Advanced Features of SAT Solvers
IA085: Satisfiability and Automated Reasoning

Martin Jonas

FI MUNI, Spring 2025

- Conflict-Driven Clause Learning (cbcL): DPLL + clause learning + backjumping
- literal decision heuristics

- restarts

1/ 42

Incremental SAT solving

Normal Usage

1. Call solve(d).
2. Get the answer (+ possibly a model).

3. 77

4. Profit.

2/42

Incremental Usage

Some applications issue queries:

1. Is @4 satisfiable?

2. Is &1 U @, satisfiable?

3. Is &, U &, U P53 satisfiable?
4

Examples

- checking feasibility of program paths
- checking feasibility of plans

3/42

Incremental Usage

Some applications issue queries:

1. Is @4 satisfiable?

2. Is &1 U @, satisfiable?

3. Is &, U &, U P53 satisfiable?
4

Examples

- checking feasibility of plans

3/42

Incremental Usage: Checking Feasibility of Paths

1 x = input()

2 if (x > 0) {

3 target()

4 X =x + 1

5 if (x < 1) {
6 target()
7 }

8 }

- Target on line 3: is (zo = i) A (xg > 0) SAT?

4142

Incremental Usage: Checking Feasibility of Paths

1 x = input()

2 if (x > 0) {

3 target()

4 X =x + 1

5 if (x < 1) {
6 target()
7 }

8 }

- Target on line 3: is (zo = i) A (xg > 0) SAT?
- Target on line 6: is (zg =) A (zo > 0) SAT?

4142

Incremental Usage

Modern solvers support

clauses 4.

Call solve().

Do something with the answer.
clauses @,.

. Call solve().

. Do something with the answer.

I

[©)]

clauses ®s.

SSIN

Why is this better than calling solve for &4, for &; U &5, for &1 U &, U D3, ...7
5/42

Solving Under Assumptions

What if we need to solve multiple queries that are not incremental, but differ in
some literals?

- Is ® A A satisfiable?
+|Is ® A —A A B satisfiable?
- Is®A-B A DA E satisfiable?

Examples

- planning (common constraints + individual goals)
- package dependencies (common constraints + individual queries for
installed packages)
6/ 42

Solving Under Assumptions

Solving under assumptions (MiniSAT)

- Add clauses ®.

- Call solve([A]) and do something with the result.

- Call solve([—A, B]) and do something with the result.

- Call solve([-B, D, E]) and do something with the result.

The calls to solve()

7/ 42

Solving Under Assumptions (alternative API)

Solving under assumptions (CaDiCal)

- Add clauses .

- Call assume(A).

- Call solve() and do something with the result.

- Call assume(—A) and assume(B).

- Call solve() and do something with the result.

- Call assume(-B) and assume(D) and assume(E).
- Call solve() and do something with the result.

8/ 42

Solving Under Assumptions: Implementation

solve([1l1, 12, ..., 1k1)

- before the search, decide Iy, I, ..., I}, on decision levels

- when backjumping before the real decision level 1, return UNSAT

9/42

Solving Under Assumptions: Example

Consider

® = {{~-4, B},
{-C, D},
{-E, F},
{-E,-F},
{E, G},
{-E, H},
{E,-G,-B,-D}}

Compute solve([A, C, H]) after adding all clauses of ®.
10 / 42

Solving Under Assumptions: Failed Assumptions

Nice bonus

- when UNSAT, a slight modification of clause learning (last UIP) can compute a
conflict clause C = —p with u C {l1,l, ..., I}

- identifies that contributed to the unsatisfiability

1M/ 42

Varying Clauses

What if we need to vary additional , not only literals?

- Is ® A C4 satisfiable?
- Is ® A Cy A C5 satisfiable?
- Is ® A C, satisfiable?

Examples

- symbolic execution

- planning

12/ 42

Activation Literals

Solution

- add a new to each clause that should be possible to disable
PACHIANC; ~ (I)/\(ﬁAz\/Cz)/\(—u‘b\/Cg)

- use solving under assumptions to enable clauses

13/ 42

Activation Literals

Solution

- add a new to each clause that should be possible to disable
PACHIANC; ~ (I)/\(ﬁAz\/Cz)/\(—u‘b\/Cg)

- use solving under assumptions to enable clauses
- solve([—-A2,-A3]) =is ® sat?
- solve([A2,-A3]) =is® A, sat?
- solve([-A2, A3]) =is® A C;sat?
- solve([A2, A3]) =is® AC, AC; sat?

13/ 42

Proof generation

Proof Generation

Facts

- SAT solvers are used in safety-critical systems
- SAT solvers are pieces of software
- all software has bugs

14 [42

Proof Generation

Facts

- SAT solvers are used in safety-critical systems
- SAT solvers are pieces of software

- all software has bugs

G)

14 [42

Proof Generation

Facts

- SAT solvers are used in safety-critical systems
- SAT solvers are pieces of software

- all software has bugs

G)

Solution

- besides SAT/UNSAT answer, produce an artifact that can be independently
checked

- for SAT results = model

- for UNSAT results =
14/ 42

Resolution Proof Generation from DPLL

Recall
Each UNSAT run of DPLL corresponds to a resolution proof of unsatisfiability

Algorithm

- conflicting clauses (leaves) ~ input clauses

- unit propagation steps ~ resolution with the clause that triggered the unit
propagation

- decision nodes ~ resolution steps on the decided variable

15/ 42

Resolution Proof Generation from ppPLL: Example

{{A, B}1,{—=B,C},,{-B,~C}3,{—A,~B,~D}s,{—~A, B,~D}s,{-A,B,D}s}

I
2N\
(4] [-A]
NP s
[A, B] [A, ﬂB] [ﬂA, B}

:

[A,B,C] [A,-B,—-D][-A,B,C)|
16/ 42

Resolution Proof Generation from ppPLL: Example

{{A, B}1,{—=B,C},,{-B,~C}3,{—A,~B,~D}s,{—~A, B,~D}s,{-A,B,D}s}

[0
SN TN
(4] [-4] {-4} {A}
N e
(A, B] [A,=B] [-A, B] {=B} {(-A,B} {A,B} {-B}

o oo e e
[A,B,C] [A,-B,—-D][-A,B,C] {-B,C{-B,-C}{-A,B,-D}{-A,B,D} {-B,C}{-B,~C}
16/ 42

Resolution Proof Generation from cbcL

cDCL observations
- the final conflict was achieved by backtracked literals and unit propagated
literals (no decisions, why?)

- the final conflict is derived by unit propagation from input clauses and learnt
clauses

- the final conflict can be obtained by resolving input clauses and learnt
clauses

- each learnt clause was obtained by resolving input clauses and previous
learnt clauses

17/ 42

Resolution Proof Generation from cbcL

Algorithm

1. express the final conflict as resolution of input clauses and learnt clauses

2. while the proof contains a leaf that is a clause, replace it by its
resolution proof

Practical considerations

- the solver needs to remember for each learnt clause its antecedent clauses
from which it was obtained

- might require significant amount of memory and makes the solver more
complex

18/ 42

Clausal Proofs

For easier implementation:
- proof is a list of clauses
- each clause has to be entailed by previous clauses (input or derived)
- SAT solver only outputs the learnt clauses during the search
checks the entailment

- examples: DRUP, DRAT

19 /42

Clausal Proof Formats

{{4,B}1,{—=B,C},,{-B,~C}3,{-A,-~B,~D}s,{—-A, B,~D}s,{-A,B,D}s}

DIMACS formula Clausal proof
p cnf 4 6 -2 0

1 2 0 10

-2 3 0 -1 20

-2 -3 0 -10

-1 -2 -4 0 0

-1 2 -4 0

-1 2 40

20/ 42

Reverse Unit Propagation (RUP)

(I)|:(l1\/l2\/...\/ln) <~ (I)/\—\h/\—'lz/\.../\—\ln’zl_

To check clause C = {l4,1,,...,l,} using

1. assign =l by, .., g,
2. check that unit propagation produces a conflict

Reverse Unit Propagation

- obviously not complete (find an example!)
. because it learns clauses that were
conflicting by unit propagation

- previous example was RUP proof
21/ 42

Delete Reverse Unit Propagation (DRUP)

- proof checking of RUP requires checking large number of clauses
- some were actually deleted by the solver and are not needed for the proof

anymore — express (D) in the proof (DRUP)
DIMACS formula Clausal proof
p cnf 4 6 -2 0
1 2 0 d -230
-2 3 0 d -2 -30
-2 -3 0 10
-1 -2 -4 0 -1 20
-1 2 -4 0 -10
-1 2 40 0

22/ 42

Clausal Proof Formats

Multiple clausal proof formats exist besides DRUP

+ DRAT
* LRAT
* LPR

Most of them have efficient proof checkers (some even).

23/ 42

https://www.cs.utexas.edu/~marijn/drat-trim/

Clausal Proof Formats

Multiple clausal proof formats exist besides DRUP

+ DRAT
* LRAT
* LPR

Most of them have efficient proof checkers (some even).

Challenge

- implement (p)rRUP proof generation in your solver
- use e.g. DRAT-TRIM for proof checking
(https://www.cs.utexas.edu/~marijn/drat-trim/)
23/ 42

https://www.cs.utexas.edu/~marijn/drat-trim/

Unsatisfiable Cores

Unsatisfiable Cores

Definition 4 ‘ .
For an unsatisfiable formula ® in CNF, its subset of clauses ¥ C @ is called

if U is unsatisfiable.

Important
The set ¥ does have to be minimal.

Applications

- analysis of requirements
- package dependencies
- abstraction refinement

24 [42

Unsatisfiable Cores: Proof-based Algorithm

Proof-based algorithm

1. Compute a resolution proof of unsatisfiability of .

2. Return the set ¥ C @ of clauses that occur as leaves in the proof.

25/ 42

Unsatisfiable Cores: Proof-based Algorithm

{{A, B}, {D,-E},{~B,C},{~B,~C},{B,—~E, F}, {~A,-B,-D},
{~A,—~F},{-A, B,~D},{~E,~F},{-A, B,D}}

26 [42

Unsatisfiable Cores: Proof-based Algorithm

{{A, B}, {D,-E},{~B,C},{~B,~C},{B,—~E, F}, {~A,-B,-D},
{~A,—~F},{-A, B,~D},{~E,~F},{-A, B,D}}

{-B,C} {-B,-C} {A,B} {-A,B,-D} {—-A,B,D}

N NS
{-B} (-4, B}
AN —

{A} {~4}

~N 7

0

26 [42

Unsatisfiable Cores: Proof-based Algorithm

{ A{D,—-FE}, , ,{B,—E,F},{-A,-B,~D},
{_'A7_'F}7 7{ﬁEﬂ _'F}v }
NS NS
{-B} {-4, B}
AN —
{4} {-A}
\ @ /

26 [42

Unsatisfiable Cores: Assumption-based Algorithm

Assumption-based algorithm

1. Add a new activation literal —=A; to each clause C; of ®.
2. Solve under assumptions solve([4, 4y, ..., Ajg|])-
3. The result will be UNSAT.

4 Theset F' C {A1, Ay, ..., Ajg|} Of corresponds to an
unsatisfiable core of ®.

27 [42

Unsatisfiable Cores: Assumption-based Algorithm

{{4, B},
{D,—-E},
{=B,C},
{=B,-C},
{B,-E, F},
{-A4,-B,-D},
{-4,-F},
{-4, B,-D},
{-E,~F},

{-4,B,D}}
28 [42

Unsatisfiable Cores: Assumption-based Algorithm

{{4, B}, {{-41, 4, B},
{D,-E}, {-4,,D,-E},
{-B,C}, {—4;,-B,C},
{-B,~C}, {-A4,-B,~C},
{B,-E,F}, {-A4s,B,—E,F},
{—A,-B,-D}, {—As,—A,-B,-D},
{-4,-F}, {—47,-4,-F},
{—-A, B,—-D}, {—Ag,-A, B,—-D},
{-E,-F}, {—Ay,~E,~F},
{—4,B,D}} {-410,-4,B,D}}

28 [42

Unsatisfiable Cores: Assumption-based Algorithm

{{4, B}, {{—41, 4, B},
{D,-E}, {42, D,~E},
{-B,C}, {—4;,-B,C},
{-B,~C}, {—A4, -B,=C},
{B,-E,F}, {-A4s,B,—E,F}, solve([41, Az, ..., Avp]) =
{—A,-B,-D}, {—As,—A,-B,-D},
{—4,-F}, {—~47,-A,~F},
{—-A, B,—-D}, {—=As,—A, B,~D},
{—E,~F}, {—Ag,~E,~F},
{-4,B,D}} {—41w0,-4, B, D}}

28 [42

Unsatisfiable Cores: Assumption-based Algorithm

{{4, B}, {{—41, 4, B},
{D,-E}, {42, D,~E},
{-B,C}, {—4;,-B,C},
{-B,~C}, {—A4, -B,=C},
{B,-E,F}, {-A4s,B,—E,F}, solve([41, Az, ..., A1]) = UNSAT
{—A,-B,-D}, {—As,—A,-B,-D},
{—4,-F}, {—~47,-A,~F},
{—-A, B,—-D}, {—=As,—A, B,~D},
{—E,~F}, {—Ag,~E,~F},
{-4,B,D}} {—41w0,-4, B, D}}

28 [42

Unsatisfiable Cores: Assumption-based Algorithm

{{4, B}, {{—41, 4, B},
{D,~E}, {42, D,~E},
{-B,C}, {—43,-B,C},
{-B,~C}, {—A4, -B,=C},
{B,-E,F}, {-A4s,B,—E,F}, solve([41, Az, ..., A1]) = UNSAT
{—A,-B,-D}, {—As,—A,-B,-D}, failed literals { A, As, Ay, Ag, A1}
{—4,-F}, {—~47,-A,~F},
{—-A, B,—-D}, {—=As,—A, B,~D},
{—E,~F}, {—Ag,~E,~F},
{—4,B,D}} {—41w0,-4, B, D}}

28 [42

Unsatisfiable Cores: Assumption-based Algorithm

{ : {{—41, 4, B},
{D,-E}, {42, D,~E},
: {=43,-B,C},
, {~A4,~B,~C},
{B,-E,F}, {-A4s,B,—E,F}, solve([41, Az, ..., A1]) = UNSAT
{—A,-B,-D}, {—As,—A,-B,-D}, failed literals { A, As, Ay, Ag, A1}
{—4,-F}, {—~47,-A,~F},
, {—=As,—A, B,~D},
{—E,~F}, {—Ag,~E,~F},
¥ {—41w0,-4, B, D}}

28 [42

Interpolation

Craig Interpolants

Definition (Cra|§lnterpolant 1957) ,
Given a pair of formulas (4, B) suchthat AAB | L, a s a

formula I such that

- AET
“BAIE L
- Atoms(I) C Atoms(A) N Atoms(B)

This is the definition used in formal methods, sometimes called

29/ 42

Craig Interpolants: Examples

A = A1/\(—|A1\/C1)/\A2/\(—\A2\/Cz)/\03
B = (—|C1\/B1)/\(—|Cz\/ﬁB1)/\C3

30/ 42

Craig Interpolants: Examples

Al N (—|A1 V C1) A Ay A (_\A2 V Cz) A Cs
B = (—|C1 V B1) VAN (—|Cz V ﬁB1) A Cs
I = CiNGy

s
I

30/ 42

Craig Interpolants: Examples

NN

S

Al N (—|A1 V 01) A Ay A (_\A2 V Cz) A Cs
(—|C1 V B1) VAN (—|Cz V ﬁB1) A Cs
Chi AN Ch

AN (—\A1 Vv CiV 03) A Ay A (—\Az v (ChV 03)
(—|C1 V B1) VAN <—|C2 V ﬂB1) A —Ch

30/ 42

Craig Interpolants: Examples

NN

Al N (—|A1 V 01) A Ay A (_\A2 V Cz) A Cs
(—|C1 V B1) VAN (—|Cz V ﬁB1) A Cs
Chi AN Ch

AN (—\A1 Vv CiV 03) A Ay A (—\Az v (ChV 03)
(—|C1 V B1) VAN <—|C2 V ﬂB1) A —Ch
(C1 V C3) AN (Cz vV C3)

30/ 42

Craig Interpolants (alternative definition)

Definition (Craig Interpolant: alternative) .
Given a pair of formulas (A4, B) such that A = B, a is a formula 1

such that
cAET
- IE=B
- Atoms(I) C Atoms(A) N Atoms(B)

The definitions are dual: (A, B) isa Craig interpolant iff (A, —B) is a Craig
interpolant in the above sense.

We discuss only reverse Craig interpolants from now on.

31/ 42

Craig Interpolation: Usage

Interpolants widely used in formal verification

- overapproximation of reachable states

- computation of function summaries

- generalization of spurious counterexamples
- refinement of predicate abstraction

32/ 42

Craig Interpolation: Usage

Interpolants widely used in formal verification

- computation of function summaries
- generalization of spurious counterexamples
- refinement of predicate abstraction

32/ 42

Craig Interpolation: Overapproximation of reachable states

1
2
3
4
5

X =0

while (rand()) {
X = X * 2

}

assert(x != 3)

Can assert be violated after three iterations?

(o=0) A (T1=20%2) AN (ma=x1%2) A (x3=12%2) N (23 =23)

33/ 42

Craig Interpolation: Overapproximation of reachable states

1
2
3
4
5

X =0

while (rand()) {
X = X * 2

}

assert(x != 3)

Can assert be violated after three iterations?

(o=0) AN (z1=20%2) A (m2=m1%2) A (23 =12%2) A (23 =23)
A B

« The formula is UNSAT.

33/ 42

Craig Interpolation: Overapproximation of reachable states

1
2
3
4
5

X =0

while (rand()) {
X = X * 2

}

assert(x != 3)

Can assert be violated after three iterations?

(o=0) AN (z1=20%2) A (m2=m1%2) A (23 =12%2) A (23 =23)
A B

- The formula is UNSAT.
- Aninterpolant of (A, B) is

33/ 42

Craig Interpolation: Overapproximation of reachable states

X =0

while (rand()) {
X = X * 2

}

assert(x != 3)

s W N o

Can assert be violated after three iterations?

(o=0) AN (z1=20%2) A (m2=m1%2) A (23 =12%2) A (23 =23)
A B

- The formula is UNSAT.
- Aninterpolant of (A, B) is .
- The interpolant is an overapproximation of states reachable in 3 iterations.

- Can be tried as an loop invariant!
33/ 42

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003) .
For every pair of propositional formulas (A, B) such that AA B = L, a Craig

interpolant can be computed in
of unsatisfiability of AN\ B.

34 /42

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003) .
For every pair of propositional formulas (A, B) such that AA B = L, a Craig

interpolant can be computed in
of unsatisfiability of AN\ B.

What does it say about the size of interpolant?

34 /42

Craig Interpolation: Existence and Size

Theorem (McMillan, 2003) .
For every pair of propositional formulas (A, B) such that AA B = L, a Craig

interpolant can be computed in
of unsatisfiability of AN\ B.

What does it say about the size of interpolant?

What does it say about size with respect to |A| + |B|?

34 /42

Craig Interpolation: Algorithm

Computing Craig Interpolants

1. Get resolution proof of unsatisfiability of A A B.
2. Label nodes of the proof by , starting from leaves.
3. The label of root of the proof is the Craig interpolant of (A4, B).

35/ 42

Preliminary Interpolants

Definition
Aformula fis a of the resolution proof node C (written

C[f]Dif

1. AESf

2. BANfEC

3. Atoms(C) C Atoms(A) U Atoms(B)

4. Atoms(f) C Atoms(A) N (Atoms(B) U Atoms(C'))

Preliminary interpolant f of the root C'= L is the real Craig interpolant of (A, B).

36 /42

Interpolation Algorithm

Leaves

CecA CeB

C[C] C [T]

where go\l replaces all in ¢ by T and =l by L

37/ 42

Interpolation Algorithm

Leaves
m CeA W CceB
Inner nodes
(IvC)[f] (~lvD)][g] UVO] (IVD)Igl oy o Aroms
(CVD) Ay var(l) € Atoms(B) (CVv D)], v, (1) & Atoms(B

where go\l replaces all in ¢ by T and =l by L

37/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1\/Bq)/\(—|C2\/ﬂB1)/\—|C3

38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1\/Bq)/\(—|C2\/ﬂB1)/\—|C3

Aj A,V C VvV Cs A -A, vy V(s
N N
ChV (5 =Ch Cy, VvV Cs -Ch
| |
4 -C1V By) -Cy V =B,

N N

B —B;

\ /
1

38/ 42

Interpolation Algorithm: Example

A =
B =

Aj [A1] -AvCi V(O

AN (A VOV C3) ANAy A (A VvV Oy v CR)
(—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch

A, -A, vy V(s

N N
ChV (5 =Ch Cy, VvV Cs -Ch
| |
4 -C1V By) -Cy V =B,
N N
B —B;
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, -A, VO, V(s
N N
Ci Vv (5 -Ch Cy Vv (s (5
- -
4 -C1V By) -Cy V =B,
N N
B —B;
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s
N7 N7
ChV (5 =Ch Cy, VvV Cs -Ch
- -
4 -C1V By) -Cy V =B,
N N7
B —B;
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
Ci Vv (5 -Ch Cy Vv (s (5
- -
4 -C1V By) -Cy V =B,
N N
B —B;
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N7 N7
Ch v C ~Cs [T] Cy v Cs -C
- -
4 -C1V By) -Cy V =B,
N N7
B, B
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
CiV Cs ~C5 [T] GV Cs —Cs [T]
- -
4 -C1V By) -Cy V =B,
N N
B, B
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N7 N7
Ci Vv (5 -C5 [T] Cy Vv (s -C5 [T]
- -
4 -C1V By [T]) -Cy V =B,
N N7
B —B;
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N7 N7
Ci Vv (5 -C5 [T] Cy Vv (s -C5 [T]
- -
4 -C1V By [T]) -Cy V =B, [T]
N N7
B —B;
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs ~Cs [T]
- -
4 -C4V By [T]) -C5 V =By [T]
N N
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs [Cy v C3] ~Cs [T]
- -
4 -C1V By [T]) -Cy V =B, [T]
N N
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs [Cy v C3] ~Cs [T]
- -
4 [01 V 03] -C1V By [T]) -Cy V =B, [T]
N N7
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1 V Bq) VAN (—|C2 V ﬂB1) A —Ch
A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs [Cy v C3] ~Cs [T]
- -
4 [01 V 03] -C1V By [T]) [Cz V 03] -Cy V =B, [T]
N N7
\ /

L1 38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1\/Bq)/\(—|C2\/ﬂB1)/\—|C3

A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs [Cy v C3] ~Cs [T]
- -
4 [01 V 03] -C4V By [T]) [Cz V 03] -C5 V =By [T]

N N

B, [01 V 03] B

/
1

38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1\/Bq)/\(—|C2\/ﬂB1)/\—|C3

A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs [Cy v C3] ~Cs [T]
- -
4 [01 V 03] -C4V By [T]) [Cz V 03] -C5 V =By [T]

N N

B [01 V 03] By [02 vV 03]

/
1

38/ 42

Interpolation Algorithm: Example

A = AANEAVOIVE)ANAN (A VvV EL)
B = (—|C1\/Bq)/\(—|C2\/ﬂB1)/\—|C3

A [A1] -AvCi V(G [—|A1 v CiV 03] A, [Az] -A, VO, V(s ["Az v,V 03]
N N
GV Cs [ChV T ~Cs [T] CyV Cs [Cy v C3] ~Cs [T]
- -
4 [01 V 03] -C4V By [T]) [Cz V 03] -C5 V =By [T]

N N 7

B, [01 V 03] B [02 V 03]

\ /
L]

38/ 42

Interpolation Algorithm: Correctness

We can prove that

1. if
clfl,
then f is a preliminary interpolant of C'
2. if
Clfl Dlg
E [h]

and f is a preliminary interpolant of C'
and g is preliminary interpolant of D,
then h is preliminary interpolant of £

39/ 42

Where are we?

Propositional satisfiability (SAT)

- (AV-B)A(mAVC)
- is it satisfiable?

o
Satisfiability modulo theories (smT)

crx=1TANx=y+y ANy>0
- is it satisfiable over reals?
- is it satisfiable over integers?

Automated theorem proving (ATP)

- axioms: Vz (x +x =0), VaVy (z +y =y +)
- do they imply VaVy ((x + y) + (y + x) = 0)? 05

We already know

- normal forms of propositional logic (CNF)

- efficient conversions (Tseitin encoding)

- resolution method and Davis-Putnam algorithm

- DPLL

- two watched literal scheme for unit propagation and conflict detection
- cpclL (clause learning and backjumping)

- literal decision heuristics, restarts

- incremental solving, proof generation, unsat core generation, interpolant
generation

41/ 42

- first-order logic
- first-order theories
- satisfiability modulo theories (smT)

- theories of interest (integer arithmetic, real arithmetic, uninterpreted
functions, arrays, bit-vectors, .. .)

42 [42

	Incremental sat solving
	Proof generation
	Unsatisfiable Cores
	Interpolation
	Where are we?

