
Secure Coding
Martin Carnogursky

admin@sourcecode.ai

Authentication &
Authorization in practice

Don‘t repeat the same mistakes I did ...

• DON‘T Make your own auth system (username & password)
• ^ If there is one thing you should remember from this

• Use existing 1st / 3rd party services by integrating into them
• Use existing protocols (ex. OpenID/OIDC/OAuth, ...)
• Plan carefully into the future
• Swapping auth system is very high-risk, time consuming and something

always goes wrong

Quick reference

• OpenID -> use the OpenID provider to log in to your application (e.g. Sign
in via Google); Authentication layer: proving who you are
• OAuth -> allow an application to act on your behalf (e.g. Post a message

to Twitter); Authorization layer: grant access to functionality/data
• OIDC -> OpenID Connect
• SSO -> Single Sign On; done usually via OpenID or SAML

• SAML limitations -> browser workflow only, no mobile devices/rest api

What to plan for

• Verify identity of a given user (user+password, SSO, api tokens, ...)
• Authentication & Authorization

• Role based model: admin vs „normal“ user vs tech support and more
• Impersonation
• Password reset, 2FA, enrolling users
• API tokens
• Inherit user permissions
• Account lockdowns & resets must affect api tokens as well

3rd party auth providers*

OIDC

Redirect

MFA/2FA

JWT/API Tokens

* Personal preference/experience

Authentication & Authorization for
developers (and employees)
• Access to the database
• Access to the server (ssh, ftps, ...)
• Access for (server/performance) monitoring (or dashboard)
• Interns (temporary access to some resources)
• People leaving company

• Enrolling new developers
• Bug reporting
• Audits

You are a high value target as a developer!

• Root/admin access on servers
• Unrestricted read/write to DBs
• Read/write access to the source code
• Access to a CI pipeline
• Access to deployments (docker, kubernetes, nomad, ...)
• Access to releases (package, exe, ...)
• Access to sensitive 3rd party APIs (ex. Payment gateway)
• Copies of data (db, customer details, dumps)

Common mistakes

• Shared API keys
• No access policy
• No auditing/logs
• Config files vs. Environ vars
• dotenv

HashiCorp Vault / OpenBao*

• ACL for managing secrets
• Generate temporary secrets on the fly

• Automatic expiration & renewal
• Roles & policies for every user & secret

• Easy revocations
• Awareness of active secrets
• Full audit logs: what secret was issued to whom, when, with what priviledges,

start & end (expiration) dates etc...
• Many engines supporting many protocols:

• SQL DBs (postgres, mariadb, mssql, ...)
• NoSQL DBs (kafka, mongo, ...)
• Other systems (Cas, SSL certs, SSH, JWT tokens, ...)

• Integration with OIDC

* Personal preference/experience that I stick with, there are other alternatives

Software supply chain

What is a supply chain?

Image source: http://img.scoop.it/Fwh7RipNyY3N384cITe5qbnTzqrqzN7Y9aBZTaXoQ8Q=

Includes auth principles that we just talked about

How babies packages are made

peewee-2.27.1.tar.gz

https://files.pythonhosted.org/packages/60/f3/26ff3767f099b73e0efa138a9998da67890793bfa475d8278f84a30fec77/requests-2.27.1.tar.gz

Setup.py <- „.py“ means it‘s executable

setup(# We are in fact calling a python function with the following arguments
 ...
 name='windows95',
 author='Bill Gates',
 author_email='bill.gates@microsoft.com',
 url='https://github.com/coleifer/peewee/',
 packages=['requests', 'cGVld2Vl\n'.decode('base64') , 'ipaddress'],
 install_requires=random.choice(["pkg1", "pkg2", "pkg3", "pkg4", "pkg5"]),
 ...
)

TL;DR: Most packages (and/or their formats) are not deterministic!

Types of attacks

• Namesquatting
• Typosquatting

• Stub package
• Phishing

• Starjacking
• Dependency confusion

• Existing packages
• Malicious dependency
• Package takeover

• Dependency hijack
• Source code modification

Typosquatting/namesquatting

What was the name again?

a) pip install pewe
b) pip install peewe
c) pip install pewee
d) pip install peewee

Types of attacks

• Namesquatting
• Typosquatting

• Stub package
• Phishing

• Starjacking
• Dependency confusion

• Existing packages
• Malicious dependency
• Package takeover

• Dependency hijack
• Source code modification

Starjacking

Types of attacks

• Namesquatting
• Typosquatting

• Stub package
• Phishing

• Starjacking
• Dependency confusion

• Existing packages
• Malicious dependency
• Package takeover

• Dependency hijack
• Source code modification

Dependency confusion

Source:
• https://portswigger.net/daily-swig/dependency-confusion-attack-mounted-via-pypi-repo-exposes-flawed-package-installer-behavior
• https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

https://portswigger.net/daily-swig/dependency-confusion-attack-mounted-via-pypi-repo-exposes-flawed-package-installer-behavior

Types of attacks

• Namesquatting
• Typosquatting

• Stub package
• Phishing

• Starjacking
• Dependency confusion

• Existing packages
• Malicious dependency
• Package takeover

• Dependency hijack
• Source code modification

Source: https://security.snyk.io/vuln/SNYK-JS-NODEIPC-2426370

Exploiting PRs/commits workflow

• GitHub diff view doesn‘t like NULL characters
• Automatic trigger of CI pipeline
• Self-approve PRs

• Add new CI/CD workflows
• Fake digital signatures

More reading: https://iter.ca/post/gh-sig-pwn/

Malicious PR

Leaking
credentials

User
aclark

Pillow: Image processing library

14323814 Downloads

3324 # of dependencies

17.05.2022 Last updated

Aimelia: simple todo list (?)

723 Downloads

0 # of dependencies

02.04.2017 Last updated

It‘s not important, or is it?

Contains pypi password forIs maintainer of

Less importantMore important

This doesn‘t always work...

Disclaimer: Not recent, found in 2018, first significant finding of the Aura project.
Reported to Python security team and forced password reset.

Threat modeling via graphs

By compromising user aclark we have access to all
these packages via (in)direct dependencies.

Compromising key strategic packages/users is
enough to compromise most of the pypi
ecosystem.

Source code modifications

Reproducible builds

How can we make sure, whatever is in github is the exact same
version deployed on pypi without any additional modifications such
as malware, backdoors etc?
More reading: https://reproducible-builds.org

^SourceCode\.AI$
admin@sourcecode.ai

https://openssf.org

• ^Aura$
• ^Ambience$

Lab/Seminar: https://github.com/SourceCode-AI/secure_coding

2021 Solarwinds breach...
• Attackers even mimicked the coding style of developers to remain stealth
• Could be (arguably) easily detected by behavioral indicators

Static behavioral indicators

Privilege escalation

Tampers with user/account privileges

Enumerates system information using VMI

Reads information about one or more running processes

Source: https://blog.reversinglabs.com/blog/sunburst-the-next-level-of-stealth

