<instructionss= <instructionss
callq 400410 <B= Srstreiterss callg 400410 <B=
<instr_after_call> -, . Y 4 <instr_after_call>
Teelretg.--"T @
— call edge

---® return edge

Control flow integrity

* Promising technigue with low overhead
» Classic CFIl (2005), Modular CFI (2014)

— avg 5% impact, 12% in worst case
— part of LLVM C compiler (CFI usable for other languages as well)

1. Analysis of source code to establish control-flow graph (which function can
call what other functions)

2. Assign shared labels between valid caller X and callee Y
3. When returning into function X, shared label is checked
4. Return to other function is not permitted

https://www.usenix.org/system/files/conference/usenixsecurityl5/secl5-paper-carlini.pdf

103 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-carlini.pdf

DEP and ASLR should be combined

 “For ASLR to be effective, DEP/NX must be enabled by default too.”
M. Howard, Microsoft

» /GS combined with /[DYNAMICBASE and /INXCOMPAT

— INXCOMPAT (==DEP)

— prevents insertion of new attacker's code and forces ROP

— IDYNAMICBASE (==ASLR) randomizes code chunks utilized by ROP
— /GS prevents modification of return pointer used later for ROP

— IDYNAMICBASE randomizes position of master cookie for /GS

* Visual Studio — Configuration properties —
— Linker — All options
— C/C++ — All options

104 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

SUMMARY

105 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

Mandatory reading

« SANS: 2017 State of Application Security

— https://web.archive.org/web/20180119191652/https://www.sans.org/reading-

room/whitepapers/application/2017-state-application-security-balancing-speed-risk-
38100

— Which applications are of main security concern?

— What is expected time to deploy patch for critical security vulnerability?
— How does your organization test applications for vulnerabilities?

— Which language is the most common source of security risk?

106 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://web.archive.org/web/20180119191652/https:/www.sans.org/reading-room/whitepapers/application/2017-state-application-security-balancing-speed-risk-38100
https://web.archive.org/web/20180119191652/https:/www.sans.org/reading-room/whitepapers/application/2017-state-application-security-balancing-speed-risk-38100
https://web.archive.org/web/20180119191652/https:/www.sans.org/reading-room/whitepapers/application/2017-state-application-security-balancing-speed-risk-38100

CR&,CS

Optional reading

« Marcel B6hme: “Guarantees in Software Security”

— An article from Ferbuary 2024 https://arxiv.org/abs/2402.01944

— Interesting read with many practical examples. However, it is academic and might not
be detailed enough (e.qg., if you never heard about a particular bug, then it is hard to
follow since it is not explained in detall).

— “We review general approaches to reason about the security of a software system and
reflect upon the guarantees they provide. We introduce a taxonomy of fundamental

challenges towards the provision of guarantees, and discuss how these challenges are
routinely exploited to attack a system in spite of credible assurances about the absence

of such bugs. “

107 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

https://arxiv.org/abs/2402.01944

Questions 2

/
£

108 | PV286 - Secure coding https://crocs.fi.muni.cz @CRoCS_MUNI

	Slide 1: PV286 - Secure coding principles and practices
	Slide 2: This Lecture
	Slide 3: Course trivia: PV286+PA193_00_Course_organisation_2024
	Slide 4
	Slide 5: What is the cost of insecure software
	Slide 6: There is HUGE market for (undisclosed) vulnerabilities
	Slide 7: What software security means?
	Slide 8: Defensive programming
	Slide 9: Where to learn about bugs and resulting vulnerabilities?
	Slide 10: Attacker goals and related vulnerabilities
	Slide 11: Where to find relevant bug patterns and info
	Slide 12: Common Weakness Enumeration (CWE)
	Slide 13
	Slide 14
	Slide 15: Frequent bugs – worth of prioritization (CWE/CVE)
	Slide 16: Frequent bugs – worth of prioritization (web)
	Slide 17: Example: Injection (1. OWASP TOP 10, 3. CWE Top 25)
	Slide 18: CWE flaw types by language
	Slide 19: Bugs patterns searched by tools
	Slide 20: Digging deeper and learning more…
	Slide 21: Vulnerability disclosure basics
	Slide 22: How to prevent, detect and mitigate code bugs?
	Slide 23: How to prevent, detect and mitigate code bugs?
	Slide 24: Microsoft’s Secure Development Lifecycle (SDL)
	Slide 25: Use secure-by default languages and libraries
	Slide 26: Use of more secure versions of functions
	Slide 27: Utilize hardening by compiler and platform
	Slide 28: Automation and tooling
	Slide 29: Static vs. dynamic analysis
	Slide 30: Automated analysis tools limitations
	Slide 31: Always design for testability
	Slide 32: Continuous Integration
	Slide 33: Tests, Continuous integration…
	Slide 34: Continuous Integration: GitHub&Travis CI example
	Slide 35: CI: adding code analysis (e.g., CppCheck, Coverity)
	Slide 36: Dependabot (GitHub)
	Slide 37: Typical problems from real world
	Slide 38: Typical issues – where theory meets practice 
	Slide 39: Typical issues – where theory meets practice 
	Slide 40
	Slide 41: Digging deeper…
	Slide 42: Motivation problem
	Slide 43: Process memory layout
	Slide 44: Stack memory layout
	Slide 45: Stack overflow
	Slide 47: Type-overflow vulnerabilities - motivation
	Slide 48: Type overflow – basic problem
	Slide 49: Example: Make HUGE money with type overflow
	Slide 50: Make HUGE money with type overflow
	Slide 52: Bug dissection
	Slide 53: Type overflow – Bitcoin
	Slide 55: BugFix – proper checking for overflow
	Slide 56: Questions
	Slide 59: Source code protections Compiler protections Platform protections
	Slide 60: Safe add and mult operations in C/C++
	Slide 61: Safe add and mult operations in Java
	Slide 62: Format string vulnerabilities - motivation
	Slide 63: Format string vulnerabilities
	Slide 64: Information disclosure vulnerabilities
	Slide 65: Format string vulnerability - example
	Slide 66: Non-terminating functions - example
	Slide 67: strncpy - manual
	Slide 68: Non-terminating functions for strings
	Slide 69: Heap overflow
	Slide 71: Secure C library – selected functions
	Slide 72: Secure C library – selected functions
	Slide 74: Secure C library
	Slide 75: Source code protections Compiler protections Platform protections
	Slide 77
	Slide 78: MSVC Compiler security flags - /GS
	Slide 83: /GS – what is NOT protected
	Slide 85: GCC compiler - StackGuard & ProPolice
	Slide 89: GCC -fstack-protector-all
	Slide 91: How to bypass stack protection cookie?
	Slide 92: Source code protections Compiler protections Platform protections
	Slide 93: Data Execution Prevention (DEP)
	Slide 94: Hardware DEP
	Slide 95: Software “DEP”
	Slide 96: Address Space Layout Randomization (ASLR)
	Slide 101: ASLR – impact on attacks
	Slide 102: Return-oriented programming (ROP)
	Slide 103: Control flow integrity
	Slide 104: DEP and ASLR should be combined
	Slide 105: Summary
	Slide 106: Mandatory reading
	Slide 107: Optional reading
	Slide 108

