
Online edition (c)
2009 Cambridge UP

Online edition (c)
2009 Cambridge UP

DRAFT! © April 1, 2009 Cambridge University Press. Feedback welcome. 403

18 Matrix decompositions and latent

semantic indexing

On page 123 we introduced the notion of a term-document matrix: an M × N
matrix C, each of whose rows represents a term and each of whose columns
represents a document in the collection. Even for a collection of modest size,
the term-document matrix C is likely to have several tens of thousands of
rows and columns. In Section 18.1.1 we first develop a class of operations
from linear algebra, known as matrix decomposition. In Section 18.2 we use a
special form of matrix decomposition to construct a low-rank approximation
to the term-document matrix. In Section 18.3 we examine the application
of such low-rank approximations to indexing and retrieving documents, a
technique referred to as latent semantic indexing. While latent semantic in-
dexing has not been established as a significant force in scoring and ranking
for information retrieval, it remains an intriguing approach to clustering in a
number of domains including for collections of text documents (Section 16.6,
page 372). Understanding its full potential remains an area of active research.

Readers who do not require a refresher on linear algebra may skip Sec-
tion 18.1, although Example 18.1 is especially recommended as it highlights
a property of eigenvalues that we exploit later in the chapter.

18.1 Linear algebra review

We briefly review some necessary background in linear algebra. Let C be
an M × N matrix with real-valued entries; for a term-document matrix, all
entries are in fact non-negative. The rank of a matrix is the number of linearlyRANK

independent rows (or columns) in it; thus, rank(C) ≤ min{M, N}. A square
r × r matrix all of whose off-diagonal entries are zero is called a diagonal
matrix; its rank is equal to the number of non-zero diagonal entries. If all
r diagonal entries of such a diagonal matrix are 1, it is called the identity
matrix of dimension r and represented by Ir.

For a square M× M matrix C and a vector ~x that is not all zeros, the values

Online edition (c)
2009 Cambridge UP

404 18 Matrix decompositions and latent semantic indexing

of λ satisfying

C~x = λ~x(18.1)

are called the eigenvalues of C . The N-vector ~x satisfying Equation (18.1)EIGENVALUE

for an eigenvalue λ is the corresponding right eigenvector. The eigenvector
corresponding to the eigenvalue of largest magnitude is called the principal
eigenvector. In a similar fashion, the left eigenvectors of C are the M-vectors y
such that

~yT C = λ~yT .(18.2)

The number of non-zero eigenvalues of C is at most rank(C).
The eigenvalues of a matrix are found by solving the characteristic equation,

which is obtained by rewriting Equation (18.1) in the form (C − λIM)~x = 0.
The eigenvalues of C are then the solutions of |(C − λIM)| = 0, where |S|
denotes the determinant of a square matrix S. The equation |(C − λIM)| = 0
is an Mth order polynomial equation in λ and can have at most M roots,
which are the eigenvalues of C. These eigenvalues can in general be complex,
even if all entries of C are real.

We now examine some further properties of eigenvalues and eigenvectors,
to set up the central idea of singular value decompositions in Section 18.2 be-
low. First, we look at the relationship between matrix-vector multiplication
and eigenvalues.

✎ Example 18.1: Consider the matrix

S =

30 0 0
0 20 0
0 0 1

 .

Clearly the matrix has rank 3, and has 3 non-zero eigenvalues λ1 = 30, λ2 = 20 and
λ3 = 1, with the three corresponding eigenvectors

~x1 =

1
0
0

 , ~x2 =

0
1
0

 and ~x3 =

0
0
1

 .

For each of the eigenvectors, multiplication by S acts as if we were multiplying the
eigenvector by a multiple of the identity matrix; the multiple is different for each

eigenvector. Now, consider an arbitrary vector, such as ~v =

2
4
6

 . We can always

express~v as a linear combination of the three eigenvectors of S; in the current example
we have

~v =

2
4
6

 = 2~x1 + 4~x2 + 6~x3.

Online edition (c)
2009 Cambridge UP

18.1 Linear algebra review 405

Suppose we multiply ~v by S:

S~v = S(2~x1 + 4~x2 + 6~x3)

= 2S~x1 + 4S~x2 + 6S~x3

= 2λ1~x1 + 4λ2~x2 + 6λ3~x3

= 60~x1 + 80~x2 + 6~x3.(18.3)

Example 18.1 shows that even though ~v is an arbitrary vector, the effect of
multiplication by S is determined by the eigenvalues and eigenvectors of S.
Furthermore, it is intuitively apparent from Equation (18.3) that the product
S~v is relatively unaffected by terms arising from the small eigenvalues of S;
in our example, since λ3 = 1, the contribution of the third term on the right
hand side of Equation (18.3) is small. In fact, if we were to completely ignore
the contribution in Equation (18.3) from the third eigenvector corresponding

to λ3 = 1, then the product S~v would be computed to be

60
80
0

 rather than

the correct product which is

60
80
6

; these two vectors are relatively close

to each other by any of various metrics one could apply (such as the length
of their vector difference).

This suggests that the effect of small eigenvalues (and their eigenvectors)
on a matrix-vector product is small. We will carry forward this intuition
when studying matrix decompositions and low-rank approximations in Sec-
tion 18.2. Before doing so, we examine the eigenvectors and eigenvalues of
special forms of matrices that will be of particular interest to us.

For a symmetric matrix S, the eigenvectors corresponding to distinct eigen-
values are orthogonal. Further, if S is both real and symmetric, the eigenvalues
are all real.

✎ Example 18.2: Consider the real, symmetric matrix

S =

(

2 1
1 2

)

.(18.4)

From the characteristic equation |S − λI| = 0, we have the quadratic (2 − λ)2 − 1 =
0, whose solutions yield the eigenvalues 3 and 1. The corresponding eigenvectors
(

1
−1

)

and

(

1
1

)

are orthogonal.

Online edition (c)
2009 Cambridge UP

406 18 Matrix decompositions and latent semantic indexing

18.1.1 Matrix decompositions

In this section we examine ways in which a square matrix can be factored
into the product of matrices derived from its eigenvectors; we refer to this
process as matrix decomposition. Matrix decompositions similar to the onesMATRIX

DECOMPOSITION in this section will form the basis of our principal text-analysis technique
in Section 18.3, where we will look at decompositions of non-square term-
document matrices. The square decompositions in this section are simpler
and can be treated with sufficient mathematical rigor to help the reader un-
derstand how such decompositions work. The detailed mathematical deriva-
tion of the more complex decompositions in Section 18.2 are beyond the
scope of this book.

We begin by giving two theorems on the decomposition of a square ma-
trix into the product of three matrices of a special form. The first of these,
Theorem 18.1, gives the basic factorization of a square real-valued matrix
into three factors. The second, Theorem 18.2, applies to square symmetric
matrices and is the basis of the singular value decomposition described in
Theorem 18.3.

Theorem 18.1. (Matrix diagonalization theorem) Let S be a square real-valued
M × M matrix with M linearly independent eigenvectors. Then there exists an
eigen decompositionEIGEN DECOMPOSITION

S = UΛU−1,(18.5)

where the columns of U are the eigenvectors of S and Λ is a diagonal matrix whose
diagonal entries are the eigenvalues of S in decreasing order

λ1

λ2

· · ·
λM

, λi ≥ λi+1.(18.6)

If the eigenvalues are distinct, then this decomposition is unique.

To understand how Theorem 18.1 works, we note that U has the eigenvec-
tors of S as columns

U = (~u1 ~u2 · · · ~uM) .(18.7)

Then we have

SU = S (~u1 ~u2 · · · ~uM)

= (λ1 ~u1 λ2 ~u2 · · ·λM ~uM)

= (~u1 ~u2 · · · ~uM)

λ1

λ2

· · ·
λM

.

Online edition (c)
2009 Cambridge UP

18.2 Term-document matrices and singular value decompositions 407

Thus, we have SU = UΛ, or S = UΛU−1.
We next state a closely related decomposition of a symmetric square matrix

into the product of matrices derived from its eigenvectors. This will pave the
way for the development of our main tool for text analysis, the singular value
decomposition (Section 18.2).

Theorem 18.2. (Symmetric diagonalization theorem) Let S be a square, sym-
metric real-valued M × M matrix with M linearly independent eigenvectors. Then
there exists a symmetric diagonal decompositionSYMMETRIC DIAGONAL

DECOMPOSITION

S = QΛQT,(18.8)

where the columns of Q are the orthogonal and normalized (unit length, real) eigen-
vectors of S, and Λ is the diagonal matrix whose entries are the eigenvalues of S.
Further, all entries of Q are real and we have Q−1 = QT.

We will build on this symmetric diagonal decomposition to build low-rank
approximations to term-document matrices.

? Exercise 18.1

What is the rank of the 3 × 3 diagonal matrix below?

1 1 0
0 1 1
1 2 1

Exercise 18.2

Show that λ = 2 is an eigenvalue of

C =

(

6 −2
4 0

)

.

Find the corresponding eigenvector.

Exercise 18.3

Compute the unique eigen decomposition of the 2 × 2 matrix in (18.4).

18.2 Term-document matrices and singular value decompositions

The decompositions we have been studying thus far apply to square matri-
ces. However, the matrix we are interested in is the M × N term-document
matrix C where (barring a rare coincidence) M 6= N; furthermore, C is very
unlikely to be symmetric. To this end we first describe an extension of the
symmetric diagonal decomposition known as the singular value decomposi-SINGULAR VALUE

DECOMPOSITION tion. We then show in Section 18.3 how this can be used to construct an ap-
proximate version of C. It is beyond the scope of this book to develop a full

Online edition (c)
2009 Cambridge UP

408 18 Matrix decompositions and latent semantic indexing

treatment of the mathematics underlying singular value decompositions; fol-
lowing the statement of Theorem 18.3 we relate the singular value decompo-
sition to the symmetric diagonal decompositions from Section 18.1.1. GivenSYMMETRIC DIAGONAL

DECOMPOSITION C, let U be the M × M matrix whose columns are the orthogonal eigenvec-
tors of CCT , and V be the N × N matrix whose columns are the orthogonal
eigenvectors of CTC. Denote by CT the transpose of a matrix C.

Theorem 18.3. Let r be the rank of the M× N matrix C. Then, there is a singular-
value decomposition (SVD for short) of C of the formSVD

C = UΣVT ,(18.9)

where

1. The eigenvalues λ1, . . . , λr of CCT are the same as the eigenvalues of CTC;

2. For 1 ≤ i ≤ r, let σi =
√

λi, with λi ≥ λi+1. Then the M × N matrix Σ is
composed by setting Σii = σi for 1 ≤ i ≤ r, and zero otherwise.

The values σi are referred to as the singular values of C. It is instructive to
examine the relationship of Theorem 18.3 to Theorem 18.2; we do this rather
than derive the general proof of Theorem 18.3, which is beyond the scope of
this book.

By multiplying Equation (18.9) by its transposed version, we have

CCT = UΣVT VΣUT = UΣ2UT.(18.10)

Note now that in Equation (18.10), the left-hand side is a square symmetric
matrix real-valued matrix, and the right-hand side represents its symmetric
diagonal decomposition as in Theorem 18.2. What does the left-hand side
CCT represent? It is a square matrix with a row and a column correspond-
ing to each of the M terms. The entry (i, j) in the matrix is a measure of the
overlap between the ith and jth terms, based on their co-occurrence in docu-
ments. The precise mathematical meaning depends on the manner in which
C is constructed based on term weighting. Consider the case where C is the
term-document incidence matrix of page 3, illustrated in Figure 1.1. Then the
entry (i, j) in CCT is the number of documents in which both term i and term
j occur.

When writing down the numerical values of the SVD, it is conventional
to represent Σ as an r × r matrix with the singular values on the diagonals,
since all its entries outside this sub-matrix are zeros. Accordingly, it is con-
ventional to omit the rightmost M − r columns of U corresponding to these
omitted rows of Σ; likewise the rightmost N − r columns of V are omitted
since they correspond in VT to the rows that will be multiplied by the N − r
columns of zeros in Σ. This written form of the SVD is sometimes known

Online edition (c)
2009 Cambridge UP

18.2 Term-document matrices and singular value decompositions 409

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r

r

r

r

C = U Σ VT

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

◮ Figure 18.1 Illustration of the singular-value decomposition. In this schematic
illustration of (18.9), we see two cases illustrated. In the top half of the figure, we
have a matrix C for which M > N. The lower half illustrates the case M < N.

as the reduced SVD or truncated SVD and we will encounter it again in Ex-REDUCED SVD

TRUNCATED SVD ercise 18.9. Henceforth, our numerical examples and exercises will use this
reduced form.

✎ Example 18.3: We now illustrate the singular-value decomposition of a 4 × 2 ma-
trix of rank 2; the singular values are Σ11 = 2.236 and Σ22 = 1.

C =

1 −1
0 1
1 0
−1 1

=

−0.632 0.000
0.316 −0.707
−0.316 −0.707
0.632 0.000

(

2.236 0.000
0.000 1.000

) (

−0.707 0.707
−0.707 −0.707

)

.(18.11)

As with the matrix decompositions defined in Section 18.1.1, the singu-
lar value decomposition of a matrix can be computed by a variety of algo-
rithms, many of which have been publicly available software implementa-
tions; pointers to these are given in Section 18.5.

? Exercise 18.4

Let

C =

1 1
0 1
1 0

(18.12)

be the term-document incidence matrix for a collection. Compute the co-occurrence

matrix CCT. What is the interpretation of the diagonal entries of CCT when C is a
term-document incidence matrix?

Online edition (c)
2009 Cambridge UP

410 18 Matrix decompositions and latent semantic indexing

Exercise 18.5

Verify that the SVD of the matrix in Equation (18.12) is

U =

−0.816 0.000
−0.408 −0.707
−0.408 0.707

 , Σ =

(

1.732 0.000
0.000 1.000

)

and VT =

(

−0.707 −0.707
0.707 −0.707

)

,(18.13)

by verifying all of the properties in the statement of Theorem 18.3.

Exercise 18.6

Suppose that C is a binary term-document incidence matrix. What do the entries of

CTC represent?

Exercise 18.7

Let

C =

0 2 1
0 3 0
2 1 0

(18.14)

be a term-document matrix whose entries are term frequencies; thus term 1 occurs 2

times in document 2 and once in document 3. Compute CCT; observe that its entries
are largest where two terms have their most frequent occurrences together in the same
document.

18.3 Low-rank approximations

We next state a matrix approximation problem that at first seems to have
little to do with information retrieval. We describe a solution to this matrix
problem using singular-value decompositions, then develop its application
to information retrieval.

Given an M × N matrix C and a positive integer k, we wish to find an
M × N matrix Ck of rank at most k, so as to minimize the Frobenius norm ofFROBENIUS NORM

the matrix difference X = C − Ck, defined to be

‖X‖F =

√

√

√

√

M

∑
i=1

N

∑
j=1

X2
ij.(18.15)

Thus, the Frobenius norm of X measures the discrepancy between Ck and C;
our goal is to find a matrix Ck that minimizes this discrepancy, while con-
straining Ck to have rank at most k. If r is the rank of C, clearly Cr = C
and the Frobenius norm of the discrepancy is zero in this case. When k is far
smaller than r, we refer to Ck as a low-rank approximation.LOW-RANK

APPROXIMATION The singular value decomposition can be used to solve the low-rank ma-
trix approximation problem. We then derive from it an application to ap-
proximating term-document matrices. We invoke the following three-step
procedure to this end:

Online edition (c)
2009 Cambridge UP

18.3 Low-rank approximations 411

Ck = U Σk VT

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

◮ Figure 18.2 Illustration of low rank approximation using the singular-value de-
composition. The dashed boxes indicate the matrix entries affected by “zeroing out”
the smallest singular values.

1. Given C, construct its SVD in the form shown in (18.9); thus, C = UΣVT.

2. Derive from Σ the matrix Σk formed by replacing by zeros the r − k small-
est singular values on the diagonal of Σ.

3. Compute and output Ck = UΣkVT as the rank-k approximation to C.

The rank of Ck is at most k: this follows from the fact that Σk has at most
k non-zero values. Next, we recall the intuition of Example 18.1: the effect
of small eigenvalues on matrix products is small. Thus, it seems plausible
that replacing these small eigenvalues by zero will not substantially alter the
product, leaving it “close” to C. The following theorem due to Eckart and
Young tells us that, in fact, this procedure yields the matrix of rank k with
the lowest possible Frobenius error.

Theorem 18.4.

min
Z| rank(Z)=k

‖C − Z‖F = ‖C − Ck‖F = σk+1.(18.16)

Recalling that the singular values are in decreasing order σ1 ≥ σ2 ≥ · · ·,
we learn from Theorem 18.4 that Ck is the best rank-k approximation to C,
incurring an error (measured by the Frobenius norm of C−Ck) equal to σk+1.
Thus the larger k is, the smaller this error (and in particular, for k = r, the
error is zero since Σr = Σ; provided r < M, N, then σr+1 = 0 and thus
Cr = C).

To derive further insight into why the process of truncating the smallest
r− k singular values in Σ helps generate a rank-k approximation of low error,
we examine the form of Ck:

Ck = UΣkVT(18.17)

Online edition (c)
2009 Cambridge UP

412 18 Matrix decompositions and latent semantic indexing

= U

σ1 0 0 0 0
0 · · · 0 0 0
0 0 σk 0 0
0 0 0 0 0
0 0 0 0 · · ·

VT(18.18)

=
k

∑
i=1

σi~ui~v
T
i ,(18.19)

where ~ui and ~vi are the ith columns of U and V, respectively. Thus, ~ui~v
T
i is

a rank-1 matrix, so that we have just expressed Ck as the sum of k rank-1
matrices each weighted by a singular value. As i increases, the contribution
of the rank-1 matrix ~ui~v

T
i is weighted by a sequence of shrinking singular

values σi.

? Exercise 18.8

Compute a rank 1 approximation C1 to the matrix C in Example 18.12, using the SVD
as in Exercise 18.13. What is the Frobenius norm of the error of this approximation?

Exercise 18.9

Consider now the computation in Exercise 18.8. Following the schematic in Fig-
ure 18.2, notice that for a rank 1 approximation we have σ1 being a scalar. Denote
by U1 the first column of U and by V1 the first column of V. Show that the rank-1

approximation to C can then be written as U1σ1VT
1 = σ1U1VT

1 .

Exercise 18.10

Exercise 18.9 can be generalized to rank k approximations: we let U′
k and V ′

k denote
the “reduced” matrices formed by retaining only the first k columns of U and V,

respectively. Thus U′
k is an M × k matrix while V ′T

k is a k × N matrix. Then, we have

Ck = U′
kΣ′

kV ′T
k ,(18.20)

where Σ′
k is the square k × k submatrix of Σk with the singular values σ1, . . . , σk on

the diagonal. The primary advantage of using (18.20) is to eliminate a lot of redun-
dant columns of zeros in U and V, thereby explicitly eliminating multiplication by
columns that do not affect the low-rank approximation; this version of the SVD is
sometimes known as the reduced SVD or truncated SVD and is a computationally
simpler representation from which to compute the low rank approximation.

For the matrix C in Example 18.3, write down both Σ2 and Σ′
2.

18.4 Latent semantic indexing

We now discuss the approximation of a term-document matrix C by one of
lower rank using the SVD. The low-rank approximation to C yields a new
representation for each document in the collection. We will cast queries

Online edition (c)
2009 Cambridge UP

18.4 Latent semantic indexing 413

into this low-rank representation as well, enabling us to compute query-
document similarity scores in this low-rank representation. This process is
known as latent semantic indexing (generally abbreviated LSI).LATENT SEMANTIC

INDEXING But first, we motivate such an approximation. Recall the vector space rep-
resentation of documents and queries introduced in Section 6.3 (page 120).
This vector space representation enjoys a number of advantages including
the uniform treatment of queries and documents as vectors, the induced
score computation based on cosine similarity, the ability to weight differ-
ent terms differently, and its extension beyond document retrieval to such
applications as clustering and classification. The vector space representa-
tion suffers, however, from its inability to cope with two classic problems
arising in natural languages: synonymy and polysemy. Synonymy refers to a
case where two different words (say car and automobile) have the same mean-
ing. Because the vector space representation fails to capture the relationship
between synonymous terms such as car and automobile – according each a
separate dimension in the vector space. Consequently the computed simi-

larity ~q · ~d between a query ~q (say, car) and a document ~d containing both car
and automobile underestimates the true similarity that a user would perceive.
Polysemy on the other hand refers to the case where a term such as charge

has multiple meanings, so that the computed similarity ~q · ~d overestimates
the similarity that a user would perceive. Could we use the co-occurrences
of terms (whether, for instance, charge occurs in a document containing steed
versus in a document containing electron) to capture the latent semantic as-
sociations of terms and alleviate these problems?

Even for a collection of modest size, the term-document matrix C is likely
to have several tens of thousand of rows and columns, and a rank in the
tens of thousands as well. In latent semantic indexing (sometimes referred
to as latent semantic analysis (LSA)), we use the SVD to construct a low-rankLSA

approximation Ck to the term-document matrix, for a value of k that is far
smaller than the original rank of C. In the experimental work cited later
in this section, k is generally chosen to be in the low hundreds. We thus
map each row/column (respectively corresponding to a term/document) to
a k-dimensional space; this space is defined by the k principal eigenvectors
(corresponding to the largest eigenvalues) of CCT and CTC. Note that the
matrix Ck is itself still an M × N matrix, irrespective of k.

Next, we use the new k-dimensional LSI representation as we did the orig-
inal representation – to compute similarities between vectors. A query vector
~q is mapped into its representation in the LSI space by the transformation

~qk = Σ−1
k UT

k ~q.(18.21)

Now, we may use cosine similarities as in Section 6.3.1 (page 120) to com-
pute the similarity between a query and a document, between two docu-

Online edition (c)
2009 Cambridge UP

414 18 Matrix decompositions and latent semantic indexing

ments, or between two terms. Note especially that Equation (18.21) does not
in any way depend on ~q being a query; it is simply a vector in the space of
terms. This means that if we have an LSI representation of a collection of
documents, a new document not in the collection can be “folded in” to this
representation using Equation (18.21). This allows us to incrementally add
documents to an LSI representation. Of course, such incremental addition
fails to capture the co-occurrences of the newly added documents (and even
ignores any new terms they contain). As such, the quality of the LSI rep-
resentation will degrade as more documents are added and will eventually
require a recomputation of the LSI representation.

The fidelity of the approximation of Ck to C leads us to hope that the rel-
ative values of cosine similarities are preserved: if a query is close to a doc-
ument in the original space, it remains relatively close in the k-dimensional
space. But this in itself is not sufficiently interesting, especially given that
the sparse query vector ~q turns into a dense query vector ~qk in the low-
dimensional space. This has a significant computational cost, when com-
pared with the cost of processing ~q in its native form.

✎ Example 18.4: Consider the term-document matrix C =

d1 d2 d3 d4 d5 d6

ship 1 0 1 0 0 0
boat 0 1 0 0 0 0
ocean 1 1 0 0 0 0
voyage 1 0 0 1 1 0
trip 0 0 0 1 0 1

Its singular value decomposition is the product of three matrices as below. First we
have U which in this example is:

1 2 3 4 5
ship −0.44 −0.30 0.57 0.58 0.25
boat −0.13 −0.33 −0.59 0.00 0.73
ocean −0.48 −0.51 −0.37 0.00 −0.61
voyage −0.70 0.35 0.15 −0.58 0.16
trip −0.26 0.65 −0.41 0.58 −0.09

When applying the SVD to a term-document matrix, U is known as the SVD term
matrix. The singular values are Σ =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 1.28 0.00 0.00
0.00 0.00 0.00 1.00 0.00
0.00 0.00 0.00 0.00 0.39

Finally we have VT , which in the context of a term-document matrix is known as
the SVD document matrix:

Online edition (c)
2009 Cambridge UP

18.4 Latent semantic indexing 415

d1 d2 d3 d4 d5 d6

1 −0.75 −0.28 −0.20 −0.45 −0.33 −0.12
2 −0.29 −0.53 −0.19 0.63 0.22 0.41
3 0.28 −0.75 0.45 −0.20 0.12 −0.33
4 0.00 0.00 0.58 0.00 −0.58 0.58
5 −0.53 0.29 0.63 0.19 0.41 −0.22

By “zeroing out” all but the two largest singular values of Σ, we obtain Σ2 =

2.16 0.00 0.00 0.00 0.00
0.00 1.59 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

From this, we compute C2 =

d1 d2 d3 d4 d5 d6

1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65
3 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00

Notice that the low-rank approximation, unlike the original matrix C, can have
negative entries.

Examination of C2 and Σ2 in Example 18.4 shows that the last 3 rows of
each of these matrices are populated entirely by zeros. This suggests that
the SVD product UΣVT in Equation (18.18) can be carried out with only two
rows in the representations of Σ2 and VT ; we may then replace these matrices
by their truncated versions Σ′

2 and (V′)T. For instance, the truncated SVD

document matrix (V′)T in this example is:

d1 d2 d3 d4 d5 d6

1 −1.62 −0.60 −0.44 −0.97 −0.70 −0.26
2 −0.46 −0.84 −0.30 1.00 0.35 0.65

Figure 18.3 illustrates the documents in (V′)T in two dimensions. Note
also that C2 is dense relative to C.

We may in general view the low-rank approximation of C by Ck as a con-
strained optimization problem: subject to the constraint that Ck have rank at
most k, we seek a representation of the terms and documents comprising C
with low Frobenius norm for the error C − Ck. When forced to squeeze the
terms/documents down to a k-dimensional space, the SVD should bring to-
gether terms with similar co-occurrences. This intuition suggests, then, that
not only should retrieval quality not suffer too much from the dimension
reduction, but in fact may improve.

Online edition (c)
2009 Cambridge UP

416 18 Matrix decompositions and latent semantic indexing

−0.5−1.0−1.5

0.5

1.0

−0.5

−1.0

dim 2

dim 1

×
d1

×
d2

× d3

×

d4

×
d5

× d6

◮ Figure 18.3 The documents of Example 18.4 reduced to two dimensions in (V ′)T.

Dumais (1993) and Dumais (1995) conducted experiments with LSI on
TREC documents and tasks, using the commonly-used Lanczos algorithm
to compute the SVD. At the time of their work in the early 1990’s, the LSI
computation on tens of thousands of documents took approximately a day
on one machine. On these experiments, they achieved precision at or above
that of the median TREC participant. On about 20% of TREC topics their
system was the top scorer, and reportedly slightly better on average than
standard vector spaces for LSI at about 350 dimensions. Here are some con-
clusions on LSI first suggested by their work, and subsequently verified by
many other experiments.

• The computational cost of the SVD is significant; at the time of this writ-
ing, we know of no successful experiment with over one million docu-
ments. This has been the biggest obstacle to the widespread adoption to
LSI. One approach to this obstacle is to build the LSI representation on a
randomly sampled subset of the documents in the collection, following
which the remaining documents are “folded in” as detailed with Equa-
tion (18.21).

Online edition (c)
2009 Cambridge UP

18.5 References and further reading 417

• As we reduce k, recall tends to increase, as expected.

• Most surprisingly, a value of k in the low hundreds can actually increase
precision on some query benchmarks. This appears to suggest that for a
suitable value of k, LSI addresses some of the challenges of synonymy.

• LSI works best in applications where there is little overlap between queries
and documents.

The experiments also documented some modes where LSI failed to match
the effectiveness of more traditional indexes and score computations. Most
notably (and perhaps obviously), LSI shares two basic drawbacks of vector
space retrieval: there is no good way of expressing negations (find docu-
ments that contain german but not shepherd), and no way of enforcing Boolean
conditions.

LSI can be viewed as soft clustering by interpreting each dimension of theSOFT CLUSTERING

reduced space as a cluster and the value that a document has on that dimen-
sion as its fractional membership in that cluster.

18.5 References and further reading

Strang (1986) provides an excellent introductory overview of matrix decom-
positions including the singular value decomposition. Theorem 18.4 is due
to Eckart and Young (1936). The connection between information retrieval
and low-rank approximations of the term-document matrix was introduced
in Deerwester et al. (1990), with a subsequent survey of results in Berry
et al. (1995). Dumais (1993) and Dumais (1995) describe experiments on
TREC benchmarks giving evidence that at least on some benchmarks, LSI
can produce better precision and recall than standard vector-space retrieval.
http://www.cs.utk.edu/˜ berry/lsi++/ and http://lsi.argreenhouse.com/lsi/LSIpapers.html
offer comprehensive pointers to the literature and software of LSI. Schütze
and Silverstein (1997) evaluate LSI and truncated representations of cen-
troids for efficient K-means clustering (Section 16.4). Bast and Majumdar
(2005) detail the role of the reduced dimension k in LSI and how different
pairs of terms get coalesced together at differing values of k. Applications of
LSI to cross-language information retrieval (where documents in two or moreCROSS-LANGUAGE

INFORMATION

RETRIEVAL
different languages are indexed, and a query posed in one language is ex-
pected to retrieve documents in other languages) are developed in Berry and
Young (1995) and Littman et al. (1998). LSI (referred to as LSA in more gen-
eral settings) has been applied to host of other problems in computer science
ranging from memory modeling to computer vision.

Hofmann (1999a;b) provides an initial probabilistic extension of the basic
latent semantic indexing technique. A more satisfactory formal basis for a

Online edition (c)
2009 Cambridge UP

418 18 Matrix decompositions and latent semantic indexing

DocID Document text
1 hello
2 open house
3 mi casa
4 hola Profesor
5 hola y bienvenido
6 hello and welcome

◮ Figure 18.4 Documents for Exercise 18.11.

Spanish English
mi my
casa house
hola hello
profesor professor
y and
bienvenido welcome

◮ Figure 18.5 Glossary for Exercise 18.11.

probabilistic latent variable model for dimensionality reduction is the Latent
Dirichlet Allocation (LDA) model (Blei et al. 2003), which is generative and
assigns probabilities to documents outside of the training set. This model is
extended to a hierarchical clustering by Rosen-Zvi et al. (2004). Wei and Croft
(2006) present the first large scale evaluation of LDA, finding it to signifi-
cantly outperform the query likelihood model of Section 12.2 (page 242), but
to not perform quite as well as the relevance model mentioned in Section 12.4
(page 250) – but the latter does additional per-query processing unlike LDA.
Teh et al. (2006) generalize further by presenting Hierarchical Dirichlet Pro-
cesses, a probabilistic model which allows a group (for us, a document) to
be drawn from an infinite mixture of latent topics, while still allowing these
topics to be shared across documents.

? Exercise 18.11

Assume you have a set of documents each of which is in either English or in Spanish.
The collection is given in Figure 18.4.

Figure 18.5 gives a glossary relating the Spanish and English words above for your
own information. This glossary is NOT available to the retrieval system:

1. Construct the appropriate term-document matrix C to use for a collection con-
sisting of these documents. For simplicity, use raw term frequencies rather than
normalized tf-idf weights. Make sure to clearly label the dimensions of your ma-
trix.

Online edition (c)
2009 Cambridge UP

18.5 References and further reading 419

2. Write down the matrices U2, Σ′
2 and V2 and from these derive the rank 2 approxi-

mation C2.

3. State succinctly what the (i, j) entry in the matrix CTC represents.

4. State succinctly what the (i, j) entry in the matrix CT
2 C2 represents, and why it

differs from that in CTC.

	Matrix decompositions and latent semantic indexing
	Linear algebra review
	Matrix decompositions

	Term-document matrices and singular value decompositions
	Low-rank approximations
	Latent semantic indexing
	References and further reading

