Modulární mozaikové vzory

Modul je vytvářen spojením několika dlaždic s jednoduchým motivem.

Dlaždice Trucheta má extrémně jednoduchý motiv a přesto vytváří bohaté vzory.

Takové vzory jsou známé z různých částí světa již z doby předhistorické (viz Jablan).

Hledáme vhodný algoritmus pro generování modulů.

V roce 1976 přichází S. H. Cullinane s teorií kosočtverce, který zajímal pro svoji bohatost symetrií již Platona.

Platonův kosočtverec

Teorie kosočtverce se stává základem pro řešení řady úloh.

Steven H. Cullinane

1

3

***** ******** 880XXXX0 00 X X X X X

O 1976 by S

Generování modulů transpozicí

Základem je Platonův kosočtverec, resp. matice 2x2 dlaždic s diagonálním motivem

D 2x2

Permutace transpozicí čtverců vvtvoří 24 modulů.

Mozaiky konstruované geometrickou substitucí

Geometrickou substitucí budeme rozumět nahrazení geometrického primitivního prvku

Algoritmy geometrických substitucí

(A. Glassner a další)

<u>Substituce klonováním</u> nahrazuje vstupní geometrický objekt (př. *n*-úhelník) jedním nebo více objekty - primitivy, které jsou geometricky podobné vstupnímu objektu.

<u>Substituce mutací</u> nahrazuje vstupní objekt geometrickým objektem jiného typu. Nový (výstupní) tvar není nutně podobný vstupnímu tvaru.

Substituční pravidla (primitivy)

Substituční pravidla určují geometrii výstupního mnohoúhelníka P' jako funkci vstupního mnohoúhelníka P. Současně definují "mrtvé a živé oblasti" a orientaci mapování.

Mapování primitiva do cílového trojúhelníku i s trojúhelníky obsaženými v primitivu.

Algoritmy - funkce pro konstrukci substitučních pravidel

Konstrukce vycházejí z vrcholů cílového n-úhelníka:

 $\label{eq:prokazdy} \mbox{Prokazdy vrchol V}_i \mbox{ existuje jeho předchůdce V}_{i\text{-}1$ a následník V}_{i\text{+}1$,podle dohodnutého pořadí.}$

Vytvoření nového vrcholu na hraně (resp. na straně ve 2D) - funkce EV()

Funkce EV (edge-vertex) určuje umístění nového vrcholu V_{αi} na hraně n-úhelníka

na základě dvou sousedních vrcholů V_i , V_{i+1} a koeficientu α .

Koeficient α je skalární hodnota v intervalu <0, 1>.

Vstup : vrchol V_i, vrchol V_{i+1}, koeficient α.

Výstup : nový vrchol V_{ai}

jinými geometrickými primitivy.

 $V_{\alpha i} = EV(V_i, V_{i+1}, \alpha)$

 $\mathsf{EV}(\mathsf{V}_i,\,\mathsf{V}_{i+1},\,\alpha)=(\alpha\mathsf{V}_{i+1})+((1-\alpha)\mathsf{V}_i)$

Př. Pro α = 0,5 EV(V_i, V_{i+1}, 0,5) = (0,5V_{i+1}) + ((1 − 0,5)V_i) \Rightarrow nový vrchol půlí hranu.

5

V_{i+1}

 V_{α_i}

Při definici n-úhelníků pomocí funkce EV bude záležet na volbě pořadí vrcholů (první dva parametry funkce).

 $EV(V_i, V_{i+1}, \alpha) = (\alpha V_{i+1}) + ((1 - \alpha)V_i)$

Příklad: α = 0.25, 0,5, 0,75

Namapování primitiva do cílového n-úhelníka bude závislé na určené orientaci hran.

Příklad orientace n-úhelníků v primitivu

Definice všech vrcholů primitiva z minulého příkladu:

Poznámka: Vrchol A lze definovat pomocí funkce EV jako: A = EV(A, cokoliv, 0), stejně tak i vrcholy B a C. Funkci EV lze použít pro určení vrcholů obecného polygonu. Zavedeme funkci, která zkonstruuje ze zadaných vrcholů polygon.

Funkce konstruující polygon vpoly (V₁, V₂, ..., V_N), kde V_i jsou vrcholy tvořící polygon.

Pak definici primitiva z příkladu zapíšeme jako:

vpoly(A, EV(A, B, α), EV(A, C, α))

vpoly(B, EV(B, C, α), EV(B, A, α))

vpoly(C, EV(C, A, α), EV(C, B, α))

$$\begin{split} & \text{Přeznačme vrcholy A,B,C jako indexované V_1, V_2, V_3:} \\ & \text{vpoly}(V_1, \, \text{EV}(V_1, \, V_2, \, r), \, \text{EV}(V_1, \, V_3, \, \alpha)) \\ & \text{vpoly}(V_2, \, \text{EV}(V_2, \, V_3, \, r), \, \text{EV}(V_2, \, V_1, \, \alpha)) \\ & \text{vpoly}(V_3, \, \text{EV}(V_3, \, V_1, \, r), \, \text{EV}(V_3, \, V_2, \, \alpha)) \end{split}$$

Vrcholy tvoří posloupnost, která je kruhově vázaná.

Této skutečnosti využije další funkce,
která postupně vyhodnotí své parametry pro všechny vrcholy
 $V_i\,$ v cílových n-úhelnícíh.

Funkce vloop() pro opakování dílčí konstrukce

Funkce vloop(a, b, c, ...) v každém kroku vyhodnotí parametry a zvýší indexy vrcholů, po přetečení pokračuje znovu od prvního indexu a končí po projití všech N indexů.

Příklady pravidel:

Výplně rohů = vloop(vpoly(V_i, EV(V_i, V_{i+1}, α), EV(V_i, V_{i-1}, α))

Výplně rohů pro α = 0.25, 0.5, 0.75

Vepsání = vpoly(vloop(EV(V_i, V_{i+1}, α))

Vepsání pro α = 0.25, 0.5, 0.75

9

měnit jejich definici (viz implementace). Zavedeme poslední funkci, která dovolí definici vrcholu n-úhelníka i mimo hranu. Vi+1 Kombinovaná hranová funkce EC() Vα Funkce EC je vlastně dvojitou aplikací funkce EV. $V_{\alpha 2}$ Složená funkce: $V_{\alpha 2} = EC(V_{i-1}, EV(V_i, V_{i+1}, \alpha 1), \alpha 2)$. $\alpha 2$ Hvězda = vloop(vpoly(V i, V i+1, EC(V i, EV(V i, V i+1, 0,5), α)) Hvězda Vstup pro α = 0.25, 0.66, 0.75 Zápis Funkce EC definuje bod kdekoliv uvnitř n-úhelníka a nepotřebuje další pomocné body 13

Jednoduchými úpravami parametrů dostaneme různé varianty primitivů, aniž bychom museli

Pak definoval množinu funkcí: $VPi\alpha \leftarrow EV(Vi, Vi-1, \alpha VM)$ $VM_{i\alpha} \leftarrow EV(V_{i}, V_{i+1}, \alpha VM)$ $VC_{j\alpha} \leftarrow EV(V_{j}, C, \alpha VC)$ $MC_{j\alpha} \leftarrow EV(M_{j}, C, \alpha VC)$ $VPi\beta \leftarrow EV(Vi, Vi-1, \alpha VM + \beta VM)$ VMi $\beta \leftarrow$ EV(Vi, Vi+1, α VM + β VM) $VCi\beta \leftarrow EV(Vi, C, \alpha VC + \beta VC)$ $MC_{i\beta} \leftarrow EV(M_{i}, C, \alpha MC + \beta MC)$

Geometrický význam rovnic:

VMiO

VMiß

Využitím uvedených funkcí konstruoval Glassner složitější substituční pravidla:

15

Glassnerovy klonovací substituce

Inscribe, Corners, CutCorners:

Inscribe: poly(vloop(EV(V_i, V_{i+1}, α))) Corners: vloop(poly(EV(V_i, V_{i-1}, α), V_i, EV(V_i, V_{i+1}, α)) Cut Corners: poly(vloop(EV(Vi, Vi-1, α), EV(Vi, Vi+1, α))

Pravidla pro mnohoúhelníky

Pravidla používají vrcholů mnohoúhelníka Vi, těžiště C a středových bodů M.

Těžiště C je dáno mnohoúhelníkem, středové body M získáme funkcí EV():

: vrchol Vi, vrchol Vi+1 Výstup : vrchol (střední bod hrany) : M'i ← EV(Vi, Vi+1, 0.5)'

Dále Glassner zavádí dva skalární koeficienty α a β pro umístění vrcholů na hranách. Hodnoty α a β jsou navzájem disjunktní.

Substituce Dilate, Frame, Fan a Star

Dilate : poly(vloop(VCjα)) Frame : vloop(poly(Vj, VCja, VCj-1a, Vj-1)) Fan : vloop(poly(Vj, VMjα, C)) Star : vloop(poly(V_j, VM_jα, C), poly(V_j, MC_{j+1}β, C)) / \ /▲ /▲ $\land \land \land \land$

Glassnerovy mutační substituce

Zařazuje je na konci, protože obecné n-úhelníky nemají triangulační pokračování !!!

Mutační substituce se zachovanou triangulací

Abychom nemuseli dělat dodatečnou triangulaci útvaru vzniklého po aplikaci mutačních pravidel, zavedeme podmínku, že primitiv se musí skládat pouze z trojúhelníků. Tato podmínka nepředstavuje žádné omezení:

Př. Glassnerův primitiv M4

Pokud bude barva čar i výplně stejná, pak trojúhelníky nebude vidět. Nadále bude zachována trojúhelníková síť, na kterou můžeme znovu aplikovat libovolné substituce. Vhodné střídání klonování a mutací může vytvořit další zajímavé výtvarné efekty.

H4

Okno návrháře substitučních primitivů DP – Martin Horák 1999/2000

Vytvořené programové vybavení

17

🛦 Návrhář geometrických primitiv C:\HOME_SET\HORAKGS\PRIKLADY\FAN.PRI Primitiva 😅 🛃 🗟 🍃 💡 Výraz aktuálního primitiva FOR ALL VERTEXES FROM MAIN DO BEGIN INSERT_VERTEX 0 INSERT VERTEX EV 0 1 AVM INSERT_VERTEX GET_CENTER_OF_MAIN POLY DELETE_ALL_VERTEXES ENDF Výběr primitiva – ▼ << < > >> Proměnné aktuálního primitiva Globální poznámka – VERTEX C 100.000 57.000 Fan vloop(poly(Vi, EV(Vi, Vi+1, aVM), C) OUBLE AVM 0.500 Atributy primitiva Lokální poznámka 100 Barva • 10 19

Okno návrháře substitučních primitivů DP – René Novotný 2000/2001

Soustava substitučních pravidel R. Novotného:

Tvary vstupních objektů:

Okno pro definování vstupních a výstupních parametrů.

Okno pro vstup mutačních substitucí a náhodný výběr primitiva.

Př. Kombinace substitucí:

25

Př. Variace v 3D

ORIGAMI

diagram skládání jako generátor dělení plochy

struktura hran po osmém kroku skládání

Mozaika origami je geometricky určena několika základními trojúhelníky Př. Dvojice pravoúhlých trojúhelníků čtvercového modulu "startovacího papíru"

modul | x |

Poznámka: Podobně můžeme dekomponovat ostatní startovací moduly

Ŕ

modul I x $\sqrt{3}$

Nová (neeuklidovská) geometrie – kolem r. 1825

Otcové: Karl Friedrich Gauss, Janosz Bolyai a Nikolaj Lobačevskij

Hlavní "novoty": Součet úhlů v trojúhelníku je menší než 180°. Bodem lze vést nekonečné množství rovnoběžek k dané přímce atd.

Připomeňme: Existují jen tři regulární dláždění v Euklidově rovině $\{4,4\}$; $\{3,6\}$; $\{6,3\}$, $\{p,q\}$ je Schläfliho symbol – q p-úhelníků se dotýká ve společném vrcholu.

Podmínky geometrií:

1/p + 1/q = 1/2 - Euklidova

1/p + 1/q < 1/2 - hyperbolická

1/p + 1/q > 1/2 - eliptická

Poznámka:

Pro vrcholový úhel p-úhelníka platí α =360°/q, součet vnitřních úhlů je tedy p360°/q. Rozložíme-li p-úhelník na trojúhelníky, pak pro součet úhlů platí (p - 2)180° a odtud p360°/q = (p - 2)180°. Dělíme p360° a přidáme 1/p, dostaneme podmínku geometrií.

Podmínkou konstrukce hyperbolických mozaik je znalost příslušných grup symetrií a jejich transformačních matic (nic nového!).

34

Poincarého disk

Hyperbolický prostor neumíme přímo reprezentovat v Euklidově prostoru. Tento problém řeší několik modelů.

Poincaré modeluje hyperbolický prostor konformním zobrazením dovnitř kruhového disku.

Objekty v obou prostorech jsou si "zhruba podobné".

Přímky se deformují v kruhové oblouky protínající disk pod pravým úhlem.

Rovnoběžky se protínají na obvodovém disku, ...atd.

 $\{x\in \mathbb{R}^2: |x|<1\}$

Tato geometrie přináší mozaikám nové výtvarné možnosti.

Poincaré-Minkowského zobrazení

Weierstrassův (Minkowského) model hyperbolického prostoru

Bod *X* v trojdimenzionálním souřadném systému je definován jako $X = [x_1, x_2, x_3]$. Na *X* se dá pohlížet jako na vektor z počátku souřadnic O = (0,0,0) do $X = [x_1, x_2, x_3]$.

Definujeme hyperbolický skalární součin vektorů X a Y jako $\langle X, Y \rangle = x_1y_1 + x_2y_2 - x_3y_3$. Hyperbolický prostor je reprezentován množinou bodů X, Y, pro které platí $\langle X, Y \rangle = -1$, což dává v euklidovském prostoru E^3 dvojdílný rotační hyperboloid o rovnici $x_1^2 + x_2^2 - x_3^2 = -1$ pro $x_3 >= 1$.

Hyperbolický bod X navíc splňuje $x_3 > 0$, takže každý hyperbolický bod bude ležet na horním dílu hyperboloidu označeném H^2 .

Trojdimenzionální Weierstrassův model můžeme projekcí převést na na Poincarého kruhový model středovou projekcí hyperboloidu do bodu [0,0,-1], při níž jako průmětna slouží rovina *xy*.

Každý bod *A* hyperboloidu při promítání protne rovinu *xy* a tento průsečík *B* je odpovídajícím bodem Poincarého disku.

Souřadnice B ze souřadnic A získáme pomocí Poincaré-Minkowského zobrazení:

$$(x, y, z) \rightarrow \left(\frac{x}{1+z}, \frac{y}{1+z}\right)$$

Pro zpětnou projekci bodu B = [x, y] ležícího uvnitř Poincarého disku na hyperboloid platí:

 $(x, y) \rightarrow \left(\frac{2x}{s}, \frac{2y}{s}, \frac{1+x^2+y^2}{s}\right)$ pro $s = 1 - x^2 - y^2$

Existence uvedených převodních vztahů je základním předpokladem pro konstrukci hyperbolických mozaik.

37

Konstrukce hyperbolického dláždění (D. Dunham, R. Charvát a další)

Nejdříve musíme zapsat vrcholy, hrany a pomocné geometrické entiity p-úhelníkových dlaždic pomocí funkcí, které budou mít v argumentech hodnoty p a q.

Poznámka: Pro zjednodušení zápisu zavedeme substituce.

Pak sestavíme <u>transformační matice</u> pro manipulaci s dlaždicemi. Užité transformace definuje stejně jako u Eulerových mozaik vzor mozaiky, tedy příslušná <u>grupa symetrií</u>.

Jako dříve u tapetových mozaik budou dlaždice dekomponovatelné na fundamentální oblasti.

Fundamentální oblasti jsou manipulačně omezeny stejně jako celé dlaždice, vybranou grupou symetrií (vzorem mozaiky). S výhodou je využijeme pro definování transformací.

Obecná trojúhelníková fundamentální oblast dlaždice

Vrstvy mozaiky

Nultá vrstva mozaiky obsahuje pouze centrální p-gon.

Mozaika je rozšířena z k-té vrstvy do vrstvy k+1 zrcadlením nebo rotací motivu (dle příslušné grupy symetrií) podél hran a vrcholů společných oběma vrstvám.

Proces může teoreticky trvat donekonečna, prakticky stačí čtyři až pět vrstev.

Příklad vrstev mozaiky {6,4}:

Replikační algoritmus

Chceme-li vykreslit k dané dlaždici jejího souseda z vyšší vrstvy, musíme nejdříve fundamentální oblast přemístit transformacemi k hraně, ve které spolu obě dlaždice sousedí.

Pro jednoduchost vykresleme dlaždice s motivem obsahujícím jen zobrazení fundamentální oblasti.

Fundamentální oblasti a grupy symetrií podle D. Dunhama (Autor ukázek R. Charvát)

Grupa symetrií [p, q]

Fundamentální oblast tvoří pravoúhlý hyperbolický trojúhelník SCB. Grupu symetrií [p, q] tvoří transformace: -zrcadlení podle hrany dlaždice (AB) -zrcadlení podle osy hrany (SC) -zrcadlení podle spojnice (SB)

Grupa symetrií [p, q]+

Fundamentální oblast tvoří hyperbolický trojúhelník *SBA*. Grupu symetrií [p, q]+ tvoří transformace: -rotace řádu p kolem středu dlaždice o úhel $2\pi/p$ stupňů -rotace řádu q kolem vrcholu dlaždice o úhel $2\pi/q$ stupňů -rotace kolem středu hrany dlaždice o úhel $2\pi/2$.

Grupa symetrií [p+, q]

Fundamentální oblast tvoří opět hyperbolický trojúhelník *SBA*. Aby se mozaika vykreslovala správně, musí být u této grupy symetrií *q* sudé. Grupu symetrií [*p*+, *q*] tvoří transformace: -rotace kolem středu dlaždice o úhel $2\pi/p$ stupňů -zrcadlení podle hrany dlaždice AB.

Grupa symetrií [p, q+]

Fundamentální oblast je tvaru draka, tvoří ji dva malé pravoúhlé hyperbolické trojúhelníky přilehlé k témuž vrcholu dlaždice (*SDBC*). U této grupy symetrií musí být *p* sudé. Grupu symetrií [*p*, *q*+] tvoří transformace: -zrcadlení podle osy hrany dlaždice SC -rotace kolem vrcholu dlaždice o úhel 2π/q stupňů

Příklady 1: Regulární mozaiky pro různé hodnoty p, q - nevybarvené

 $A = \{3, 9\}, B = \{4, 6\}, C = \{6, 4\}, D = \{7, 7\}, E = \{9, 3\}$

Příklady 2: Regulární hyperbolické dláždění – vybarvené dlaždice

Př. {5,4}

Př. {4,5}

Duální hyperbolické dláždění

Příklady 3:. {3,12}

Kvaziregulární hyperbolické dláždění

Podobně jako v Euklidově rovině můžeme spojováním středů stran p-úhelníků regulárního dláždění vytvořit kvaziregulární dláždění.

Př. kvazi-{5,4}

Př. kvazi-{3,7}

Různé vybarvení (nevybarvení) p-úhelníků dává další možnosti.

KRUHOVÉ LIMITY M. C. ESCHERA (studuje a doplňuje je D. Dunham 1981)

Největší reklamu hyperbolickým mozaikám udělal M.C. Escher "kruhovými limitami".

Podnícen setkáním v roce 1954 s H. S. M Coxeterem vAmsterodamu, a článkem "Crystal Symmetry and Its Generalisations".

Eschera zaujal obrázek trojúhelníkového dláždění v hyperbolické rovině.

trojúhelníky 30 – 45 –90.

{12,3}

49

M. C. Escher neměl počítač, jak konstruoval své mozaiky?

Historická pomocná konstrukce pomocí kružítka a pravítka

Podrobný rozbor viz. lit.:

Chaim Goodman–Strauss: "Compass and Straightedge in the Poincaré Disk" The Matematical Association of America, January 2001, pp. 38 – 49.

Pomocná konstrukce H. S. M. Coxetera, (scaffolding), která inspirovala Eschera.

Poznámka: Chce to velký arch papíru a trpělivost!!!

Př. Konstrukce regulární hyperbolické mozaiky tvořené trojúheníky (p, q, 2), Zadejme trojúhelník o vniřních úhlech π /7, π /4, π /2

Začínáme středem Poincarého disku *O*, vrcholem pomocného p-úhelníka *A* a úhlem $\rho = \pi 7$. Limitní kružnice vyplyne z konstrukce.

trojúhelníky OQP a PQR mají vnitřní úhly $\pi/7$, $\pi/4$, $\pi/2$

58

Využijeme symetrie:

Získali jsme první vrstvu mozaiky

Připomeňme:

Póly hyperbolických přímek (kružnic uvnitř disku), které se protínají v jednom bodě, mají společnou poláru (leží na jedné přímce vně disku).

Další vrstvu získáme násobnou rotací kolem A o $\pi/7$:

Získali jsme druhou vrstvu:

Nyní potřebujeme hyperbolickou úsečku BC. Hledáme její pól P.

Konstrukci průsečíku zlepší skutečnost, že P leží na symetrále úhlu $\rho = \pi/7$.

Stejně jako dříve pokračujeme rotací kolem bodu C:

Získali jsme třetí <u>vrstvu</u>: atd. …

Zobecněni - viz. Ch. Goodman-Strauss.

59