PV204 Security technologies

PrOteCtlng pl’lvate key I. - 17.3. Practical threshold cryptography (Petr Svenda)
« 24.3. Secure Boot, TPM, SGX, AMD SEV (Petr Svenda)

JavaCard - programming secure elements

Petr Svenda @ svenda@fi.muni.cz E@rngsec C R ': C S
Centre for Research on Cryptography and Security, Masaryk University */

Centre for Research on

Cryptography and Security

Please comment on slides with anything unclear, incorrect or suggestions for improvement
https://drive.google.com/file/d/TwbHQqGEAYuxE C-kXUyW1SmOQOpf crD vO/Niew?usp=drive link

https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link
https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link
https://drive.google.com/file/d/1wbHgjGEAYuxEC-kXUyW1SmOpf_crD_v0/view?usp=drive_link

CR®CS

Prerequisites

* Knowledge of basic smartcards technology is assumed (PV079)

* |f you are not familiar yet, please read slides
PV204 03 PVO079 2023 smartcards.pdf from IS (uploaded for this
course into PV204’s course materials)

2 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

Basic applet structure

simulator

Debugging \
real card .___r‘

. =)

Development

GlobalPlatform © Deployment

PV204 crypto smartcards and JavaCards

Performance best practices

Best practices I— —

Development best practices /&

2.x

APl versions f?l-" 3.0.1-3.05

31

— JavaCard platform and security h

| cryptographic API

offcard/oncard verification

| Applet firewall

Card Production Lifecycle Data (CPLC)

f Security domains

I
T ‘l GlobalPlatform I‘--\-{. Interactive management © Secure Channel Protocol + CardManager
[N

| Non-interactive applet upload © Data Authentication Pattern (DAP)

| PV204 JavaCard - programming secure elements

https://crocs.fi.muni.cz @CRoCS_MUNI

Task: Difference between terms | 5

« Use your favourite LLM chatbot (work within context of “security
hardware”)

« Ask about difference between following topics:
— Secure hardware
— Cryptographic hardware
— Trusted hardware
— Trustworthy hardware

 Collaborative discussion

4 PV204 | LAB: Secure channels https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Motivation

« Usage security-relevant scenarios

— Subscriber modules (SIMs), merchant payments, hardware wallets,
authentication tokens, electronic IDs...

Why not as another software application on your laptop?

— Laptop not well portable, large trusted code base, many other applications
(malware), lack of secure storage for cryptographic keys, user/attacker control
platform, expensive to own...

Mobile phone fixes only some of these issues

— Is portable, some have better platform security (but not all!), still somewhat
expensive...

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Properties of “ldeal” hwsec platform Technology

* Cheap, portable, no battery

* (Good support from outer environment

» Fast enough for the task

» Easy to develop (securely)

* Apps portable between platform manufacturers

* Secure, even with physical access (keys extraction)
« Multiple apps from distrusting providers securely

« Secure remote management (new apps, update)

crypto smartcards

PC/SC, phones with NFC

main CPU + crypto coprocessors
JavaCard API, tools, best practices
JavaCard bytecode, JCVM

tamper resistant, CC, FIPS140-2/3
Applet firewall, Security Domains
GlobalPlatform, SCP, DAP

6 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

January 2022
Eurosmart estimated WW pP market size - (Mu)

Primary markets for smartcards i

12000

10000

2000

6000

Million of units

4000

2000

Secure Elements Shipments From 2010 To 2019 oy

Government- Healthcare
Device manufacturers 2

Transport

Others®

Total

5100 4900
3170 3250
425 490
450 490
230 220

75 65

90 90
9540 9505

-

MNQOs (secure element with a SIM application)

Eurosmart estimated WW pP TAM - (Mu)

Telecom* 4700 4600
Financial services 3250 3200 - 3300
Government - Healthcare 510 550
Device manufacturers ** 430 520
Transport 220 220-245
Others*** 155 150
Total 9325 9.240-9. 360

2015 2016 2017 2018 2019

I Telecom P Financial Service [Government and Healthcare Device Manufacturers Others

https://www.eurosmart.com/eurosmarts-secure-elements-market-analysis-and-forecasts/
https.//www.eurosmart.com/2021-secure-elements-global-market-and-2022-estimates/

| PV204 JavaCard - programming secure elements

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Old vs. current multi-application smart cards

* One program only

» Stored persistently in ROM or
EEPROM

« Written in machine code Written in higher-level language
— Chip specific — Interpreted from bytecode (JavaCard)
— Portable

Application can be later managed
(remotely OTA, GlobalPlatform)

Multiple applications at the same time
Stored in EEPROM

8 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

Our focus today

DCRoCS_MUNI

Command

Function

Instruction Standard

APDU (Application Protocol Data Unit) weree w0 someme
e—— e e e
« APDU is basic logical communication datagram e e
— header (5 bytes) and up to ~256 bytes of user data mmw Rp:'td — ——
« Format specified in ISO7816-4 SN
 Header/Data format — =
— CLA - instruction class AT IR
— INS - instruction number ax: e
— P1, P2 — optional data
— Lc - length of incoming data CASE3 | ca | ms | P1 | P2 | Le Data . R
— Data — user data En 7263
— Le - length of the expected output data g S B R PR —
 Some values of CLA/INS/P1/P2 standardized (better interoperability)”™ ~ =" = ©%F
— https://web.archive.org/web/20180721010834/http://techmeonline.com/most-used-smar E—%%rcifﬁiﬁji?ﬁrasa:‘ﬁdézzapd VA
« Custom values used by application developer (your own API) DECReAsE hcathewnots |30 | Ev7ss
pEcREASE qeduce thevalue ofa | 34

10 | PV204 JavaCard - programming secure elements

STAMPED

counter in a file that is

https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/
https://web.archive.org/web/20180721010834/http:/techmeonline.com/most-used-smart-card-commands-apdu/

JavaCard basics

applications

st_" — ncreasmglg

ava 3 ’ JAVA CARD
4

%-u ey ------l Ve =
| delvery - secure
ety inierOperaiie

Deplognﬁgr;bﬂ?bmgm MulGi- Applicabion g g a,, Forum
oo bechnologg b Y, 4 E .
B = H Collaboration | sm:ar ﬁmﬁ i
' iy = §Applet = == e paioms e
3"‘%0' gt St

1 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

= *i’i%w O’ff et

ML L ¥ ”ﬂ-‘ : q:.:“!"
WEKICS SINGAD { L= Pl
19972 2 4

Nde C'-Jﬁz

* Maintained by Java Card Forum (since 1997)
» Cross-platform and cross-vendor applet interoperability

* Freely available specifications and development kits
— http://lwww.oracle.com/technetwork/java/javacard/index.html

« JavaCard applet is Java-like application

— uploaded to a smart card
— executed by the JCVM

JavaCard

https://crocs.fi.muni.cz @CRoCS_MUNI

PV204 JavaCard - programming secure

http://www.oracle.com/technetwork/java/javacard/index.html

CR®CS

JavaCard 2.x is like Java but not supporting...

* No dynamic class loading
« No Security manager
* No Threads and synchronization
* No Object cloning, finalization
* No Large primitive data types
— float, double, long and char

— usually not even int (4 bytes) data type by default
« specialized package javacardx.framework.util.intx for support

« Most of std. classes missing

— most of java.lang, Object and Throwable in limited form
» Limited garbage collection

— Newer cards supports, but slow and not always reliable

PV204 JavaCard - programming secure

JAVA CARD 20 years of the
'.ﬂﬂi SEL“Q? Java Card Forum

s for the Java Card Forum for the last 20 years 1997 - 2017

Java Card Forum
pempeint: 1957 i
]999 Javacac?rd 21 B

Standardisation of SIM
Toolkit initiates mass
Java Card deployment

Java Cardzzz 2006 C

[!:_TS rl '.H)

S

1 Billion Java Cards

P I|||||| deployed so far

TOKYO W
Java Card 3.0
OpenDay: § () 2008 :
= specification released in 2 versions;
HONGKONG "w Connected and Classic
Open Day: 2,
BEWING ™

> 2 Billion Java Cards
|||||I deployed each year

Java Card 3 0.1 Classic 20" (@)
rst deployment Open Day: o
ST. PETERSBERG "™
Open Day: 2.
SINGAPORE '™ OpenDay: 2.
0 2 SAOPAOLO W
pen Day: ';a
HONG KONG ™

Y Java Card 3 0. 5 Classu:
e & 02015 & o

P”’“SE wp g Dhy
> 3 Billion Java Cards

||||||I deployed each year
Java Card 3.1 Classic r
Specification release to ir\clude loT - m
specific features

Java Card platforms can be found across all

technology sectors
M #g
G.l)}~'-%

]

O

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

JavaCard 2.x supports

« Standard benefits of the Java language

'JAVA caro 20 years of the
— data encapsulation, safe memory management, packages, etc. v

{29} Eomm Java Card Forum

s for the Java Card Forum for the last 20 years 1997 - 2017

* Applet isolation based on the JavaCard firewall °"" 1991i
. . . Standardisation of SIM] 9 99 i:‘:?cgﬁa:gteza.std 5
— applets cannot directly communicate with each other ke b ————

— special interface (Shareable) for cross applets interaction v cadz22 9006 O P o
anucon\ac::;my: N I"I” deployed so far
« Atomic operations using transaction mode w0208 S

Open Day: X

* Transient data (buffer placed in RAM) BET] e e

|I|”| deployed each year

— fast and automatically cleared e N Q e
Si‘:f[;::?ag;?E = Open Day: ‘;a
9 SAO PAOLO "=

« Arich cryptography API H,, L cuasoscme
BEJING "= De ‘Oﬂfe sed uimniwlue@""l"

— accelerated by cryptographic co-processor R ————

I“I”l dePlc’YEd each year hclmnlogy :eclors
2017

» Secure (remote) communication with the terminal | mart s c (&

O
s'?

specific features

— if GlobalPlatform compliant (secure messaging, security domains)

PV204 JavaCard - programming secure https://crocs.fi.muni.cz @CRoCS_MUNI

B - 20ycersofthe

20 years of the
Java Card Forum

Milestones for the Java Card Forum for the last 20 years 1997 - 2017

JavaCard 3.0.x (most recent 3.0.5 from 2015)::

17

Major release of JavaCard specification
— significant changes in development logic
— two separate branches — Classic and Connected edition

JavaCard 3.x Classic Edition

JAVA CARD

" {ay Forum
Since 1997

Card cification

Standardisation of SIM
Toolkit initiates mass
Java Card deployment

JavaCard2.2.2

specification released
(ETSI and contactless)

1997

2006 ¢

OpenDay: %
Tokyo
OpenDay: %
HONG KONG "
Open Day: L,
BEING ™

— legacy version, extended JC 2.x
— APDU-oriented communication

va Card 3.0.1 Classic 20“ O

First deployment

OpenDay: 2

SINGAPORE ™"

JavaCard 3.x Connected Edition
smart card perceived as web server (Serviet API)

TCP/IP network capability, HTTP(s), TLS

supports Java 6 language features (generics, annotations...)
move towards more powerful target devices

focused on different segment then classic smart cards

2
-

Open Day:
HONG KONG

Open Day:
BEIJING

> 3 Billion Java Cards
||||"| deployed each year

j }
-

2017

Java Card 3.1 Classic

Specification release to include loT
specific features

./

)

)

Q

specification released -
interoperable file format

1 Billion Java Cards
||||"| deployed so far

2008

Java Card 3.0

specification released in 2 versions;
Connected and Classic

> 2 Billion Java Cards
||||"| deployed each year

Open Day: 2

ST. PETERSBERG "™
Open Day: 9
SAOPAOLO

Java Card 3.0.5 Classic

() 20 1 5 Specification released focusing on security.,
optimised cryptography and new APIs

Java Card platforms can be found across all

technology sectors f—l i G\\\

=U ‘) D

]

=7

www.javacardforum.com

| PV204 JavaCard - programming secure elements

https://crocs.fi.muni.cz @CRoCS_MUNI

RS

0 years of the
&) Java Card Forum

Milestones for the Java Card Forum for the last 20 years 1997 - 2017

JavaCard 3.1 (2018) and 3.2 (2023) R 19913
1999

ommendations to
Card specification

- JavaCard 3.1
— Focus on loT s 2006 © 3Bk Jova Cads
— Additional cryptographic algorithms, named curves opror o """Jdp'c”d;
— Not much practical experience yet (no devices available) f‘y - Q2008 gz

BEIJNG

- Some certified end of 2022 but not freely available 72 Billon Java Carcs

||||"| deployed each year

 JavaCard 3.2 Bacadseits D i i

ST. PETERSBERG '™
OpenDay: 2

— Ext. EADSA (edwards25519, edwards448 curves) el S, &

Open Day: 2
HONG KONG T

— TLS1.3 and DTLS1.3 key schedule operations ik WG, | | [l

BEIJING “ww curity.

=
optimised cryptography and new APls

— Configuration for RSA-OAEP/PSS] o otien dava Cors o Cord ltorm con b fund sross

technology sectors

.] i@\\
* Conservative development of JavaCard specs st 2 NP AN

— Only what is “widely” requested = e e
— Significantly lacking behind state of the art (e.g, PQC algs only via proprietary API)

18 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

How to analyze real-world usage of technology X?

1. Collect representative sample of users / projects (ideally “all”)
— E.g., all open-source JavaCard projects on GitHub

2. Establish significance of projects
— E.g., Number of developers/forks/stars, search trends on Google, sales stats...

3. Analyze projects for the level and style of use of technology X
— E.g., static code analysis of JavaCard keywords and constants
— ldeally trends in time if possible (e.g., code state in time via git commits)

“The adoption rate of JavaCard features by certified products and open-source
projects”, L. Zaoral, A. Dufka, P.Svenda, CARDIS’ 23
https.//link.springer.com/chapter/10.1007/978-3-0371-54409-5 9

PV079 - Cryptographic smartcards https://crocs.fi.muni.cz @CRoCS_MUNI

https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9
https://link.springer.com/chapter/10.1007/978-3-031-54409-5_9

CR®CS

Certified smartcards and JavaCard-related projects

B Jjc2i10 B jc211 B jc220 B Jc221 B JC222
O jcs301 8 Jcs3o4 B JC305 B JC3.1.0

(o

T R R - = 19 = S
3 i IR ™ St < < = !
= N N ™ o n ™ o o™
— Lo g | I | I I .
B 30 Lo - | I | . | I

&) I ;] | | : : |

a3

= : L : S : : _

! oo Lo I — L I 0ol
g0 0 - al il
=2 o o | I I) I Lo | — -

3 | = : : : | -
SN S SR

= o [I I I T]

E 1041 i L : : I - -

5] I Lo | i I lhsi |

uy Lo Lo I | |

o I I T I I — .
r_Q 1 _I_'
:) e ImgsS=s :
= 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

Year

The number of certification documents mentioning specific JavaCard API version per year (the year 2023 only till the end of October). In case

multiple versions were detected in a document, only the latest one was included in the chart.

* Number of (expensively) certified JavaCard devices is increasing

PV079 - Cryptographic smartcards https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Activity of open-source JavaCard applets in time

250
W
S
R 40 + Monthlv ® Yubico/ykneo-openpgp
=} - 200 :
a —O—Yem‘ly @ sithub-af/SmartPGP ® status-im/status-keycard
o 307]
Z E LedgerHQ/ledger-javacard
)
= 20 ® 150 ® seek-for-android/pool
g = ® @ philipWendland/IsoApplet
(@] kev-
:g o @ darconeous/gauss-key-card] martinpaliak/AppletPlayground
QE 10 + g vletoux/GidsApplet
E‘ c 100 arekinath/PivApplet Toporin/SatochipApplet
= 5 o crocs-muni/JCAlgTest/
Z 0 =z iy ; z prenCryptoProject/JCMathLib Yubico/ykneo-oath
\ 4 e \ OpenJavaCard/openjavacard -nde
QQ% Q@ QQ(‘O QQ\ Q)Q% QQQ) Q\Q Q'\/\/ Q\Q, Q\{b Q\y Q{D Q\(‘O Q\\ Q)\’% QS\?) Q)QS) Q)%\ (9?’ Qq:b Qﬂ} i [? J. " o o LedgerHQ/ledger-u2f-javacard
D R R R A R S A A 20 ©_ Mmakinako/OpenFIPS201
(] JavaCardQS/OpenEMV
Yea.r'.....' o divegeek/JavaCardKeymaster
. o | o eotellisds
Fig. 3. Number of open-source projects with at least one commit per month (black
0 10 20 30 40 50 60 70 80

line) or per year (red line) respectively. The year 2023 is only till end of June.

Number of forks

* |s open-source ecosystem representative of the whole domain?
— Likely two orders of magnitude more developers in non-open source domain
— Proprietary applets with access to proprietary APl may be different

https://crocs.fi.muni.cz @CRoCS_MUNI

PV079 - Cryptographic smartcards

CR®CS

Version support

* Need to know supported version for your card
— convertor adds version identification of packages used to binary cap file
— If converted with unsupported version, upload to card fails

« Supported version can be (somewhat) obtained from card
— JCSystem.getVersion() — [Major.Minor]

— https://qithub.com/petrs/icAIDScan
— See https://www.fi.muni.cz/~xsvenda/jcsupport.html

 Available cards supports mostly 3.0.4 and 3.0.5 (newer cards)

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/petrs/jcAIDScan
https://www.fi.muni.cz/~xsvenda/jcsupport.html

CR®CS

JavaCard applet firewall — runtime checks

* Access to other applet’s methods and

p attributes prevented

/ . _

“ E——— — Even if public

‘ l * Applets can access specific JCRE objects
= JCRE can access all applets (no

JavaCard runtime environment (JCRE) reStnCtlon)
JCRE = JCVM + AP - Stgtic attributes of package accessible by

= all its applets!

:-.[SmartCard hardware

Inspired by http.//ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5 javacard.pdf

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

CR®CS

Desktop vs. smart card

* Following slides will be marked with icon based on where it
IS executed

Process executed on host (PC/NTB...)

Process executed inside smart card

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

On-card, off-card code verification

S —
|

* How to upload only “correct” applets?

« Off-card verification E,;::
— Basic JavaCard constraints

— Possibly additional checks (e.g., type consistency when using Shareable
interface)

— Full-blown static analysis possible
— Applet can be digitally signed (and enforced by DAP — shown Iater) B

* On-card verification
— Limited resources available
— Proprietary checks by JC platform implementation

25 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

DEVELOPING JAVACARD APPS

26 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

package example;

import javacard.framework.*; —

public class HelloWorld extends Applet
protected Helloworld() { —

register();
>
public static void install(byte
new HelloWorld();
>

public boolean select() {

return true;
} \

public void process(APDU apdu) {

// get the APDU buffer

byte[] apduBuffer = apdu.getBuffer();

// ignore the applet select comntand dispached to the process

if (selectingApplet()) return;

// APDU instruction parser

if (apduBuffer[ISO7816.0FFSET_CLA] == CLA_MYCLASS) &&
apduBuffer[ISO7816.0FFSET_INS] ==
MyMethod(apdu);

>

else ISOException.throwIt(ISO7816.SW_INS_NOT_SUPPOR

rray, short bOffset, byte bLength) {

>
public void MyMethod(APDU apdu) { /* ... */ }

}

27PV204 JavaCard - programming secure elements https://crocs.fi. muni.cz @CROCS_M UNI

CR&,CS

JC development process

https://crocs.fi.muni.cz @CRoCS_MUNI

&

JavaCard application running model

1. Uploaded package — application binary
2. Installed applet from package — running application
3. Appletis “running” until deleted from card
4. Applet is suspended when power is lost
— Transient data inside RAM are erased
— Persistent data inside EEPROM remain
— Currently executed method is interrupted
5. When power is resumed
— Unfinished transactions are rolled back
— Applet continues to run with the same persistent state
— Applet waits for new command (does not continue with interrupted method)

6. Appletis deleted by service command

29 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

Managing applets on card

GLOBALPLATFORM

MAaMAGING APPLICATIONS ON SECURE CHIF

30 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Motivation: Fix bug in electronic IDs for half of population

EDITION:EU

ZDNet Q AFRICA UK ITALY SPAIN MORE

|C) musT ReaD: Digital transformation: Why ClOs need to stay brave and keep on innovating

Estonia's ID card crisis: How e-state's poster
child got into and out of trouble

Estonia is built on secure state e-systems, so the world was watching when it
hit a huge ID-card problem.

* Problem: how to remotely manage administrative access to token?
— Smartcards, TEE (TrustZone) - same basic issues, but also some specifics

» Local/remote upload, configuration and removal of applications
 Authentication of manager, online vs. offline operations

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

GLOBALPLATFORM

GlobalPlatform

Ky

Specification of API for card administration
— Upload/install/delete applications

— Card lifecycle management

— Card security management

— Security mechanisms and protocols

Newest is GlobalPlatform Card Specification v2.3.1 (March 2018)
— Previous versions also frequently used

— http://www.globalplatform.org/specificationscard.asp

Primary open API for Trusted Execution Environment (TEE)

— ARM TrustZone...

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

http://www.globalplatform.org/specificationscard.asp

CR&,CS

GlobalPlatform — main terms ﬁ—

« Smart card life cycle
— OP_READY, INITIALIZED (prepared for personalization)
— SECURED (issued to user, use phase)
— CARD_LOCKED (temporarily locked (attack), unlock to SECURED)
— TERMINATED (logically destroyed)

« Card Manager (CM)

— Special card component responsible for administration and card
system service functions (cannot be removed)

« Security Domain (SD)
— Logically separated area on card with own access control
— Enforced by different authentication keys

33 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

GlobalPlatform — main terms

« Card Content (apps,data) Management
— Content verification, loading, installation, removal

« Security Management
— Security Domain locking, Application locking
— Card locking, Card termination
— Application privilege usage, Security Domain privileges
— Tracing and event logging
« Command Dispatch
— Application selection
— (Optional) Logical channel management

34 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Card Production Life Cycle (CPLC)

CPLC info

« Dates (OS, chip) C Type: 5167
OS Release Level: 3b00
IC Batch Identifier: 3173

« Manufacturing metadata |
IC Fabricator: 4790
OS ID: 4791
 Circuit serial number oo reemse vam 2
IC Fabrication Date ((Y DDD) date in that year): 4126
° (nOt mandato ry) IC Serial Number: 00865497 '
¢ GlObaI Plath rm AP D U IC Module Fabricator: 4812
IC Module Packaging Date: 4133

- 80 CA 9F 7F 00 IC Manufacturer: 0000
. IC Embedding Date: 0000
_ gppro "|nf0 IC Pre Personalizer: 1017

° ISO78 1 6 AP D U IC Pre Personalization Equipment Date: 4230

IC Pre Personalization Equipment ID: 38363534

_ OO CA 9F 7F 00 IC Personalizer: 0000

IC Personalization Date: 0000
IC Personalization Equipment ID: 00000000

38 | PV204 JavaCard - programming secure elements

CR®CS

Example CPLC results from several G&D cards

[CFabricator — ICFab ICType — OperatingSystemlID — OperatingSystemID OSReleaseDate — OSReleaseLevel — CardName — Original vendor — Current vendor

OSID_1671 O5Date_1146

- G&D SmignCate (3011) = A - G+D Smartcafe 6.0 80K ICFabDate 2015 024
- .
ICFab_47901CType 5037 o _
— TT— B - 73
NXP —_— OsID_1671 — %i”g—é;ﬁn%r’g:‘(‘%’,? R L — G+D Smancafe Expan 3.2 72K ICFabDate 2003 126
ICFab_£7001CType 500 =+ G&D Sm@rtCafe = -
B T G+D Smart Cafe Expert 4.x V2 [CFabDate 2007 079
-- OSID_1671 O5Date §197 - . e 0580 -- - = Epen S B o A o
ICFab_3090 ICType_6162 GED SmanCat (3003) el Wy~ o
- -
,,»"‘J’ E+D‘3mm(aﬁe.".[)21ﬂ'{USBTu]:en'i — =G&D —= 'G&D
T — ; ; 0OsID_do01 0SID_dD01 O5Date 2211 — T W ~— ¥
Infineon ICFab_00035 ICType 0036 il = - a, =l — e = I 1 — .
— X . 3 . S T - _ - B—
. ~ _ G&DSm@uCae] > CiDSmanCaR(il9 = > D StaSign Crypto USE oken § _
ICFal_0005 ICType 0045 -
Tnfinson M7867 BI1 0SID_d001 O5Date_4021 R
AT Smantat (919 = 0101 » G+D Smuricafe 7.0
Renesas . ICFab_0003 ICType 0307 - OsID_al06 - 0SID_2005 O5Date_3311 e 0100 — » GFD SmumCafe Exper 62
Renesas AE4SC] G&D Sm@rtCafe G&D Smgarlafe (2003)

39 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

GlobalPlatform package/applet upload - SCP

A. Security domain selection
B. Secure channel establishment (SCP) — security domain
C. Package (cap file) upload

— Local upload in trusted environment
— Remote upload with relayed secure channel
D. Applet installation
— Separate instance from package binary with unique AID
— Applet privileges and other parameters passed
— Applet specific installation data passed
* gp —-install file with applet.cap

40 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

GlobalPlatform package/applet upload -

Data Authentication Pattern (DAP)

« Generate cap signing keypair (RSA, OpenSSL)

« Sign applet (file with cap, capfile tool)

» Create policy domain (SSD) with MandatedDAP Verification
« Set personalization keys for the SSD (secret symmetric crypto keys)

» Upload verification key for this domain (key version 0x73, public key
of your signing keypair)

* Verify that SSD is prepared (DOM, DAPVerification privilage)

* Upload signed applet (*.cap file)

 https://github.com/martinpaljak/GlobalPlatformPro/blob/next/tests/sce70.sh

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/martinpaljak/GlobalPlatformPro/blob/next/tests/sce70.sh

DEBUGGING APPLET

56 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CRCS Martin Palak =

How does smart card programming look like in
real life? Here's a typical scenario...

uni.cz @CRoCS,_MUNI

CR®CS

1. Debugging applets: simulator

* The smartcard is designed to protect application
— Debugger cannot be connected to running application

« Option 1: use card simulator (jcardsim.org)
— Simulation of JavaCard 3.0.5 (based on BouncyCastle)

— Very helpful, allows for direct debugging (will be covered in labs)
— Catch of logical flaws etc.

— Allows to write automated unit and integration tests!

* Problem: Real limitations of cards are missing
— supported algorithms, memory, execution speed...

58 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS -

2. Debugging applets: real cards

* Option 2: use real cards
— Cannot directly connect debugger, no logging strings...

* Debugging based on error messages
— Use multiple custom errors rather than ISO7816 errors
— Distinct errors tell you where problem (might) happened

* Problem: operation may end with unspecific 0x6f00
— Any uncaught exception on card (other than ISOException)
— Solution1: Capture on card, translate to ISOException

— Solution2: Locate problematic command by insertion of
ISOEXxception.throwlt(0x666); and recompile

59 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

Possible causes for exception on card

* Writing behind allocated array

« Using Key that was Key.clear() before

* Insufficient memory to complete operation

« Cipher.init() with uninitialized Key

* Import of RSA key into real card generated by software outside card (e.g.,
getP() len == 64 vs. 65B for RSA1024)

« Storing reference of APDU object localAPDU = origAPDU;

« Decryption of value stored in byte[] array with raw RSA with most
significant bit == 1 (set first byte of array to Oxff to verify)

« Set CRT RSA key using invalid values for given part - e.g. setDP1()
« Too many nested calls, no free space on stack for arguments
e ... and many more ©

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

Getting more than 0x6f00

public void process(javacard.framework.APDU apdu) {
// ignore the applet select command dispatched fo the process

if (selectingApplet()) return;

try {
//

// .. Standard APDU command dispatching...

//
} catch (ISOException e) { / _

throw e; // Our exception from code, just re-emit
} catch (ArrayIndexOutOfBoundsException e) {
ISOException.throwIt(SW_ArrayIndexOutOfBoundsException);

¥} catch (ArithmeticException e) {

ISOException.throwIt(SW_ArithmeticException);

} catch (ArrayStoreException e) {

ISOException.throwIt(SW_ArrayStoreException);

} catch (NullPointerException e) {

ISOException.throwIt(SW_NullPointerException);

} catch (NegativeArraySizeException e) {

ISOException.throwIt(SW_NegativeArraySizeException);

} catch (CryptoException e) {

ISOException.throwlIt((short) (SW_CryptoException_prefix | e.getReason()));

} catch (SystemException e) {

EEE

ISOException.throwlIt((short) (SW_Systembycaontion_nrafiv o aotDoscaon L2

¥} catch (PINException e) {
ISOException.throwlIt((short) (SW_PI
} catch (TransactionException e) {
ISOException.throwlIt((short) (SW_Tr
} catch (CardRuntimeException e) {
ISOException.throwIt((short) (SW_Cz
} catch (Exception e) {
ISOException.throwIt(Consts.SW_Exce
be

6ﬂPV204 JavaCard - programming secure elements

final short SW_Exception = (short) 0xff01;
final short SW_ArrayIndexOutOfBoundsException = (short) 0xff02;
final short SW_ArithmeticException (short) 0xff03;
final short SW_ArrayStoreException (short) 0xff04;
final short SW_NullPointerException = (short) 0xff05;
final short SW_NegativeArraySizeException (short) 0xff06;
final short SW_CryptoException_prefix (short) 0xf100;
final short SW_SystemException_prefix (short) 0xf200;

final short SW_PINException_prefix = (short) 0xf300;
final short SW_TransactionException_prefix = (short) 0xf400;
final short SW_CardRuntimeException_prefix = (short) 0xf500;

cz @CRoCS_MUNI

CR®CS

Debugging using custom commands

 Addition of custom commands to “dump” interesting parts of data
— Intermediate values of internal arrays, unwrapped keys...

* Should obey to Secure by default principle
— Debugging possibility should be enabled only on intention

— E.g., specific flag in installation data which cannot be enabled later (by an
attacker)

— Don’t let debugging code into release!

62 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

63 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

NEXT WEEK:
BEST PRACTICES FOR JAVACARD
(SECURE MULTIPARTY COMPUTATION)

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Summary

« Smart cards are programmable (JavaCard)
— reasonable cryptographic API
— coprocessor for fast cryptographic operations
— multiple applications coexist securely on single card
— Secure execution environment

« Standard Java 6 API for communication exists

* PKI applet can be developed with free tools
— PIN protection, on-card key generation, signature...

- JavaCard is not full Java — optimizations, security

PV204 JavaCard - programming secure

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Mandatory reading

« Mandatory
— 1S, Gemalto _JavaCard DevelGuide.pdf
* Optional

— Java Card lecture, Erik Poll, Radboud Uni
» http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5 javacard.pdf

66 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf
http://ekladata.com/IHWNXUB-yernblD2sdiK1zxxQco/5_javacard.pdf

BEST PRACTICES (FOR APPLET
DEVELOPERS)

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Quiz

1. Expect that your device is leaking in time/power channel.
Which option will you use?
— AES from hw coprocessor or software re-implementation?
— Short-term sensitive data stored in EEPROM or RAM?
— Persistent sensitive data in EEPROM or encrypted object?
— Conditional jumps on sensitive value?

2. Expect that attacker can successfully induct faults (random
change of bit(s) in device memory).

— Suggest defensive options for applet’s source code
— Change in RAM, EEPROM, instruction pointer, CPU flags...

68 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS ‘
@

Security hints (1)

« Use API algorithms/modes rather than your own
— APl algorithms fast and protected in cryptographic hardware
— general-purpose processor leaks more information (side-channels)

« Store session data in RAM
— faster and more secure against power analysis
— EEPROM has limited number of rewrites (10° - 10° writes)

* Never store keys, PINs or sensitive data in primitive arrays
— use specialized objects like OwnerPIN and Key

— better protected against power, fault and memory read-out attacks

— If not possible, generate random key in Key object, encrypt large data with this key
and store only encrypted data

« Make checksum on stored sensitive data (=> detect fault)

| PV204 JavaCard - programming secure https://crocs.fi.muni.czc @CRoCS_MUNI

CR®CS ‘
@

Security hints (2)

* Erase unused keys and sensitive arrays
— use specialized method if exists (Key.clearKey())
— or overwrite with random data (Random.generate())
— Perform always before start of new session

» Use transactions to ensure atomic operations

— power supply can be interrupted inside code execution

— be aware of attacks by interrupted transactions - rollback attack
* Do not use conditional jumps with sensitive data

— branching after condition is recognizable with power analysis => timing/power
leakage

| PV204 JavaCard - programming secure https://crocs.fi.muni.czc @CRoCS_MUNI

Security hints (3)

* Allocate all necessary resources in constructor
— applet installation usually in trusted environment
— prevent attacks based on limiting available resources

* Don’t use static attributes (except constants)
— Static attribute is shared between multiple instances of applet (bypass applet firewall)

— Static ptr to array/engine filled by dynamic allocation cannot be removed until package is
removed from card (memory “leak”)

» Use automata-based programming model
— well defined states (e.g., user PIN verified)
— well defined transitions and allowed method calls

P V204 JavaCard - programming secure https://crocs.fi.muni.cz @CRoCS_MUNI

-

Security hints (4)

* Treat exceptions properly
— Do not let uncaught native exceptions to propagate from the card

— Do not let your code to cause basic exceptions like OutOfBoundsException or
NullPointerExceptions...

72 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Security hints: fault induction (1)

« Cryptographic algorithms are sensitive to fault induction
— Single signature with fault from RSA-CRT may leak the private key
— Perform operation twice and compare results
— Perform reverse operation and compare (e.g., verify after sign)

» Use constants with large hamming distance
— Induced fault in variable will likely cause unknown value
— Use 0xAS5 and 0x5A instead of 0 and 1 (correspondingly for more)
— Don'’t use values 0x00 and Oxff (easier to force all bits to 0 or 1)

* Check that all sub-functions were executed [Fault.Flow]

— Fault may force program stack or stack to skip some code

— ldea: Add defined value to flow counter inside target sub-function, check
later for expected sum. Add also in branches.

PV204 JavaCard - programming secure

https://crocs.fi.muni.cz @CRoCS_MUNI

t\

Security hints: fault induction (2)

» Replace single condition check by complementary check
— conditionalValue is sensitive value
— Do not use boolean values for sensitive decisions

if (conditionalValue == 0x3CA5965A) { // enter critical path

/...
if (~conditionalValue = OxC35A69A5) {

faultDetect(); // fail if complement not equal to OXC35A69A5

}
// ...
}
* Verify number of actually performed loop iterations
int i;
for (i =0;i<n;i++) { //important loop that must be completed
//. ..
>
if (i '=n) { // loop not completed
faultDetect();

P Va0t JavaGard—programmin ' https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

Security hints: fault induction (3)

 Insert random delays around sensitive operations
— Randomization makes targeted faults more difficult
— for loop with random number of iterations (for every run)

* Monitor and respond to detected induced faults
— If fault is detected (using previous methods), increase fault counter.

— Erase keys / lock card after reaching some threshold (~10)
» Natural causes may occasionally cause fault => > 1

75 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

How and when to apply protections

Does the device need protection?
Understand the resistance of the hardware
Identify potential weakness in design
Select patterns to use

Understand your compiler

Code it

Test the resistance of the device

A N N N N

76 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

o

Execution speed hints (1)

 Big difference between RAM and EEPROM memory
— new allocates in EEPROM (persistent, but slow)
« do not use EEPROM for temporary data
« do not use for sensitive data (keys)
— JCSystem.getTransientByteArray() for RAM buffer
— local variables automatically in RAM

* Use algorithms from JavaCard API and utility methods
— much faster, cryptographic co-processor

* Allocate all necessary resources in constructor
— executed during installation (only once)
— either you get everything you want or not install at all

PV204 JavaCard - programming secure https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS o

Execution speed hints (2)

» Garbage collection limited or not available
— do not use new except in constructor

« Use copy-free style of methods
— foo(byte[] buffer, short start_offset, short length)

* Do not use recursion or frequent function calls
— slow, function context overhead

* Do not use OO design extensively (slow)

« Keep Cipher or Signature objects initialized

— if possible (e.g., fixed master key for subsequent derivation)
— Initialization with key takes non-trivial time

PV204 JavaCard - programming secure

https://crocs.fi.muni.cz @CRoCS_MUNI

JCPROFILERNEXT — PERFORMANCE
PROFILING, NON-CONSTANT TIME
DETECTION

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

JCProfilerNext: on-card performance profiler

* QOpen-source on-card performance profiler (L. Zaoral)
— https://qgithub.com/Izaoral/JCProfilerNext

» Automatically instrumentation of provided JavaCard code
— Conditional exception emitted on defined line of code
— Spoon tool used https://spoon.gforge.inria.fr/
« Measures time to reach specific line (measured on client-side)
» Fully automatic, no need for special setup (only JavaCard + reader)

* Goals:
— Help developer to identify parts for performance optimizations
— Help to detect (significant) timing leakages
— Insert “triggers” visible on side-channel analysis
— Insert conditional breakpoints...

80 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/lzaoral/JCProfilerNext
https://spoon.gforge.inria.fr/

_/

/ if m_perfStop equals to stopCondition, exception is thrown (trap hit)
public static void check(short stopCondition) {
if (PM.m_perfStop == stopCondition) {

| nstru mented code (S poon) ISOException.throwlt(stopCondition);
>
by

private void example(APDU apdu) {
short count = Util.getShort(apdu.getBuffer(), ISO7816.0FFSET_CDATA);
for (shorti = 0; i < count; i++) {
short tmp = 0;
for (short k = 0; k < 50; k++) {

tmp++;

https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

JCProfilerNext — timing profile of target line of code

example.Example.example2(javacard.framework.APDU)

TRAP example Example example2 argb javacard framework APDU_arge 12

Card ATR: 3BFA 180000813 1FE454A434F5033315632333298
Number of rounds: 1000 Click on a bin to get a list of corresponding inputs.
APDU header: 80010000

Input regex: 00[0-9A-F]{2}
Elapsed time: 0 days 00:00:02.814

Source measurements: measurements.csv [Show explicit traps with outliers
B without outliers
Avg ps A
1 private void example2(APDU apdu) {
2 byte[] apdubuf = apdu.getBuffer();
3 short datalen = apdu.setIncomingAndReceive();
4 // SET KEY VALUE >
5 - rr!iaislfy._sftl{f):r(ap_c_iub%.lf} E[SD?SlG.OFFSETﬁCDATA); 5
6 /7 INIT CIPHERS WITH NEW KEY S
7 m_encryptCipher.init(m_aeskey, Cipher.MODE_ENCRYPT); g
2 m_decryptCipher.init(m_aesKey, Cipher.MODE_DECRYPT); w
9 m_encryptCipher.doFinal (apdubuf, IS07816.0FFSET_CDATA, ((short) (@x1@)), m_ramArray, ((short) (2)));
10 m_decryptCipher.doFinal (apdubuf, IS07816.0FFSET_CDATA, ((short) (@x1@)), m_ramArray, ((short) (2)));
n m_hash. doF1 ;l(apdubuf, IS07816.0FFSET_CDATA, datalen, m_ramarray, ((short) (2)));
12 - F DATA - B
13 ndom. generateData(apdubuf, IS07816.0FFSET_CDATA, ((short) (2x18)));
« Il -
15 h = m_sign.sign(apdubuf, I507816.0FFSET_CDATA, ((byte) (datalen)), m_ramfrray, ((byte) (@))); 0 2,000,000 4,000,000 6,000,000 8,000,000 10,000,000
16 - ke) on-card
17 m_keyPair.genkeyPair(); Time in ps
18 m_publicKey = m_keyPair.getPublic();
19 m_privatek m_keyPair.getPrivate();
20 E: WITH PRIVATE KEY 20M
21 m_sign.init(m_privateKey, Signature.MODE_SIGN);
}
By | v
23
< > 15M
wn
=
Colour explanation E
@ 10M
E
- =
Currently selected trap Trap was never reached Trap was reached only sometimes
5M
o]
200 400 600 800 1.000

muni.cz @CRoCS

CR®CS

JCProfilerNext — memory consumption

opencrypto.jcmathlib.OCUnitTests()

TRAP opencrypto_jecmathlib OCUnitTests_argb arge 6

Mode: memory
Card ATR: 3B80800101

APDU header: measured during installation . .
] . N > 2 600 transient deselect
Input: measured during installation] .
" transient reset
Elapsed time: 0 days 00:00:00.294 .
.. 2,400 —e&— persistent
Source measurements: measurements.csv [J Show explicit traps m
c
. >, 2,200
Diff in B A 2
1 public OCUnitTests() { E 2000
2 OperationSupport.getInstance().setCard(OperationSupport.SIMULATOR);// Tt =
3 m_memoryInfo = new short[((short) (7 * 3))]1;// Contains RAM and EEPROM i Y 1 800
4 m_memoryInfoOffset = snapshotAvailableMemory(((short) (1)), m_memoryInfc E’_'
5 if (bTEST_256b_CURVE) { .
6 N m_ecc = new ECConfig(((short) (256))); 1.600 \\m
7 }
s if (bTEST_512b_CURVE) { 1,400
m_ecc = new ECConfi short 512 H
13 } - g((() (M) 0 10 20 30 40
1 m_memoryInfoOffset = snapshotAvailableMemory(((short) (2)), m_memoryInfc
12 // Pre-allocate test objects (no new allocation for every tested operat: Trap ID
13 if (bTEST_256b_CURVE) {
14 m_testCurve = new ECCurve(false, SecP256rl.p, SecP256rl.a, SecP256r:
15 m_memoryInfoOffset = snapshotAvailableMemory(((short) (3)), m_memor) 32768
16 // m_testCurveCustom and m_testPointCustom will have G occasionally !
17 m_customG = new byte[((short) (SecP256rl.G.length))];
18 Util.arrayCopyNonAtomic(SecP256r1.G, ((short) (8)), m_customG, ((shc
19 m_testCurveCustom = new ECCurve(false, SecP256rl.p, SecP256rl.a, Set 32768
m 32
20 } c
o if (bTEST_512b_CURVE) { =

83 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

CR&,CS

JCProfilerNext — checking for non-constant behavior
opencrypto.jcmathlib.OCUnitTests#test BN _MOD(javacard.framework. APDU,short)

TRAP opencrypto_jcmathlib_OCTUnitTests_hash_test BN_MOD _argb_javacard_framework APDU__ short_arge 10

Mode: time
Card ATR: 3B80800101 Click on a graph item to get a list of corresponding inputs.

Number of rounds: 1000
APDU header: B0252100
Input regex: 00[0-0A-F]{64}[4-T][0-9A-F1{63}
Elapsed time: 0 days 00:58:39.803
Source measurements: measurements.csv ~| Show explicit traps 400 B low effectiveBitLength
B high effectiveBitLength
Ave s A
void test BMN_MOD(APDU apdu, short datalen) {
byte[] apdubuf = apdu.getBuffer();
short pl = ((short) (apdubuf[ISO7816.0FFSET_P1] & @xFf));
Bignat num = m_testBNI1;
num.set_size(pl);
Bignat mod = m_testBENZ;
mod.set_size(((short) (datalLen - pl)));
num.from_byte_array(pl, ((short) (@)), apdubuf, ISO7816.0FFSET_CDATA);
mod. from_byte_array(((short) (dataLen - pl)), ((short) (2)), apdubuf, 100

g

Frequency
=
[=]

L= BN I« RV IR SN RV S

9
10 num.mod (mod) ;
short len = num.copy_to_buffer(apdubuf, ((short) (2)));
1;_ apdu.setOutgoingindSend(((short) (@)), len);
H 0
3 v 5,000 10,000 15,000 20,000
< > Time in ps
Colour explanation 20K
Currently selected trap Trap was never reached Trap was reached only sometimes
15k
n
a
£
2 10k
b=
5k

200 400 500 200 1,000
Round

.muni.cz @CRoCS

CR®CS

JCProfilerNext — profiling via power measurement

* The default measurement option is host-based timer => imprecise
— Exception thrown after every line of code, measured with whole roundtrip

 |dea: insert distinct operation visible in powertrace after every line
— Original code is instrumented with 3XxRNG.generateData() instead of exception
— Powertrace of whole method is captured
— RNG operations are detected and used as separators
— Precise timing of operation is obtained
— Visualization is performed using standard JCProfilerNext pipeline

* More elaborate setup (oscilloscope), but very precise measurement
— better detection of non-constant-time operations

85 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

JavaCard applet firewall issues

JavaCard runtime environment (JCRE)

4 APDU JCRE = JCVM + API

L SmartCard hardware

* Main defense for separation of multiple applets
+ Platform implementations differ
— Usually due to the unclear and complex specification
* If problem exists then is out of developer’s control

* Firewall Tester project (W. Mostowski)
— Open and free, the goal is to test the platform
— http://www.sos.cs.ru.nl/applications/smartcards/firewalltester/

short[] arrayl, array2; // persistent variables
short[] localArray = null; // local array
JCSystem.beginTransaction();

arrayl = new short[1];

array2 = localArray = arrayl; // dangling reference!
JCSystem.abortTransaction();

| PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

http://www.sos.cs.ru.nl/applications/smartcards/firewalltester/

CR®CS

Relevant open-source projects

« Easy building of applets
— https://github.com/martinpaljak/ant-javacard
— https://github.com/ph4rQ5/javacard-gradle-template
« AppletPlayground (ready to “fiddle” with applets)
— https://github.com/martinpaljak/AppletPlayground
« Card simulator https://jcardsim.org
* Profiling performance
— https://github.com/crocs-muni/JCAIgTest
— https://qgithub.com/OpenCryptoProject/JCProfiler
« Curated list of JavaCard applets
— https://github.com/crocs-muni/javacard-curated-list

* Low-level ECPoint library
— https://github.com/OpenCryptoProject/JCMathLib

87 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://github.com/martinpaljak/ant-javacard
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/ph4r05/javacard-gradle-template
https://github.com/martinpaljak/AppletPlayground
https://jcardsim.org/
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/EnigmaBridge/javacard-curated-list
https://github.com/OpenCryptoProject/JCMathLib

CR®CS

Summary

« Smart cards are programmable (JavaCard)
— reasonable cryptographic API
— coprocessor for fast cryptographic operations
— multiple applications coexist securely on single card
— Secure execution environment

« Standard Java 6 API for communication exists

* PKI applet can be developed with free tools
— PIN protection, on-card key generation, signature...

- JavaCard is not full Java — optimizations, security

PV204 JavaCard - programming secure

https://crocs.fi.muni.cz @CRoCS_MUNI

CR®CS

89 | PV204 JavaCard - programming secure elements https://crocs.fi.muni.cz @CRoCS_MUNI

