
'
&

$
%

Chapter 6: Integrity Constraints

• Domain Constraints

• Referential Integrity

• Assertions

• Triggers

• Functional Dependencies

Database Systems Concepts 6.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Domain Constraints

• Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.

• Domain constraints are the most elementary form of integrity
constraint.

• They test values inserted in the database, and test queries to
ensure that the comparisons make sense.

Database Systems Concepts 6.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Domain Constraints (Cont.)

• The check clause in SQL-92 permits domains to be restricted:

– Use check clause to ensure that an hourly-wage domain
allows only values greater than a specified value.

create domain hourly-wage numeric(5,2)
constraint value-test check (value >= 4.00)

– The domain hourly-wage is declared to be a decimal
number with 5 digits, 2 of which are after the decimal point

– The domain has a constraint that ensures that the
hourly-wage is greater than 4.00.

– The clause constraint value-test is optional; useful to
indicate which constraint an update violated.

Database Systems Concepts 6.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Referential Integrity

• Ensures that a value that appears in one relation for a given
set of attributes also appears for a certain set of attributes in
another relation.

– Example: if “Perryridge” is a branch name appearing in one
of the tuples in the account relation, then there exists a
tuple in the branch relation for branch “Perryridge”.

• Formal Definition

– Let r1(R1) and r2(R2) be relations with primary keys K1 and
K2 respectively.

– The subset α of R2 is a foreign key referencing K1 in
relation r1, if for every t2 in r2 there must be a tuple t1 in r1

such that t1[K1] = t2[α].

– Referential integrity constraint: Πα (r2) ⊆ ΠK1 (r1)

Database Systems Concepts 6.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Referential Integrity in the E-R Model

• Consider relationship set R between entity sets E1 and E2.
The relational schema for R includes the primary keys K1 of E1

and K2 of E2.

Then K1 and K2 form foreign keys on the relational schemas
for E1 and E2 respectively.

• Weak entity sets are also a source of referential integrity
constraints. For, the relation schema for a weak entity set must
include the primary key of the entity set on which it depends.

Database Systems Concepts 6.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Database Modification

• The following tests must be made in order to preserve the
following referential integrity constraint:

Πα (r2) ⊆ ΠK (r1)

• Insert. If a tuple t2 is inserted into r2, the system must ensure
that there is a tuple t1 in r1 such that t1[K] = t2[α]. That is

t2[α] ∈ ΠK (r1)

• Delete. If a tuple t1 is deleted from r1, the system must
compute the set of tuples in r2 that reference t1:

σα = t1[K] (r2)

If this set is not empty, either the delete command is rejected
as an error, or the tuples that reference t1 must themselves be
deleted (cascading deletions are possible).

Database Systems Concepts 6.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Database Modification (Cont.)

• Update. There are two cases:
– If a tuple t2 is updated in relation r2 and the update modifies

values for the foreign key α, then a test similar to the insert
case is made. Let t2′ denote the new value of tuple t2. The
system must ensure that

t2′[α] ∈ ΠK (r1)

– If a tuple t1 is updated in r1, and the update modifies values
for the primary key (K), then a test similar to the delete
case is made. The system must compute

σα = t1[K] (r2)

using the old value of t1 (the value before the update is
applied). If this set is not empty, the update may be rejected
as an error, or the update may be cascaded to the tuples in
the set, or the tuples in the set may be deleted.

Database Systems Concepts 6.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Referential Integrity in SQL

• Primary and candidate keys and foreign keys can be specified
as part of the SQL create table statement:

– The primary key clause of the create table statement
includes a list of the attributes that comprise the primary
key.

– The unique key clause of the create table statement
includes a list of the attributes that comprise a candidate
key.

– The foreign key clause of the create table statement
includes both a list of the attributes that comprise the
foreign key and the name of the relation referenced by the
foreign key.

Database Systems Concepts 6.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Referential Integrity in SQL - Example

create table customer
(customer-name char(20) not null ,
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15) not null ,
branch-city char(30),
assets integer,
primary key (branch-name))

Database Systems Concepts 6.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Referential Integrity in SQL - Example (Cont.)

create table account
(branch-name char(15),
account-number char(10) not null ,
balance integer,
primary key (account-number),
foreign key (branch-name) references branch)

create table depositor
(customer-name char(20) not null ,
account-number char(10) not null ,
primary key (customer-name, account-number),
foreign key (account-number) references account,
foreign key (customer-name) references customer)

Database Systems Concepts 6.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Cascading Actions in SQL

create table account
. . .
foreign key (branch-name) references branch

on delete cascade
on update cascade ,

. . .)

• Due to the on delete cascade clauses, if a delete of a tuple in
branch results in referential-integrity constraint violation, the
delete “cascades” to the account relation, deleting the tuple
that refers to the branch that was deleted.

• Cascading updates are similar.

Database Systems Concepts 6.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Cascading Actions in SQL (Cont.)

• If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each
dependency, a deletion or update at one end of the chain can
propagate across the entire chain.

• If a cascading update or delete causes a constraint violation
that cannot be handled by a further cascading operation, the
system aborts the transaction. As a result, all the changes
caused by the transaction and its cascading actions are
undone.

Database Systems Concepts 6.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Assertions

• An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

• An assertion in SQL-92 takes the form

create assertion <assertion-name> check <predicate>

• When an assertion is made, the system tests it for validity. This
testing may introduce a significant amount of overhead; hence
assertions should be used with great care.

Database Systems Concepts 6.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Assertion Example

• The sum of all loan amounts for each branch must be less than
the sum of all account balances at the branch.

create assertion sum-constraint check
(not exists (select * from branch

where (select sum (amount) from loan
where loan.branch-name = branch.branch-name)

>= (select sum (amount) from account
where loan.branch-name = branch.branch-name)))

Database Systems Concepts 6.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Assertion Example

• Every loan has at least one borrower who maintains an
account with a minimum balance of $1000.00.

create assertion balance-constraint check
(not exists (select * from loan

where not exists (select *
from borrower, depositor , account
where loan.loan-number = borrower.loan-number

and borrower.customer-name = depositor.customer-name
and depositor.account-number = account.account-number
and account.balance >= 1000)))

Database Systems Concepts 6.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Triggers

• A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

• To design a trigger mechanism, we must:

– Specify the conditions under which the trigger is to be
executed.

– Specify the actions to be taken when the trigger executes.

• The SQL-92 standard does not include triggers, but many
implementations support triggers.

Database Systems Concepts 6.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Trigger Example

• Suppose that instead of allowing negative account balances,
the bank deals with overdrafts by

– setting the account balance to zero

– creating a loan in the amount of the overdraft

– giving this loan a loan number identical to the account
number of the overdrawn account

• The condition for executing the trigger is an update to the
account relation that results in a negative balance value.

Database Systems Concepts 6.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Trigger Example (Cont.)

define trigger overdraft on update of account T
(if new T.balance < 0
then (insert into loan values

(T.branch-name, T.account-number, − new T.balance)
insert into borrower

(select customer-name, account-number
from depositor
where T.account-number = depositor.account-number)

update account S
set S.balance = 0
where S.account-number = T.account-number))

The keyword new used before T.balance indicates that the value of
T.balance after the update should be used; if it is omitted, the value
before the update is used.

Database Systems Concepts 6.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Functional Dependencies

• Constraints on the set of legal relations.

• Require that the value for a certain set of attributes determines
uniquely the value for another set of attributes.

• A functional dependency is a generalization of the notion of a
key.

Database Systems Concepts 6.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Functional Dependencies (Cont.)

• Let R be a relation schema

α ⊆ R, β ⊆ R

• The functional dependency

α → β

holds on R if and only if for any legal relations r(R), whenever
any two tuples t1 and t2 of r agree on the attributes α, they also
agree on the attributes β. That is,

t1[α] = t2[α] ⇒ t1[β] = t2[β]

• K is a superkey for relation schema R if and only if K → R

• K is a candidate key for R if and only if

– K → R, and

– for no α ⊂ K , α → R

Database Systems Concepts 6.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Functional Dependencies (Cont.)

• Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:

Loan-info-schema = (branch-name, loan-number,
customer-name, amount).

We expect this set of functional dependencies to hold:

loan-number → amount
loan-number → branch-name

but would not expect the following to hold:

loan-number → customer-name

Database Systems Concepts 6.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Use of Functional Dependencies

• We use functional dependencies to:

– test relations to see if they are legal under a given set of
functional dependencies. If a relation r is legal under a set
F of functional dependencies, we say that r satisfies F .

– specify constraints on the set of legal relations; we say that
F holds on R if all legal relations on R satisfy the set of
functional dependencies F .

• Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does
not hold on all legal instances. For example, a specific
instance of Loan-schema may, by chance, satisfy loan-number
→ customer-name.

Database Systems Concepts 6.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Closure of a Set of Functional Dependencies

• Given a set F set of functional dependencies, there are certain
other functional dependencies that are logically implied by F .

• The set of all functional dependencies logically implied by F is
the closure of F .

• We denote the closure of F by F +.

• We can find all of F + by applying Armstrong’s Axioms:

– if β ⊆ α, then α → β (reflexivity)

– if α → β, then γα → γβ (augmentation)

– if α → β and β → γ, then α → γ (transitivity)

These rules are sound and complete.

Database Systems Concepts 6.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Closure (Cont.)

• We can further simplify computation of F + by using the
following additional rules.

– If α → β holds and α → γ holds, then α → βγ holds (union)

– If α → βγ holds, then α → β holds and α → γ holds
(decomposition)

– If α → β holds and γβ → δ holds, then αγ → δ holds
(pseudotransitivity)

The above rules can be inferred from Armstrong’s axioms.

Database Systems Concepts 6.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• R = (A, B, C, G, H, I)

• F = {A → B
A → C
CG → H
CG → I
B → H}

• some members of F +

– A → H

– AG → I

– CG → HI

Database Systems Concepts 6.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Closure of Attribute Sets

• Define the closure of α under F (denoted by α+) as the set of
attributes that are functionally determined by α under F :

α → β is in F + ⇔ β ⊆ α+

• Algorithm to compute α+, the closure of α under F

result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then result := result ∪ γ;
end

Database Systems Concepts 6.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example

• R = (A, B, C, G, H, I)
F = {A → B

A → C
CG → H
CG → I
B → H}

• (AG+)
1. result = AG
2. result = ABCG (A → C and A ⊆ AGB)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

• Is AG a candidate key?
1. AG → R
2. does A+ → R?
3. does G+ → R?

Database Systems Concepts 6.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Canonical Cover

• Consider a set F of functional dependencies and the functional
dependency α → β in F.
– Attribute A is extraneous in α if A ∈ α and F logically

implies (F − {α → β}) ∪ {(α − A) → β}.

– Attribute A is extraneous in β if A ∈ β and the set of
functional dependencies (F − {α → β}) ∪ {α → (β − A)}
logically implies F.

• A canonical cover Fc for F is a set of dependencies such that F
logically implies all dependencies in Fc and Fc logically implies
all dependencies in F, and further
– No functional dependency in Fc contains an extraneous

attribute.

– Each left side of a functional dependency in Fc is unique.

Database Systems Concepts 6.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Canonical Cover (Cont.)

• Compute a canonical cover for F:

repeat
Use the union rule to replace any dependencies in F

α1 → β1 and α1 → β2 with α1 → β1 β2

Find a functional dependency α → β with an
extraneous attribute either in α or in β

If an extraneous attribute is found, delete it from α → β

until F does not change

Database Systems Concepts 6.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example of Computing a Canonical Cover

• R = (A, B, C)
F = {A → BC

B → C
A → B
AB → C}

• Combine A → BC and A → B into A → BC

• A is extraneous in AB → C because B → C logically implies
AB → C.

• C is extraneous in A → BC since A → BC is logically implied by
A → B and B → C.

• The canonical cover is:
A → B
B → C

Database Systems Concepts 6.30 Silberschatz, Korth and Sudarshan c©1997

	Domain Constraints
	Domain Constraints (Cont.)
	Referential Integrity
	Referential Integrity in the E-R Model
	Database Modification
	Database Modification (Cont.)
	Referential Integrity in SQL
	Referential Integrity in SQL - Example
	Referential Integrity in SQL - Example (Cont.)
	Cascading Actions in SQL
	Cascading Actions in SQL (Cont.)
	Assertions
	Assertion Example
	Assertion Example
	Triggers
	Trigger Example
	Trigger Example (Cont.)
	Functional Dependencies
	Functional Dependencies (Cont.)
	Functional Dependencies (Cont.)
	Use of Functional Dependencies
	Closure of a Set of Functional Dependencies
	Closure (Cont.)
	Example
	Closure of Attribute Sets
	Example
	Canonical Cover
	Canonical Cover (Cont.)
	Example of Computing a Canonical Cover

