
Secure Hardware and
PIN Recovery Attacks

Masaryk University in Brno
Faculty of Informatics

Jan Krhovják
Vašek Matyáš

2

Roadmap
Introduction

The need of secure HW
Basic terminology
Architecture

Security categories and common attacks
Physical security
Logical security
Environmental security
Operational security

PIN recovery attacks
Decimalisation Table Attacks
ANSI X9.8 Attacks
Basic idea of Collision Attack

3

Why secure hardware

Ensure (fast) secure communication and secure
storage (of extremely critical data)

Sensitive data (e.g. financial data, cryptographic keys)
stored on hard disk or in memory are vulnerable

Adversary (with sufficient rights) can access them
Data in memory can be paged out to disk
Data in a hard disk can be backed up in unprotected storage
device

4

Where secure hardware

Critical applications have always been banking
transactions

Primarily due to need for secure storage
In 70’s VISA formed worldwide banking ATM network
Banks can’t trust themselves, their employers or
customers
This led to evolution of so-called Hardware Security
Modules and financial data networks (banking machines,
sales terminals, etc.)

Certification authorities
Primarily due to need for accelerating crypto operations
Increase in the last decade for public-key cryptography
support

5

Basic terminology

Hardware security modules (HSM)
Coprocessors
Accelerators
Cryptographic smartcards

Host devices, API
Attacks on HSMs

Physical attacks
Side channel attacks
Attacks on and with API
We are not interested in any form of DoS attacks!

Top-level crypto keys – always stored inside HSM
Other keys can be stored outside HSM encrypted by these

6

Architecture of cryptographic
coprocessors/accelerators

Come out from classical von Neumann architecture
+ Mechanisms of physical protection

Steel shielding, epoxy resin, various sensors
+ Generators of true random numbers

Generating cryptographic material (e.g. keys, padding values)
Algorithmic counter-measurements against side channel attacks

+ Special coprocessors
Accelerating both symmetric and asymmetric crypto

+ Non-Volatile RAM (NVRAM) => retains its content
Connected to a constant power source or battery
Storing sensitive data (e.g. master key)

− I/O circuits

Easy verification

7

Architecture of cryptographic
smartcards

Similar building blocks as coprocessors/accelerators
Everything is inside a single integrated chip

Problems with limited silicon area => only small size of RAM
There is only limited power supply in mobile devices

New (U)SIM cards supports DES, RSA and EC cryptography
Their power consumption must be very small

Operating system is stored in ROM, applications in EEPROM

Division according to the communication interface
Contact – contain contact pads =>
Contactless – contain an embedded antenna
Combined – single chip with both previous interfaces
Hybrid – more chips (and interfaces) on single card

Super smartcard =>

8

Security categories

Physical security
Technologies used to safeguard information against physical attack
Barrier placed around a computing system to deter unauthorized
physical access to the computing system itself

Tamper: evidence, resistance, detection, response (more on the next slide)

Logical security
The mechanisms by which operating systems and other software
prevent unauthorized access to data

Access control, algorithms, protocols

Environmental security
The protection the system itself

Access policies – guards, cameras …

Operational security

Cryptographic
coprocessors

Communication
interface

Operational
security

Environmental security Border of logical
security

CPU

Memory Non-volatile
memory

Random number
generator

 Border of physical security

Tamper detection sensors

9

Physical security

Tampering – the unauthorized modification of device
Tamper evidence

The evidence is left when tampering occurs
Chemical or mechanical mechanisms

Tamper resistance
Only to certain level!
Chemically resistant material, shielding

Tamper detection
Special electronics circuits (i.e. sensors)

Tamper response
Detection => destroying all sensitive information
Erasing/rewriting/memory destruction

10

Physical attacks

Invasive attacks (passive or active)
Direct access to embedded components (ALU, bus, memory …)

Micro probing – observing, manipulating or interfering the device/chip
Reverse engineering – the process of analyzing an existing system to
identify its components and their interrelationships
Memory readout techniques (e.g. freezing and probing)

Freezing by liquid nitrogen can increase data retention time in RAM to hours

They require a lot of time, knowledge and specialized equipment

Semi-invasive attacks (only on integrated chip cards)
Depackaging the chip, but the passivation layer remains

Utilizing UV light, X-rays, laser, electromagnetic field, local heating
Optical fault induction – illumination of SRAM can change its content

They require only low-cost equipment
Easy reproduction of prepared attack for the same HW, FW, SW

11

Logical security

Access control
The assumption is existence of trusted environment

Cryptographic algorithm
Mathematical functions – only keys should be secret
Ensuring confidentiality, integrity, authentication …

Cryptographic protocols
Distributed algorithms – sets of three to ten messages
Their single steps are created by calling of API functions

API is the only one (exactly defined) communication interface between
HSM and the host application
Economy prevails security – too many supported standards in APIs
API of HSM thus contains hundreds functions with many parameters
=> very big space for errors and formation of attacks

12

Logical attacks

Non-invasive attacks
No physical damaging of device
Monitoring/eavesdropping

TEMPEST attacks
Electronic devices emits electromagnetic radiation
Reconstructing data from electromagnetic radiation

Side channel attacks
Timing analysis – measuring the time of cryptographic operations
with respect to input data and algorithm implementation
Power analysis – measuring the fluctuations in the consumed
current when the device is performing specific operations
Fault analysis – generating of glitches (in voltage, clock signal …)

Software attacks on and with API
No specialized equipment needed
They are very fast – taking only a couple of seconds

13

Environmental security

The asset is the device itself (not the stored information)
At least interesting aspect of security from analysis perspective
The goal is to limit attacker’s opportunity to initiate an attack by
creating layers of hindrance (e.g. access policies, controls)
Not necessarily applicable to HSMs operating in hostile
environments (they are typically highly physically secured)

The exception are the administrators of HSMs (i.e. security officers)
They have a certain amount of power over a HSMs that can be misused
To prevent single security officer from compromising the system, the
principle of dual control policy is enforced

At least two security officers (e.g. from different banks) must agree to
change the device configuration (e.g. installing/changing of keys)
At least two security officers must collude to circumvent the security

Administrative/procedural controls should be the part of security
policy whenever is it possible

14

Operational security

HSM can be operated only trough functions of API
With API functions can programmer interact by keyboard
Some devices allows the user to execute limited number of
exactly defined API commands (e.g. ATMs by PINpad/keypad)

The security risks related to proper manipulation with
cash machines and their interfaces are growing

The user should be able to recognize the fake
Payment terminal, ATM, card reader =>

The user should know what he do with keypad
The user should operate cash machine alone
The user should be aware of latest attacks as

Transparent overlay of keypad, Lebanese loop =>
The user should safeguard his PIN

15

Attacks on and with API

Examples of commonly used API
Public Key Cryptographic Standard (PKCS) #11
Common Cryptographic Architecture (CCA)

Three major problems of cryptographic API
Insufficient ensuring integrity of keys

Problems with backward compatibility (e.g. support of DES or RC2)
Meet in the Middle Attack, 3DES Key Binding Attack, Conjuring Keys …

Insufficient checking of function parameters
Banking API and working with PINs => PIN recovery attacks
Decimalisation Table Attacks, ANSI X9.8 Attacks …

Insufficient enforcing of security policy
PKCS #11 – only set of functions, designed for one-user tokens

16

Example of attack on API:
Conjuring Keys From Nowhere

Unauthorized generating of keys stored outside HSM
Random value of encrypted key is given to HSM

Older HSMs used this technique to legitimate key generation
Today is it considered as attack

After decryption is the value of key also random
In the case of DES has with probability 1/28 good parity

DES key is stored with odd parity – LSB in each octet is parity bit
In the case of two-keyed 3DES-2 has a good parity with probability
1/216 (and this is still achievable)

These keys can served to form more complicated attacks

The defense lies in carefully designed key formats
=> e.g. add before encryption checksum + timestamp
Next part of presentation: PIN recovery attacks

17

PIN Generation and Verification

Terminology
PIN, Personal Account Number (PAN)
Clear PIN block (CPB); Encrypted PIN block (EPB)

Techniques of PIN generation and verification
IBM 3624 and IBM 3624 Offset

Based on validation data (e.g. account no. – PAN)
Validation data encrypted with PIN derivation key
The result truncated, decimalised => PIN
IBM 3624 Offset – decimalised result called IPIN (Intermediate PIN)
Customer selects PIN: Offset = PIN – IPIN (digits mod 10)

Verification process is the same
result is compared with decrypted EPB (encrypted PIN from cash-
machine)

18

PIN Verification Function

Simplified example of verification function and its
parameters:

1. PIN (CPB) encryption/decryption key
2. PIN derivation key – for PIN generation process
3. PIN-block format
4. validation data – for PIN extraction from EPB (e.g. PAN)
5. encrypted PIN-block
6. verification method
7. data array – contains decimalisation table, validation data

and offset

Clear PIN is not allowed to be a parameter of
verification function!

19

PIN Verification – IBM 3624 Offset

Inputs – (4-digit PIN)
PIN in EPB is 7216 (delivered by ATM)
Public offset (typically on card) – 4344

Decimalisation table – 0123 4567 8901 2789

Personal Account Number (PAN) is
4556 2385 7753 2239

Verification process
PAN is encrypted => 3F7C 2201 00CA 8AB3
Truncated to four digits => 3F7C
Decimalised according to the table => 3972
Added offset 4344, generated PIN => 7216
Decrypt EPB and compare with the correct PIN

20

Decimalisation Table Attacks I

Attacks utilising known PINs
Assume four-digit PINs and offset 0000
If decim. table (DT) is 0000 0000 0000 0000

generated PIN is always 0000
PIN generation function with zero DT outputs EPB with PIN
0000
Let Dorig = 0123 4567 8901 2345 is original DT
Di is a zero DT with “1” where Dorig has i
e.g. D5 = 0000 0100 0000 0001
The attacker calls 10x verification function with EPB of 0000
PIN and with D0 to D9

If i is not in PIN, the “1” will not be used and verification
against 0000 will be successful

21

Decimalisation Table Attacks II

Results
All PIN digits are discovered
PIN space reduced from 104 to 36 (worst case)

Extended attack without known PINs
Assume, that we obtain customers EPB with correct PIN
Di are DTs containing i –1 on positions, where Dorig has i e.g.
D5 = 0123 4467 8901 2344
Verification function is called with intercepted EPB and Di

Position of PIN digits is discovered by using offset with digits
incremented individually by “1”

Bold “4” changes to “5”

22

DT Attacks – Example

Let PIN in EPB be 1492, offset is 1234
We want to find position of “2”
Verification function with D2 results in 1491!=1492
=> fails
Offsets 2234, 1334, 1244, 1235 increment resulting
generated PIN (2491,1591,…)
Eventually the verification is successful with the last
offset => 2 is the last digit

To determine four-digit PIN with different digits is
needed at most 6 calls of verification function

23

Clear PIN Blocks

Code Book Attacks and PIN-block formats
=> clear PIN blocks (CPB)

ECI-2 format for 4 digits PINs
ECI-2 CPB = pppprrrrrrrrrrrr

Visa-3 format for 4–12 digits PINs
Visa-3 CPB = ppppFxxxxxxxxxxx

ANSI X9.8 format for 4–12 digits PINs
P1 = ZlppppffffffffFF
P2 = ZZZZaaaaaaaaaaaa
ANSI X9.8 CPB = P1 xor P2

p – PIN digit
r – random digit
x – arbitrary,

all the same
F – 0xF digit

Z – 0x0 digit
l – PIN length
f – either “p” of “F”
a – PAN digit

24

ANSI X9.8 Attacks I

Attacking PAN with translation & verification
functions – input parameters (key K, EPB, PAN)

Functions decrypt EPB & extract PIN
CPB xor P2 = 04ppppFFFFFFFFFF => PIN = pppp

Extraction tests PIN digits to be 0–9!

If a digit of PAN is modified by x
P2’ = P2 xor 0000x00000000000
CPB xor P2’= 04ppppFFFFFFFFFF xor

xor 0000x00000000000
it means that PIN = pppp xor 00x0
If p xor x < 10 function ends successfully, otherwise
function fails

25

ANSI X9.8 Attacks II
The sequence of (un)successful function calls can be
used by attacker to identify p as a digit from set
{p, p xor 1}

For example if PIN digit is 8 or 9, then this sequence will
be PPFFFFFFPPPPPPPP, where P is PASS, F is FAIL
and x is incremented from 0 to 15

Only last two PIN digits can be attacked

PIN space is reduced from 104 to 400

This attack can be extended to all PIN digits

26

ANSI X9.8 Attacks III

Attack against PIN translation functions
Input/output PIN-block format can be modified
Consider ANSI X9.8 EPB with null PAN (wlog)

Attacker specifies input format as VISA-3 and output as ANSI X9.8
PIN is then extracted from 04ppppFFFFFFFFFF as 04pppp
04pppp is formatted into ANSI X9.8 CPB as 0604ppppFFFFFFFF
and encrypted

Attacker has EPB with six-digit PIN and can use previous
attack to determine all 4 digits of original PIN

PIN space is reduced from 104 to 16

27

ANSI X9.8 Attacks IV

PIN can be also determined exactly
The attacker needs to be able to modify PAN

This is impossible if input format is Visa-3
PAN modification must be done earlier (in EPB)

Let’s modify second digit of PAN by x
Input format is VISA-3 and output ANSI X9.8
PIN is decrypted from ANSI X9.8 EPB and extracted as
04pppp xor 00000x

If x = p xor F (i.e. x xor p = F) then PIN is extracted
as 04ppp and formatted into ANSI X9.8
This can be detected by/during translation back to
VISA-3 format EPB

28

ANSI X9.8 Attacks – Collision
Attack (Basic Idea)

Assuming well designed API (e.g. DT is fixed)
Attack allows to partially identify last two PIN digits

Basic idea (simple example with one-digit PIN&PAN)
PAN PIN xor EPB PAN PIN xor EPB
0 0 0 21A0 7 0 7 2F2C
0 1 1 73D2 7 1 6 345A
0 2 2 536A 7 2 5 0321
0 3 3 FA2A 7 3 4 FF3A
0 4 4 FF3A 7 4 3 FA2A
0 5 5 0321 7 5 2 536A
0 6 6 345A 7 6 1 73D2
0 7 7 2F2C 7 7 0 21A0
0 8 8 4D0D 7 8 F AC42
0 9 9 21CC 7 9 E 9A91

Attacker knows for each PAN only the set of EPBs

29

Conclusions

Secure hardware
Limited functionality – easier to verify – better security
(than multipurpose hardware)
Dedicated circuits – faster than software implementation

Secure hardware doesn’t guarantee absolute security
Any secure hardware can be reengineered
Main reason of its usage is increased cost of attack

Bad design and integration imply attacks
The security of current generation banking APIs is really bad
with respect to insider attacks
Number of (banking) standards implemented ensures
interoperability but also causes errors

	Secure Hardware and�PIN Recovery Attacks
	Roadmap
	Why secure hardware
	Where secure hardware
	Basic terminology
	Architecture of cryptographic coprocessors/accelerators
	Architecture of cryptographic �smartcards
	Security categories
	Physical security
	Physical attacks
	Logical security
	Logical attacks
	Environmental security
	Operational security
	Attacks on and with API
	Example of attack on API: �Conjuring Keys From Nowhere
	PIN Generation and Verification
	PIN Verification Function
	PIN Verification – IBM 3624 Offset
	Decimalisation Table Attacks I
	Decimalisation Table Attacks II
	DT Attacks – Example
	Clear PIN Blocks
	ANSI X9.8 Attacks I
	ANSI X9.8 Attacks II
	ANSI X9.8 Attacks III
	ANSI X9.8 Attacks IV
	ANSI X9.8 Attacks – Collision Attack (Basic Idea)
	Conclusions

