
The Onion Routing (TOR) –
Cryptography and Anonymity 
in routing

Marek Kumpošt
xkumpost@fi.muni.cz



Literature

"Tor: The Second-Generation Onion Router", in 
Proceedings of the 13th USENIX Security 
Symposium, August 2004. (http://www.onion-
router.net/Publications/tor-design.pdf)

"Anonymous Connections and Onion Routing," IEEE 
Journal on Selected Areas in Communication 
Special Issue on Copyright and Privacy Protection, 
1998. (http://www.onion-
router.net/Publications/JSAC-1998.pdf)

Onion Routing Home Page – www.onion-router.net



Motivation for anonymity

privacy protection
user’s, location, transaction anonymity
anonymity is one part of systems for privacy 
protection

pseudonymity
unlinkability
unobservability

when we need to ensure anonymity?
information about health
electronic elections
…



Mix systems

network traffic is observable and data is 
connected to its originator
mixes are routers that changes data flow

input can not be mapped to output
content of a message is secured
data flow is changed (delays, messages are 
shuffled, dummy traffic)

anonymous communication networks
mix networks
peer-to-peer systems



Types of mixes

Chaum’s threshold mix (1981)
collects N messages
shuffles them
sends messages (flush)

1
2
3
4
5

?

?
?
?

?MIX

Connections between
input and output are

destroyed



Types of mixes (2)

depends on message processing algorithm
pool mixes (extension of the original design)

messages are stored in local memory (pool)
messages are processed in batches
different conditions for sending messages
different approaches for selecting messages from pool

stop-and-go mixes
messages are delayed by the mix
problems with low data flow in the network



Mixminion

www.mixminion.net
for sending anonymous emails

user specify a route through the mix network
SURB – Single Use Reply Block

used if answering to an anoymous email
limited validity
routing is encrypted in SURB
replies can not be distinguished from normal 
messages



Introduction to Onion Routing

What is Onion Routing?
system for private communication over a public 
network
system for providing bi-directional anonymous 
connection
provides near real-time anonymous connection for 
various services in the Internet
freely available system

TOR
second-generation Onion Routing system



Overview of Onion Routing

Why do we need onion routing?
encrypted messages can still be tracked, revealing who is 
talking to whom – care of message context, not only 
content protection (traffic analysis)
users may not wish to disclose their identity to the rest of 
the world
there is a need for a protocol that can relay traffic from 
various Internet services anonymously without modifying 
these services (SSH, RLogin, web browsing, Virtual Private 
Networks, …)

it works as a proxy



Remove identifying information

filtering data before sending it to network
removing all identifying information about the 
originator of the data
attacker is unable to learn anything about the 
participants of the communication
traffic analysis is not possible

data about identity must be passed as 
ordinary data through the anonymous 
connection



Message processing scheme

Alice OR1 OR2 Bob

msg

msg

msgmsg

decryption

msg

decryption

msg



Data processing (1)

Through a sequence of Onion Routers (OR) 
instead of direct connection to the responder

ORs network allows anonymous connection 
between client and server over a public network
each OR knows only its predecessor and 
successor
ORs in the network are connected by long-
standing (permanent) connections
communication route is strictly defined at 
connection setup



Data processing (2) – proxies

OR network is accessed through series of 
proxies

application makes a connection to a application 
proxy
application proxy transforms the messages to a 
specific form that is accepted by OR network
application proxy makes a connection to Onion 
Proxy which establish a communication circuit
the circuit can then carry users data



Data processing (3) – circuit

proxy constructs layered data structure –
onion and sends it to the network (PK 
cryptography is used in this step)
each OR peels off one layer of the message, 
takes keys seed material for generating 
symmetric key, and pass the massage to the 
next hop
last onion router forwards data to the 
„responder“
the connection is now established



Data processing (4)

every OR keeps track of received onions until 
they expire

payload of expired onions is not forwarded
they cannot be used to uncover the route 
information

data are encrypted using stream ciphers
data will look differently each time it passes 
through a properly operating OR



TOR

TOR is a circuit-based low-latency anonymous 
communication service

TOR is a second-generation Onion Routing system
the original Onion Routing protocol design has not been 
updated for years

TOR provides following improvements over the old 
Onion routing design

perfect forward secrecy
separation of „protocol cleaning“ from anonymity
many TCP streams can share one circuit
leaky-pipe circuit topology
congestion control



TOR enhancements

TOR provides following improvements over 
the old Onion routing design

directory servers
variable exit policies
end-to-end integrity checking
rendezvous points and hidden services
does not require OS kernel patches
TOR is also available under a free license



Perfect forward secrecy

in the original OR design, a single hostile node 
could record traffic, attacker then should
compromise successive nodes and force them to 
decrypt that traffic
TOR uses telescopic path-building design instead of 
single multiply encrypted onions

initiator negotiates session keys with each node in the 
circuit path
once these keys are deleted, subsequently compromised 
nodes cannot decrypt old traffic

the whole process of building circuits is now more 
reliable



Separation of “protocol cleaning”

original design required separate application 
proxy for each supported application protocol

most of them were never written
TOR uses the standard SOCKS proxy 
interface

supports most TCP-based programs without 
modification



TCP streams circuit sharing
Leaky-pipe circuit topology

many TCP streams can share one circuit
original OR built a separate circuit for each application
many public key operations for every request
building many communication circuits
in TOR design many streams can share one circuit

leaky-pipe circuit topology
senders can direct traffic to any node in the circuit
allows traffic to exit the circuit from the middle
attacker can catch nothing if observing the end of circuit



Directory servers
Variable exit policies

directory servers
old design – flooding state information through the net
TOR – some more trusted nodes act as directory servers 
(DS)
DSs provide information about known routers and their 
current state (users get this information via HTTP)

variable exit policies
each router advertise policy describing the hosts and ports 
to which it will connect
user can decide which node will be the exit node



End-to-end integrity checking
Rendezvous points and hidden services

original Onion Routing did no integrity checking
nodes on the circuit could change the data (tagging 
attacks)
TOR – verifies data integrity before it leaves the network
the integrity depends on all traffic between A and B

Rendezvous points and hidden services
for providing responder anonymity
old design used long-lived “reply onions“
TOR – client negotiates rendezvous point to connect with 
hidden servers
prevents DoS attacks on hidden servers



TOR design goals

deployability – system will be deployed in the real 
world

not expensive to run (e.g. bandwidth requirement)
not be difficult or expensive to implement (by requiring OS 
kernel modifications)

usability
hard-to-use system => only few users => less anonymity
anonymity systems hide users among users
usability is therefore a security requirement
not require modifying applications, no delays, easily 
implementable on all common platforms



TOR design goals (2)

flexibility
protocol must be flexible and well-specified

simple design
the protocol’s design and security parameters 
must be well-understood
TOR aims to deploy a simple and stable system 
that integrates the best accepted approaches to 
protecting anonymity



The TOR design

ORs run as a normal user-level process without any 
special privileges
each OR maintains a TLS connection to every other 
onion router
each user runs local Onion Proxy (OP)

establish circuits, handles connection from user appl.
each OR maintains long-term identity key (PK) and 
a short-term onion key (PK)

ID key – for signing the ORs router descriptor (a summary 
of its keys, bandwidth, exit policy,…)
OK – for decrypting set up circuit requests



The TOR design – cells

traffic passes in fixed-size cells
cell – 512 bytes (header and payload)

header includes circID and command
control cells (interpreted by node), relay cells (end-to-end 
data)
control cells commands are:

padding (to keepalive the connection)
create or created (used to set up a new circuit)
destroy (to destroy a circuit)

relay cells contains streamID, end-to-end checksum, length 
of the payload and a relay command



The TOR design – cells (2)

CircID CMD DATA
2 1 509 bytes

CircID Relay DATA

2 1 498
StreamID Digest Len CMD

2 6 2 1



The TOR design – circuit



Rendezvous point – main idea

used for location-hidden services (responder anonymity)
allows responder to offer a service without revealing his IP 
address
protects against DoS attacks

attackers are forced to attack the OR network
the main goals are:

access-control – filtering the incoming traffic
robustness – maintain long-term pseudonymous identity even 
in the case of router failure (migration)
application-transparency – users must run special software 
but they don’t have to modify their applications



Rendezvous point – main idea (2)

responder is allowed to advertise several onion routers 
– introduction points as contact points
sender chooses an OR as his rendezvous point
sender connect to one of responder’s introduction 
point informs him about rendezvous point
wait for responder to connect to the rendezvous point

responder can respond to some requests and 
ignore others

sender and recipient can communicate via OR 
network



Any questions?


	The Onion Routing (TOR) – Cryptography and Anonymity in routing
	Literature
	Motivation for anonymity
	Mix systems
	Types of mixes
	Types of mixes (2)
	Mixminion
	Introduction to Onion Routing
	Overview of Onion Routing
	Remove identifying information
	Message processing scheme
	Data processing (1)
	Data processing (2) – proxies
	Data processing (3) – circuit
	Data processing (4)
	TOR
	TOR enhancements
	Perfect forward secrecy
	Separation of “protocol cleaning”
	TCP streams circuit sharing�Leaky-pipe circuit topology
	Directory servers�Variable exit policies
	End-to-end integrity checking�Rendezvous points and hidden services
	TOR design goals
	TOR design goals (2)
	The TOR design
	The TOR design – cells
	The TOR design – cells (2)
	The TOR design – circuit
	Rendezvous point – main idea
	Rendezvous point – main idea (2)

