
 https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 Security technologies

Protecting private key I.

JavaCard - programming secure elements

Petr Švenda svenda@fi.muni.cz @rngsec

Centre for Research on Cryptography and Security, Masaryk University

Please comment on slides with anything unclear, incorrect or suggestions for improvement

https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link

https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link
https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link
https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link

 https://crocs.fi.muni.cz @CRoCS_MUNI

Prerequisites

• Knowledge of basic smartcards technology is assumed (PV079)

• If you are not familiar yet, please read slides

PV204_03___PV079_2023_smartcards.pdf from IS (uploaded for this

course into PV204’s course materials)

2 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI 3 | PV204 JavaCard - programming secure elements

Next week

 https://crocs.fi.muni.cz @CRoCS_MUNI

Task: Difference between terms

• Use your favourite LLM chatbot (work within context of “security

hardware”)

• Ask about difference between following topics:

– Secure hardware

– Cryptographic hardware

– Trusted hardware

– Trustworthy hardware

• Collaborative discussion

PV204 | LAB: Secure channels 4

 https://crocs.fi.muni.cz @CRoCS_MUNI

Motivation

• Usage security-relevant scenarios

– Subscriber modules (SIMs), merchant payments, hardware wallets,

authentication tokens, electronic IDs…

• Why not as another software application on your laptop?

– Laptop not well portable, large trusted code base, many other applications

(malware), lack of secure storage for cryptographic keys, user/attacker control

platform, expensive to own…

• Mobile phone fixes only some of these issues

– Is portable, some have better platform security (but not all!), still somewhat

expensive…

5 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Properties of “Ideal” hwsec platform Technology

• Cheap, portable, no battery

• Good support from outer environment

• Fast enough for the task

• Easy to develop (securely)

• Apps portable between platform manufacturers

• Secure, even with physical access (keys extraction)

• Multiple apps from distrusting providers securely

• Secure remote management (new apps, update)

• …

6 | PV204 JavaCard - programming secure elements

crypto smartcards

PC/SC, phones with NFC

main CPU + crypto coprocessors

JavaCard API, tools, best practices

JavaCard bytecode, JCVM

tamper resistant, CC, FIPS140-2/3

Applet firewall, Security Domains

GlobalPlatform, SCP, DAP

 https://crocs.fi.muni.cz @CRoCS_MUNI

Primary markets for smartcards

| PV204 JavaCard - programming secure elements

Telco

Payment

https://www.eurosmart.com/eurosmarts-secure-elements-market-analysis-and-forecasts/

https://www.eurosmart.com/2021-secure-elements-global-market-and-2022-estimates/

7

 https://crocs.fi.muni.cz @CRoCS_MUNI

Old vs. current multi-application smart cards

• One program only

• Stored persistently in ROM or

EEPROM

• Written in machine code

– Chip specific

• Multiple applications at the same time

• Stored in EEPROM

• Written in higher-level language

– Interpreted from bytecode (JavaCard)

– Portable

• Application can be later managed

(remotely OTA, GlobalPlatform)

| PV204 JavaCard - programming secure elements 8

 https://crocs.fi.muni.cz @CRoCS_MUNI | PV204 JavaCard - programming secure

elements

Libraries

PKCS#11, OpenSC, JMRTD

Smartcard control language API

C/C# WinSCard.h, Java java.smartcardio.*, Python pyscard

System smartcard interface: Windows’s PC/SC, Linux’s PC/SC-lite

Manage readers and cards, Transmit ISO7816-4’s APDU

Custom app with

direct control

PC application via library:

browser TLS, PDF sign… PC application

with direct control:

GnuPG, GPShell

API: EMV, GSM, PIV, OpenPGP, ICAO 9303 (BAC/EAC/SAC)

OpenPlatform, ISO7816-4 cmds, custom APDU

SC app programming:

JavaCard, MultOS, .NET

Readers

Contact: ISO7816-2,3 (T=0/1)

Contactless: ISO 14443 (T=CL)

Card application 3
Card application 2

Card application 1

A
P

D
U

p
a

c
k
e

t

9

Our focus today

 https://crocs.fi.muni.cz @CRoCS_MUNI

APDU (Application Protocol Data Unit)

• APDU is basic logical communication datagram

– header (5 bytes) and up to ~256 bytes of user data

• Format specified in ISO7816-4

• Header/Data format

– CLA – instruction class

– INS – instruction number

– P1, P2 – optional data

– Lc – length of incoming data

– Data – user data

– Le – length of the expected output data

• Some values of CLA/INS/P1/P2 standardized (better interoperability)

– https://web.archive.org/web/20180721010834/http://techmeonline.com/most-used-smart-card-commands-apdu/

• Custom values used by application developer (your own API)

| PV204 JavaCard - programming secure elements 10

APDU packets were nested

inside USB packets for HW02

(Yubikey interfaces)

https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard basics

| PV204 JavaCard - programming secure elements 11

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard

• Maintained by Java Card Forum (since 1997)

• Cross-platform and cross-vendor applet interoperability

• Freely available specifications and development kits

– http://www.oracle.com/technetwork/java/javacard/index.html

• JavaCard applet is Java-like application

– uploaded to a smart card

– executed by the JCVM

| PV204 JavaCard - programming secure

elements
12

http://www.oracle.com/technetwork/java/javacard/index.html

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 2.x is like Java but not supporting…

• No dynamic class loading

• No Security manager

• No Threads and synchronization

• No Object cloning, finalization

• No Large primitive data types

– float, double, long and char

– usually not even int (4 bytes) data type by default

• specialized package javacardx.framework.util.intx for support

• Most of std. classes missing

– most of java.lang, Object and Throwable in limited form

• Limited garbage collection

– Newer cards supports, but slow and not always reliable

| PV204 JavaCard - programming secure

elements
15

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 2.x supports

• Standard benefits of the Java language

– data encapsulation, safe memory management, packages, etc.

• Applet isolation based on the JavaCard firewall

– applets cannot directly communicate with each other

– special interface (Shareable) for cross applets interaction

• Atomic operations using transaction mode

• Transient data (buffer placed in RAM)

– fast and automatically cleared

• A rich cryptography API

– accelerated by cryptographic co-processor

• Secure (remote) communication with the terminal

– if GlobalPlatform compliant (secure messaging, security domains)
| PV204 JavaCard - programming secure

elements
16

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 3.0.x (most recent 3.0.5 from 2015)

• Major release of JavaCard specification

– significant changes in development logic

– two separate branches – Classic and Connected edition

• JavaCard 3.x Classic Edition

– legacy version, extended JC 2.x

– APDU-oriented communication

• JavaCard 3.x Connected Edition

– smart card perceived as web server (Servlet API)

– TCP/IP network capability, HTTP(s), TLS

– supports Java 6 language features (generics, annotations…)

– move towards more powerful target devices

– focused on different segment then classic smart cards

| PV204 JavaCard - programming secure elements 17

Connected edition is not

used so far (likely dead)

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard 3.1 (2018) and 3.2 (2023)

• JavaCard 3.1

– Focus on IoT

– Additional cryptographic algorithms, named curves

– Not much practical experience yet (no devices available)

• Some certified end of 2022 but not freely available

• JavaCard 3.2

– Ext. EdDSA (edwards25519, edwards448 curves)

– TLS1.3 and DTLS1.3 key schedule operations

– Configuration for RSA-OAEP/PSS

• Conservative development of JavaCard specs

– Only what is “widely” requested

– Significantly lacking behind state of the art (e.g, PQC algs only via proprietary API)

| PV204 JavaCard - programming secure elements 18

 https://crocs.fi.muni.cz @CRoCS_MUNI

How to analyze real-world usage of technology X?

1. Collect representative sample of users / projects (ideally “all”)

– E.g., all open-source JavaCard projects on GitHub

2. Establish significance of projects

– E.g., Number of developers/forks/stars, search trends on Google, sales stats…

3. Analyze projects for the level and style of use of technology X

– E.g., static code analysis of JavaCard keywords and constants

– Ideally trends in time if possible (e.g., code state in time via git commits)

“The adoption rate of JavaCard features by certified products and open-source

projects”, L. Zaoral, A. Dufka, P.Svenda, CARDIS’23

https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9

 PV079 - Cryptographic smartcards

https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9

 https://crocs.fi.muni.cz @CRoCS_MUNI

Certified smartcards and JavaCard-related projects

PV079 - Cryptographic smartcards

• Number of (expensively) certified JavaCard devices is increasing

 https://crocs.fi.muni.cz @CRoCS_MUNI

Activity of open-source JavaCard applets in time

PV079 - Cryptographic smartcards

• Is open-source ecosystem representative of the whole domain?

– Likely two orders of magnitude more developers in non-open source domain

– Proprietary applets with access to proprietary API may be different

 https://crocs.fi.muni.cz @CRoCS_MUNI

Version support

• Need to know supported version for your card

– convertor adds version identification of packages used to binary cap file

– If converted with unsupported version, upload to card fails

• Supported version can be (somewhat) obtained from card

– JCSystem.getVersion() [Major.Minor]

– https://github.com/petrs/jcAIDScan

– See https://www.fi.muni.cz/~xsvenda/jcsupport.html

• Available cards supports mostly 3.0.4 and 3.0.5 (newer cards)

| PV204 JavaCard - programming secure elements 22

https://github.com/petrs/jcAIDScan
https://www.fi.muni.cz/~xsvenda/jcsupport.html

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard applet firewall – runtime checks

23 | PV204 JavaCard - programming secure elements

A
p
p
le

t1

Inspired by http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

SmartCard hardware

JavaCard runtime environment (JCRE)

JCRE = JCVM + API

A
p
p
le

t2

A
p
p
le

t3

APDU

• Access to other applet’s methods and

attributes prevented

– Even if public

• Applets can access specific JCRE objects

• JCRE can access all applets (no

restriction)

• Static attributes of package accessible by

all its applets!

Cap file 1

Static data

Cap file 2

http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

 https://crocs.fi.muni.cz @CRoCS_MUNI

Desktop vs. smart card

• Following slides will be marked with icon based on where it

is executed

• Process executed on host (PC/NTB…)

• Process executed inside smart card

24 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

On-card, off-card code verification

• How to upload only “correct” applets?

• Off-card verification

– Basic JavaCard constraints

– Possibly additional checks (e.g., type consistency when using Shareable

interface)

– Full-blown static analysis possible

– Applet can be digitally signed (and enforced by DAP – shown later)

• On-card verification

– Limited resources available

– Proprietary checks by JC platform implementation

| PV204 JavaCard - programming secure elements 25

 https://crocs.fi.muni.cz @CRoCS_MUNI

DEVELOPING JAVACARD APPS

26 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI | PV204 JavaCard - programming secure elements

package example;
import javacard.framework.*;

public class HelloWorld extends Applet {
 protected HelloWorld() {
 register();
 }
 public static void install(byte[] bArray, short bOffset, byte bLength) {
 new HelloWorld();
 }
 public boolean select() {
 return true;
 }
 public void process(APDU apdu) {
 // get the APDU buffer
 byte[] apduBuffer = apdu.getBuffer();
 // ignore the applet select command dispached to the process
 if (selectingApplet()) return;
 // APDU instruction parser
 if (apduBuffer[ISO7816.OFFSET_CLA] == CLA_MYCLASS) &&
 apduBuffer[ISO7816.OFFSET_INS] == INS_MYINS)) {
 MyMethod(apdu);
 }
 else ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPORTED);
 }
 public void MyMethod(APDU apdu) { /* ... */ }

}

include packages from

javacard.*

extends Applet

Called only once, do

all allocations&init

HERE

Called repeatedly on

application select, do

all temporaries

preparation HERE

Called repeatedly for

every incoming APDU,

parse and call your

code HERE

27

 https://crocs.fi.muni.cz @CRoCS_MUNI

JC development process

28 | PV204 JavaCard - programming secure

elements

6. Write user Java app

(javax.smartcardio.*)

1. Extends

javacard.framework.Applet

2. Compile Java *.class

(Java 1.3 binary format)

3. Convert *.class *.jar/cap

(JavaCard Convertor)

4. Upload *.jar/cap

 smart card (GPPro/GPShell)

5. Install applet

(GPPro/GPShell)

7. Use applet on

smart card (APDU)

 https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard application running model

1. Uploaded package – application binary

2. Installed applet from package – running application

3. Applet is “running” until deleted from card

4. Applet is suspended when power is lost

– Transient data inside RAM are erased

– Persistent data inside EEPROM remain

– Currently executed method is interrupted

5. When power is resumed

– Unfinished transactions are rolled back

– Applet continues to run with the same persistent state

– Applet waits for new command (does not continue with interrupted method)

6. Applet is deleted by service command

29 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

GLOBALPLATFORM

Managing applets on card

| PV204 JavaCard - programming secure elements 30

 https://crocs.fi.muni.cz @CRoCS_MUNI

• Problem: how to remotely manage administrative access to token?

– Smartcards, TEE (TrustZone) - same basic issues, but also some specifics

• Local/remote upload, configuration and removal of applications

• Authentication of manager, online vs. offline operations

Motivation: Fix bug in electronic IDs for half of population

31 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform

• Specification of API for card administration

– Upload/install/delete applications

– Card lifecycle management

– Card security management

– Security mechanisms and protocols

• Newest is GlobalPlatform Card Specification v2.3.1 (March 2018)

– Previous versions also frequently used

– http://www.globalplatform.org/specificationscard.asp

• Primary open API for Trusted Execution Environment (TEE)

– ARM TrustZone…

| PV204 JavaCard - programming secure elements 32

http://www.globalplatform.org/specificationscard.asp

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform – main terms

• Smart card life cycle

– OP_READY, INITIALIZED (prepared for personalization)

– SECURED (issued to user, use phase)

– CARD_LOCKED (temporarily locked (attack), unlock to SECURED)

– TERMINATED (logically destroyed)

• Card Manager (CM)

– Special card component responsible for administration and card

system service functions (cannot be removed)

• Security Domain (SD)

– Logically separated area on card with own access control

– Enforced by different authentication keys

| PV204 JavaCard - programming secure elements

Security

Domain 1

Security

Domain 2

Card Manager

33

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security

Domain 1

Applet 2

Security

Domain 2

 Applet 1
Applet 3

Card Manager GlobalPlatform – main terms

• Card Content (apps,data) Management

– Content verification, loading, installation, removal

• Security Management

– Security Domain locking, Application locking

– Card locking, Card termination

– Application privilege usage, Security Domain privileges

– Tracing and event logging

• Command Dispatch

– Application selection

– (Optional) Logical channel management

| PV204 JavaCard - programming secure elements 34

 https://crocs.fi.muni.cz @CRoCS_MUNI

Card Production Life Cycle (CPLC)

• Manufacturing metadata

• Dates (OS, chip)

• Circuit serial number

• (not mandatory)

• GlobalPlatform APDU

– 80 CA 9F 7F 00

– gppro --info

• ISO7816 APDU

– 00 CA 9F 7F 00

| PV204 JavaCard - programming secure elements 38

 https://crocs.fi.muni.cz @CRoCS_MUNI

Example CPLC results from several G&D cards

39 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform package/applet upload - SCP

A. Security domain selection

B. Secure channel establishment (SCP) – security domain

C. Package (cap file) upload

– Local upload in trusted environment

– Remote upload with relayed secure channel

D. Applet installation

– Separate instance from package binary with unique AID

– Applet privileges and other parameters passed

– Applet specific installation data passed

• gp --install file_with_applet.cap

| PV204 JavaCard - programming secure elements 40

 https://crocs.fi.muni.cz @CRoCS_MUNI

GlobalPlatform package/applet upload -

Data Authentication Pattern (DAP)

• Generate cap signing keypair (RSA, OpenSSL)

• Sign applet (file with cap, capfile tool)

• Create policy domain (SSD) with MandatedDAPVerification

• Set personalization keys for the SSD (secret symmetric crypto keys)

• Upload verification key for this domain (key version 0x73, public key

of your signing keypair)

• Verify that SSD is prepared (DOM, DAPVerification privilage)

• Upload signed applet (*.cap file)

• https://github.com/martinpaljak/GlobalPlatformPro/blob/next/tests/sce70.sh

41 | PV204 JavaCard - programming secure elements

https://github.com/martinpaljak/GlobalPlatformPro/blob/next/tests/sce70.sh

 https://crocs.fi.muni.cz @CRoCS_MUNI

DEBUGGING APPLET

| PV204 JavaCard - programming secure elements 56

 https://crocs.fi.muni.cz @CRoCS_MUNI 57 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

1. Debugging applets: simulator

• The smartcard is designed to protect application

– Debugger cannot be connected to running application

• Option 1: use card simulator (jcardsim.org)

– Simulation of JavaCard 3.0.5 (based on BouncyCastle)

– Very helpful, allows for direct debugging (will be covered in labs)

– Catch of logical flaws etc.

– Allows to write automated unit and integration tests!

• Problem: Real limitations of cards are missing

– supported algorithms, memory, execution speed…

| PV204 JavaCard - programming secure elements 58

 https://crocs.fi.muni.cz @CRoCS_MUNI

2. Debugging applets: real cards

• Option 2: use real cards

– Cannot directly connect debugger, no logging strings…

• Debugging based on error messages

– Use multiple custom errors rather than ISO7816 errors

– Distinct errors tell you where problem (might) happened

• Problem: operation may end with unspecific 0x6f00

– Any uncaught exception on card (other than ISOException)

– Solution1: Capture on card, translate to ISOException

– Solution2: Locate problematic command by insertion of

ISOException.throwIt(0x666); and recompile

59 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Possible causes for exception on card

• Writing behind allocated array

• Using Key that was Key.clear() before

• Insufficient memory to complete operation

• Cipher.init() with uninitialized Key

• Import of RSA key into real card generated by software outside card (e.g.,

getP() len == 64 vs. 65B for RSA1024)

• Storing reference of APDU object localAPDU = origAPDU;

• Decryption of value stored in byte[] array with raw RSA with most

significant bit == 1 (set first byte of array to 0xff to verify)

• Set CRT RSA key using invalid values for given part - e.g. setDP1()

• Too many nested calls, no free space on stack for arguments

• … and many more

| PV204 JavaCard - programming secure elements 60

 https://crocs.fi.muni.cz @CRoCS_MUNI

Getting more than 0x6f00

61 | PV204 JavaCard - programming secure elements

 public void process(javacard.framework.APDU apdu) {
 // ignore the applet select command dispatched to the process
 if (selectingApplet()) return;
 try {
 //
 // … Standard APDU command dispatching...
 //
 } catch (ISOException e) {
 throw e; // Our exception from code, just re-emit
 } catch (ArrayIndexOutOfBoundsException e) {
 ISOException.throwIt(SW_ArrayIndexOutOfBoundsException);
 } catch (ArithmeticException e) {
 ISOException.throwIt(SW_ArithmeticException);
 } catch (ArrayStoreException e) {
 ISOException.throwIt(SW_ArrayStoreException);
 } catch (NullPointerException e) {
 ISOException.throwIt(SW_NullPointerException);
 } catch (NegativeArraySizeException e) {
 ISOException.throwIt(SW_NegativeArraySizeException);
 } catch (CryptoException e) {
 ISOException.throwIt((short) (SW_CryptoException_prefix | e.getReason()));
 } catch (SystemException e) {
 ISOException.throwIt((short) (SW_SystemException_prefix | e.getReason()));
 } catch (PINException e) {
 ISOException.throwIt((short) (SW_PINException_prefix | e.getReason()));
 } catch (TransactionException e) {
 ISOException.throwIt((short) (SW_TransactionException_prefix | e.getReason()));
 } catch (CardRuntimeException e) {
 ISOException.throwIt((short) (SW_CardRuntimeException_prefix | e.getReason()));
 } catch (Exception e) {
 ISOException.throwIt(Consts.SW_Exception);
 }
 }

final short SW_Exception = (short) 0xff01;
final short SW_ArrayIndexOutOfBoundsException = (short) 0xff02;
final short SW_ArithmeticException = (short) 0xff03;
final short SW_ArrayStoreException = (short) 0xff04;
final short SW_NullPointerException = (short) 0xff05;
final short SW_NegativeArraySizeException = (short) 0xff06;
final short SW_CryptoException_prefix = (short) 0xf100;
final short SW_SystemException_prefix = (short) 0xf200;
final short SW_PINException_prefix = (short) 0xf300;
final short SW_TransactionException_prefix = (short) 0xf400;
final short SW_CardRuntimeException_prefix = (short) 0xf500;

Some exceptions

provide additional

information (code).

Propagate it further

Our exception, just re-emit

 https://crocs.fi.muni.cz @CRoCS_MUNI

Debugging using custom commands

• Addition of custom commands to “dump” interesting parts of data

– Intermediate values of internal arrays, unwrapped keys…

• Should obey to Secure by default principle

– Debugging possibility should be enabled only on intention

– E.g., specific flag in installation data which cannot be enabled later (by an

attacker)

– Don’t let debugging code into release!

62 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

63 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

NEXT WEEK:

BEST PRACTICES FOR JAVACARD

(SECURE MULTIPARTY COMPUTATION)

| PV204 JavaCard - programming secure elements 64

 https://crocs.fi.muni.cz @CRoCS_MUNI

Summary

• Smart cards are programmable (JavaCard)

– reasonable cryptographic API

– coprocessor for fast cryptographic operations

– multiple applications coexist securely on single card

– Secure execution environment

• Standard Java 6 API for communication exists

• PKI applet can be developed with free tools

– PIN protection, on-card key generation, signature…

• JavaCard is not full Java – optimizations, security

| PV204 JavaCard - programming secure

elements
65

 https://crocs.fi.muni.cz @CRoCS_MUNI

Mandatory reading

• Mandatory

– IS, Gemalto_JavaCard_DevelGuide.pdf

• Optional

– Java Card lecture, Erik Poll, Radboud Uni
• http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

66 | PV204 JavaCard - programming secure elements

http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

 https://crocs.fi.muni.cz @CRoCS_MUNI

BEST PRACTICES (FOR APPLET

DEVELOPERS)

| PV204 JavaCard - programming secure elements 67

 https://crocs.fi.muni.cz @CRoCS_MUNI

Quiz

1. Expect that your device is leaking in time/power channel.

Which option will you use?

– AES from hw coprocessor or software re-implementation?

– Short-term sensitive data stored in EEPROM or RAM?

– Persistent sensitive data in EEPROM or encrypted object?

– Conditional jumps on sensitive value?

2. Expect that attacker can successfully induct faults (random

change of bit(s) in device memory).

– Suggest defensive options for applet’s source code

– Change in RAM, EEPROM, instruction pointer, CPU flags…

68 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (1)

• Use API algorithms/modes rather than your own

– API algorithms fast and protected in cryptographic hardware

– general-purpose processor leaks more information (side-channels)

• Store session data in RAM

– faster and more secure against power analysis

– EEPROM has limited number of rewrites (105 - 106 writes)

• Never store keys, PINs or sensitive data in primitive arrays

– use specialized objects like OwnerPIN and Key

– better protected against power, fault and memory read-out attacks

– If not possible, generate random key in Key object, encrypt large data with this key

and store only encrypted data

• Make checksum on stored sensitive data (=> detect fault)

 | PV204 JavaCard - programming secure

elements
69

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (2)

• Erase unused keys and sensitive arrays

– use specialized method if exists (Key.clearKey())

– or overwrite with random data (Random.generate())

– Perform always before start of new session

• Use transactions to ensure atomic operations

– power supply can be interrupted inside code execution

– be aware of attacks by interrupted transactions - rollback attack

• Do not use conditional jumps with sensitive data

– branching after condition is recognizable with power analysis => timing/power

leakage

| PV204 JavaCard - programming secure

elements
70

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (3)

• Allocate all necessary resources in constructor

– applet installation usually in trusted environment

– prevent attacks based on limiting available resources

• Don’t use static attributes (except constants)

– Static attribute is shared between multiple instances of applet (bypass applet firewall)

– Static ptr to array/engine filled by dynamic allocation cannot be removed until package is

removed from card (memory “leak”)

• Use automata-based programming model

– well defined states (e.g., user PIN verified)

– well defined transitions and allowed method calls

| PV204 JavaCard - programming secure

elements
71

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints (4)

• Treat exceptions properly

– Do not let uncaught native exceptions to propagate from the card

– Do not let your code to cause basic exceptions like OutOfBoundsException or

NullPointerExceptions…

72 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (1)

• Cryptographic algorithms are sensitive to fault induction

– Single signature with fault from RSA-CRT may leak the private key

– Perform operation twice and compare results

– Perform reverse operation and compare (e.g., verify after sign)

• Use constants with large hamming distance

– Induced fault in variable will likely cause unknown value

– Use 0xA5 and 0x5A instead of 0 and 1 (correspondingly for more)

– Don’t use values 0x00 and 0xff (easier to force all bits to 0 or 1)

• Check that all sub-functions were executed [Fault.Flow]

– Fault may force program stack or stack to skip some code

– Idea: Add defined value to flow counter inside target sub-function, check

later for expected sum. Add also in branches.

| PV204 JavaCard - programming secure

elements
73

Secure Application Programming in the presence of Side Channel Attacks, Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (2)

• Replace single condition check by complementary check

– conditionalValue is sensitive value

– Do not use boolean values for sensitive decisions

• Verify number of actually performed loop iterations

| PV204 JavaCard - programming secure

elements
74

Secure Application Programming in the presence of Side Channel Attacks, Riscure

if (conditionalValue == 0x3CA5965A) { // enter critical path

 // . . .

 if (~conditionalValue != 0xC35A69A5) {
 faultDetect(); // fail if complement not equal to 0xC35A69A5

 }
 // . . .

}

int i;
for (i = 0; i < n; i++) { // important loop that must be completed
//. . .

}
if (i != n) { // loop not completed

 faultDetect();
}

 https://crocs.fi.muni.cz @CRoCS_MUNI

Security hints: fault induction (3)

• Insert random delays around sensitive operations

– Randomization makes targeted faults more difficult

– for loop with random number of iterations (for every run)

• Monitor and respond to detected induced faults

– If fault is detected (using previous methods), increase fault counter.

– Erase keys / lock card after reaching some threshold (~10)

• Natural causes may occasionally cause fault => > 1

75 | PV204 JavaCard - programming secure elements

Secure Application Programming in the presence of Side Channel Attacks, Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

How and when to apply protections

76 | PV204 JavaCard - programming secure elements

Riscure

 https://crocs.fi.muni.cz @CRoCS_MUNI

Execution speed hints (1)

• Big difference between RAM and EEPROM memory

– new allocates in EEPROM (persistent, but slow)

• do not use EEPROM for temporary data

• do not use for sensitive data (keys)

– JCSystem.getTransientByteArray() for RAM buffer

– local variables automatically in RAM

• Use algorithms from JavaCard API and utility methods

– much faster, cryptographic co-processor

• Allocate all necessary resources in constructor

– executed during installation (only once)

– either you get everything you want or not install at all

| PV204 JavaCard - programming secure

elements
77

 https://crocs.fi.muni.cz @CRoCS_MUNI

Execution speed hints (2)

• Garbage collection limited or not available

– do not use new except in constructor

• Use copy-free style of methods

– foo(byte[] buffer, short start_offset, short length)

• Do not use recursion or frequent function calls

– slow, function context overhead

• Do not use OO design extensively (slow)

• Keep Cipher or Signature objects initialized

– if possible (e.g., fixed master key for subsequent derivation)

– initialization with key takes non-trivial time

 | PV204 JavaCard - programming secure

elements
78

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCPROFILERNEXT – PERFORMANCE

PROFILING, NON-CONSTANT TIME

DETECTION

79 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext: on-card performance profiler

• Open-source on-card performance profiler (L. Zaoral)

– https://github.com/lzaoral/JCProfilerNext

• Automatically instrumentation of provided JavaCard code

– Conditional exception emitted on defined line of code

– Spoon tool used https://spoon.gforge.inria.fr/

• Measures time to reach specific line (measured on client-side)

• Fully automatic, no need for special setup (only JavaCard + reader)

• Goals:

– Help developer to identify parts for performance optimizations

– Help to detect (significant) timing leakages

– Insert “triggers” visible on side-channel analysis

– Insert conditional breakpoints…
80 | PV204 JavaCard - programming secure elements

https://github.com/lzaoral/JCProfilerNext
https://spoon.gforge.inria.fr/

 https://crocs.fi.muni.cz @CRoCS_MUNI

Instrumented code (Spoon)

81

private void example(APDU apdu) {

 short count = Util.getShort(apdu.getBuffer(), ISO7816.OFFSET_CDATA);

 for (short i = 0; i < count; i++) {

 short tmp = 0;

 for (short k = 0; k < 50; k++) {

 tmp++;

 }

 }

}

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_1);

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_2);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_3);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_4);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_5);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_6);

 PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_7);

PM.check(PMC.TRAP_example_Example_example_argb_javacard_framework_APDU_arge_8);

// if m_perfStop equals to stopCondition, exception is thrown (trap hit)

public static void check(short stopCondition) {
 if (PM.m_perfStop == stopCondition) {
 ISOException.throwIt(stopCondition);
 }
}

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – timing profile of target line of code

82 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – memory consumption

83 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – checking for non-constant behavior

84 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI

JCProfilerNext – profiling via power measurement

• The default measurement option is host-based timer => imprecise

– Exception thrown after every line of code, measured with whole roundtrip

• Idea: insert distinct operation visible in powertrace after every line

– Original code is instrumented with 3xRNG.generateData() instead of exception

– Powertrace of whole method is captured

– RNG operations are detected and used as separators

– Precise timing of operation is obtained

– Visualization is performed using standard JCProfilerNext pipeline

• More elaborate setup (oscilloscope), but very precise measurement

– better detection of non-constant-time operations

85 | PV204 JavaCard - programming secure elements

 https://crocs.fi.muni.cz @CRoCS_MUNI | PV204 JavaCard - programming secure elements

JavaCard applet firewall issues

• Main defense for separation of multiple applets

• Platform implementations differ

– Usually due to the unclear and complex specification

• If problem exists then is out of developer’s control

• Firewall Tester project (W. Mostowski)

– Open and free, the goal is to test the platform

– http://www.sos.cs.ru.nl/applications/smartcards/firewalltester/

 short[] array1, array2; // persistent variables
short[] localArray = null; // local array
JCSystem.beginTransaction();
 array1 = new short[1];
 array2 = localArray = array1; // dangling reference!
JCSystem.abortTransaction();

86

http://www.sos.cs.ru.nl/applications/smartcards/firewalltester/

 https://crocs.fi.muni.cz @CRoCS_MUNI

Relevant open-source projects

• Easy building of applets

– https://github.com/martinpaljak/ant-javacard

– https://github.com/ph4r05/javacard-gradle-template

• AppletPlayground (ready to “fiddle” with applets)

– https://github.com/martinpaljak/AppletPlayground

• Card simulator https://jcardsim.org

• Profiling performance

– https://github.com/crocs-muni/JCAlgTest

– https://github.com/OpenCryptoProject/JCProfiler

• Curated list of JavaCard applets

– https://github.com/crocs-muni/javacard-curated-list

• Low-level ECPoint library

– https://github.com/OpenCryptoProject/JCMathLib

87 | PV204 JavaCard - programming secure elements

https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/martinpaljak/AppletPlayground
https://jcardsim.org/
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/OpenCryptoProject/JCMathLib

 https://crocs.fi.muni.cz @CRoCS_MUNI

Summary

• Smart cards are programmable (JavaCard)

– reasonable cryptographic API

– coprocessor for fast cryptographic operations

– multiple applications coexist securely on single card

– Secure execution environment

• Standard Java 6 API for communication exists

• PKI applet can be developed with free tools

– PIN protection, on-card key generation, signature…

• JavaCard is not full Java – optimizations, security

| PV204 JavaCard - programming secure

elements
88

 https://crocs.fi.muni.cz @CRoCS_MUNI

89 | PV204 JavaCard - programming secure elements

