Statistical Testing of Randomness

Masaryk University in Brno Faculty of Informatics

Jan Krhovják

Basic Idea Behind the Statistical Tests

- Generated random sequences properties as sample drawn from uniform/rectangular distribution
- Particular tests are based on test statistic
 - Expected value of some test statistic is known for the reference distribution
 - Generated random stream is subjected to the same test
 - Obtained value is compared against the expected value
- Boundless number of statistical test can be constructed
 - Some of them are accepted as the de facto standard
 NIST battery consists of 15 such tests (e.g. frequency test)
 - Generators that pass such tests are considered "good"
 Absolute majority of generated sequences must pass

Statistical Hypothesis Testing – Basics

- **D** Null hypothesis (H_0) denotes test hypothesis
 - H_0 = the sequence being tested is random
- Alternative hypothesis (H_A) negates H₀
 - H_A = the sequence is not random
- Each test is based on some test statistic (TS)
 - TS is quantity calculated from our sample data
 - TS is random variable/vector obtained from transformation of random selection
 - TS have mostly standard normal or chi-square (χ²) as reference distributions
- After each applied test must be derived conclusion that rejects or not rejects null hypothesis

Statistical Hypothesis Testing – Errors

Conclusion generation procedure and errors

	Conclusion			
Real situation	H ₀ is not rejected	H ₀ is rejected		
H _o is true	good decision	type I error		
H ₀ is not true	type II error	good decision		

- **D** Probability of type I error (α) = level of significance
 - Set prior the test; typically between 0.0001 and 0.01
 - Nonrandom sequence, produced by "good" generator
- **D** Probability of type II error (β)
 - Random sequence, produced by "bad" generator
- $\hfill \alpha$ and β are related to each other and to sample size

Statistical Hypothesis Testing – Core

- Critical value threshold between rejection and non-rejection regions
- Two (quite similar) ways of testing
 - $\alpha = >$ critical value; test statistic = > value; compare
 - Test statistic => P-value; α; compare

NIST battery uses P-values

- $P \le \alpha = > reject H_0$
- $P > \alpha = >$ do not reject H_0

Level of Significance (non-directional test)

df	.05	.025	.010	.005	.001
4	9.49	11.14	13.28	14.86	18.47

Frequency (Monobit) Test

- Basic idea
 - Number of zeros and ones expected in the truly random sequence should be the same

Description

- Length of the bit string: n
- Sequence of bits: $\varepsilon = \varepsilon_1, \varepsilon_2, ..., \varepsilon_n$
- Test statistic: $s_{obs} = |S_n| / \sqrt{n}$
 - $\square S_n = X_1 + X_2 + \dots + X_n$, where $X_i = 2\varepsilon_i 1$ (conversion to ±1)

The absolute value => half normal distribution

- Example (for n = 10)
 - $\epsilon = 1011010101; S_n = 1-1+1+1-1+1-1+1-1+1 = 2$
 - $s_{obs} = |2| / \sqrt{10} = 0.632455532$; P-value = 0.5271
 - For $\alpha = 0.01$: 0.5271 > 0.01 => ϵ "is random"

Frequency Test within a Block

- Basic idea
 - Number of zeros and ones expected in a M-bit block of truly random sequence should be the same
 - M = 1 => Frequency (Monobit) Test.
- Description
 - Number of non-overlapping blocks: N = [n/M]
 - Proportion of ones in each M-bit block: π
 - Test statistic: $\chi^2_{obs} = 4M\Sigma(\pi_i 1/2)^2$, where $1 \le i \le N$
- **\square** Example (for n = 10 and M = 3)
 - $\epsilon = 0110011010; N_1 = 011, N_2 = 001, N_3 = 101$
 - $\pi_1 = 2/3$, $\pi_2 = 1/3$, $\pi_3 = 1/3$; $\chi^2_{obs} = 1$; P-value = 0.8012
 - For $\alpha = 0.01$: 0.8012 > 0.01 => ϵ "is random"

Runs Test

Basic idea

- A run is the uninterrupted sequence of identical bits
- Number of runs determines the speed of oscillation

Description

- Proportion of ones: $\pi = (\Sigma \varepsilon_i)/n$
- Test statistic: χ²_{obs} = Σr(k) + 1, where 1 ≤ k ≤ n−1
 If ε_k = ε_{k+1}, then r(k) = 0, otherwise r(k) = 1

Example (for n = 10)

- $\varepsilon = 1001101011; \pi = 6/10 = 3/5$
- $\chi^2_{obs} = (1+0+1+0+1+1+1+0)+1 = 7$
- P-value = 0.1472
- For $\alpha = 0.01$: 0.1472 > 0.01 => ϵ "is random"

Cumulative Sums Test

- Basic idea
 - A cumulative sums of the adjusted (-1, +1) digits in the sequence should be near zero
- Description
 - Normalizing: $X_i = 2\varepsilon_i 1$ (conversion to ± 1)
 - Partial sums of successively larger subsequences
 - Forward: $S_1 = X_1$; $S_2 = X_1 + X_2$; ... $S_n = X_1 + X_2 + ... + X_n$
 - **Backward:** $S_1 = X_n$; $S_2 = X_n + X_{n-1}$; ... $S_n = X_n + X_{n-1} + ... + X_1$
 - Test statistic (normal distribution): $s_{obs} = max_{1 \le k \le n} |S_k|$
- **\square** Example (for n = 10)
 - $\varepsilon = 1011010111; X = 1, -1, 1, 1, -1, 1, -1, 1, 1, 1$
 - S(F) = 1,0,1,2,1,2,1,2,3,4; $s_{obs} = 4$; P-value = 0.4116
 - For $\alpha = 0.01$: 0.4116 > 0.01 => ϵ "is random"

NIST Testing Strategy

- 1. Select (pseudo) random number generator
- 2. Generate sequences
 - a) Generate set of sequences or one long sequence
 - i. Divide the long sequence to set of subsequences
- 3. Execute statistical tests
 - a) Select the statistical tests
 - b) Select the relevant input parameters
- 4. Examine (and analyse) the P-valuesa) For fixed α a certain percentage are expected to failure
- 5. Assign Pass/Fail

Interpretation of Empirical Results

Three scenarios may occur when analysing P-values

- The analysis indicate a deviation from randomness
- The analysis indicate no deviation from randomness
- The analysis is inconclusive
- NIST has adopted two approaches
 - Examination of the proportion of sequences that pass the statistical test
 - Check for uniformity of the distribution of P-values
- If either of these approaches fails => new experiments with different sequences
 - Statistical anomaly? Clear evidence of non-randomness?

Proportion of Sequences Passing a Test

Example

- 1000 binary sequences; $\alpha = 0.01$
- 996 sequences with P-values > 0.01
- Proportion is 996/1000 = 0.9960
- The range of acceptable proportions
 - Determined by confidence interval
 - $p'\pm 3\cdot\sqrt{(p'\cdot(1-p')/n)}$, where $p' = 1 \alpha$; n is sample size
 - If proportion falls outside => data are non-random
- Threshold is the lower bound
 - For n=100 and α = 0.01 it is 0.96015
 - For n=1000 and α = 0.01 it is 0.98056

Uniform Distribution of P-values

- Interval [0,1] divided to 10 subintervals
- Visually may be illustrated by using histogram
 - P-values within each subinterval are counted
- **D** Chi-square (χ^2) goodness-of-fit test
 - Level of significance $\alpha = 0.0001$
 - Test statistic: $\chi^2 = \Sigma (o_i e_i)^2 / e_i$
 - o_i is observed number of P-values in ith subinterval
 - e_i is expected number of P-values in ith subinterval
 - Sample size multiplied by probability of occurrence in each subinterval (i.e. for sample size n it is n/10)
 - P_T -value is calculated and compared to α
 - \square P_T-value > 0.0001 => sequence is uniformly distributed

Conclusion

- Randomness testing is based on statistical hypothesis testing
- Each statistical test is based on some function of data (called the test statistic)
- There exists many statistical tests
 - No set of such tests can be considered as complete
 - New testable statistical anomaly can be ever found
- Correct interpretation of empirical results should be very tricky