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Chapter 8: Object-Oriented Databases

• New Database Applications

• The Object-Oriented Data Model

• Object-Oriented Languages

• Persistent Programming Languages

• Persistent C++ Systems
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New Database Applications

• Data models designed for data-processing-style applications
are not adequate for new technologies such as computer-aided
design, computer-aided software engineering, multimedia and
image databases, and document/hypertext databases.

• These new applications requirement the database system to
handle features such as:

– complex data types

– data encapsulation and abstract data structures

– novel methods for indexing and querying
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Object-Oriented Data Model

• Loosely speaking, an object corresponds to an entity in the E-R

model.

• The object-oriented paradigm is based on encapsulating code
and data related to an object into a single unit.

• The object-oriented data model is a logical model (like the E-R

model).

• Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.
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Object Structure

• An object has associated with it:

– A set of variables that contain the data for the object. The
value of each variable is itself an object.

– A set of messages to which the object responds; each
message may have zero, one, or more parameters.

– A set of methods, each of which is a body of code to
implement a message; a method returns a value as the
response to the message

• The physical representation of data is visible only to the
implementor of the object

• Messages and responses provide the only external interface to
an object.
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Messages and Methods

• The term message does not necessarily imply physical
message passing. Messages can be implemented as
procedure invocations.

• Methods are programs written in a general-purpose language
with the following features
– only variables in the object itself may be referenced directly

– data in other objects are referenced only by sending
messages

• Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, e.g., the attribute
address is represented by a variable address and two
messages get-address and set-address.

– For convenience, many object-oriented data models permit
direct access to variables of other objects
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Object Classes

• Similar objects are grouped into a class; each such object is
called an instance of its class

• All objects in a class have the same

– variable types

– message interface

– methods

They may differ in the values assigned to variables

• Example: Group objects for people into a person class

• Classes are analogous to entity sets in the E-R model
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Class Definition Example

class employee {
/* Variables */

string name;
string address;
date start-date;
int salary;

/* Messages */
int annual-salary();
string get-name();
string get-address();
int set-address(string new-address);
int employment-length();

};

• For strict encapsulation, methods to read and set other
variables are also needed

• employment-length is an example of a derived attribute
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Inheritance

• E.g., class of bank customers similar to class of bank
employees: both share some variables and messages, e.g.,
name and address But there are variables and messages
specific to each class e.g., salary for employees and and
credit-rating for customers

• Every employee is a person; thus employee is a specialization
of person

• Similarly, customer is a specialization of person.

• Create classes person, employee and customer

– variables/messages applicable to all persons associated
with class person.

– variables/messages specific to employees associated with
class employee; similarly for customer
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Inheritance (Cont.)

• Place classes into a specialization/IS-A hierarchy

– variables/messages belonging to class person are inherited
by class employee as well as customer

• Result is a class hierarchy

                   employee

officer         teller            secretary

person

customer

Note analogy with ISA hierarchy in the E-R model
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Class Hierarchy Definition

class person {
string name;
string address;

};
class customer isa person {

int credit-rating;
};
class employee isa person {

date start-date;
int salary;

};
class officer isa employee {

int office-number ;
int expense-account-number ;

};
...
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Class Hierarchy Example (Cont.)

• Full variable list for objects in the class officer:

– office-number, expense-account-number: defined locally

– start-date, salary: inherited from employee

– name, address: inherited from person

• Methods inherited similar to variables.

• Substitutability — any method of a class, say person, can be
invoked equally well with any object belonging to any subclass,
such as subclass officer of person.

• class extent: set of all objects in the class. Two options:

1. Class extent of employee includes all officer, teller and
secretary objects

2. Class extent of employee includes only employee objects
that are not in a subclass such as officer, teller or secretary
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Example of Multiple Inheritance

Class DAG for banking example.

employee

   full-time          part-time          teller          secretary   

person

customer

officer      full-time-teller      part-time-teller     full-time-secretary      part-time-secretary
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Multiple Inheritance

• The class/subclass relationship is represented by a directed
acyclic graph (DAG) — a class may have more than one
superclass.

• A class inherits variables and methods from all its
superclasses.

• There is potential for ambiguity. E.g., variable with the same
name inherited from two superclasses. Different solutions such
as flag and error, rename variables, or choose one.

• Can use multiple inheritance to model “roles” of an object.

– A person can play the roles of student, a teacher or
footballPlayer, or any combination of the three (e.g., student
teaching assistants who also play football).

– Create subclasses such as student-teacher and
student-teacher-footballPlayer that inherit from multiple
classes.
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Object Identity

• An object retains its identity even if some or all of the values of
variables or definitions of methods change over time.

• Object identity is a stronger notion of identity than in
programming languages or data models not based on object
orientation.

– Value – data value; used in relational systems.

– Name – supplied by user; used for variables in procedures.

– Built-in – identity built into data model or programming
language.
∗ no user-supplied identifier is required.
∗ form of identity used in object-oriented systems.
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Object Identifiers

• Object identifiers used to uniquely identify objects

– can be stored as a field of an object, to refer to another
object.

– E.g., the spouse field of a person object may be an identifier
of another person object.

– can be system generated (created by database) or external
(such as social-security number)
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Object Containment

wheel                brake                                gear              frame

bicycle

rim      spokes     tire        lever      pad     cable

• Each component in a design may contain other components

• Can be modeled as containment of objects. Objects containing
other objects are called complex or composite objects.

• Multiple levels of containment create a containment hierarchy:
links interpreted as is-part-of , not is-a .

• Allows data to be viewed at different granularities by different
users
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Object-Oriented Languages

• Object-oriented concepts can be used as a design tool, and be
encoded into, for example, a relational database (analogous to
modeling data with E-R diagram and then converting to a set of
relations).

• The concepts of object orientation can be incorporated into a
programming language that is used to manipulate the
database.

– Object-relational systems – add complex types and
object-orientation to relational language.

– Persistent programming languages – extend object-oriented
programming language to deal with databases by adding
concepts such as persistence and collections.
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Persistent Programming Languages

• Persistent programming languages:
– allow objects to be created and stored in a database

without any explicit format changes (format changes are
carried out transparently).

– allow objects to be manipulated in-memory – do not need to
explicitly load from or store to the database.

– allow data to be manipulated directly from the programming
language without having to go through a data manipulation
language like SQL.

• Due to power of most programming languages, it is easy to
make programming errors that damage the database.

• Complexity of languages makes automatic high-level
optimization more difficult.

• Do not support declarative querying very well.
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Persistence Of Objects

• Approaches to make transient objects persistent include
establishing persistence by:

– Class – declare all objects of a class to be persistent;
simple but inflexible.

– Creation – extend the syntax for creating transient objects
to create persistent objects.

– Marking – an object that is to persist beyond program
execution is marked as persistent before program
termination.

– Reference – declare (root) persistent objects; objects are
persistent if they are referred to (directly or indirectly) from a
root object.
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Object Identity and Pointers

• A persistent object is assigned a persistent object identifier.

• Degrees of permanence of identity:

– Intraprocedure – identity persists only during the execution
of a single procedure

– Intraprogram – identity persists only during execution of a
single program or query.

– Interprogram – identity persists from one program execution
to another.

– Persistent – identity persists throughout program executions
and structural reorganizations of data; required for
object-oriented systems.
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Object Identity and Pointers (Cont.)

• In O-O languages such as C++, an object identifier is actually
an in-memory pointer.

• Persistent pointer – persists beyond program execution; can be
thought of as a pointer into the database.
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Storage and Access of Persistent Objects

How to find objects in the database:

• Name objects (as you would name files) – cannot scale to
large number of objects.

– typically given only to class extents and other collections of
objects, but not to objects.

• Expose object identifiers or persistent pointers to the objects –
can be stored externally.

– All objects have object identifiers.
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Storage and Access of Persistent Objects (Cont.)

How to find objects in the database (Cont):

• Store collections of objects and allow programs to iterate over
the collections to find required objects.

– Model collections of objects as collection types

– Class extent – the collection of all objects belonging to the
class; usually maintained for all classes that can have
persistent objects.
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Persistent C++ Systems

• C++ language allows support for persistence to be added
without changing the language

– Declare a class called Persistent Object with attributes
and methods to support persistence

– Overloading – ability to redefine standard function names
and operators (i.e., +, −, the pointer dereference operator
->) when applied to new types

• Providing persistence without extending the C++ language is

– relatively easy to implement

– but more difficult to use
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ODMG C++ Object Definition Language

• Standardize language extensions to C++ to support
persistence

• ODMG standard attempts to extend C++ as little as possible,
providing most functionality via template classes and class
libraries

• Template class Ref<class> used to specify references
(persistent pointers)

• Template class Set<class> used to define sets of objects.
Provides methods such as insert element and
delete element.

• The C++ object definition language (ODL) extends the C++
type definition syntax in minor ways.
Example: Use notation inverse to specify referential integrity
constraints.
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ODMG C++ ODL: Example

class Person : public Persistent Object {
public:

String name;

String address;

};
class Customer : public Person {
public:

Date member from;

int customer id;

Ref<Branch> home branch;

Set<Ref<Account>> accounts inverse Account::owners;

};
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ODMG C++ ODL: Example (Cont.)

class Account : public Persistent Object {
private:

int balance;

public:

int number;

Set<Ref<Customer>> owners inverse Customer::accounts;

int find balance();

int update balance(int delta);

};
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ODMG C++ Object Manipulation Language

• Uses persistent versions of C++ operators such as new(db).

Ref<Account> account = new(bank db) Account;

new allocates the object in the specified database, rather than
in memory

• Dereference operator -> when applied on a Ref<Customer>

object loads the referenced object in memory (if not already
present) and returns in-memory pointer to the object.

• Constructor for a class – a special method to initialize objects
when they are created; called automatically when new is
executed

• Destructor for a class – a special method that is called when
objects in the class are deleted
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ODMG C++ OML: Example

int create account owner(String name, String address) {
Database * bank db;

bank db = Database::open("Bank-DB");

Transaction Trans;

Trans.begin();

Ref<Account> account = new(bank db) Account;

Ref<Customer> cust = new(bank db) Customer;

cust->name = name;

cust->address = address;

cust->accounts.insert element(account);

account->owners.insert element(cust);

... Code to initialize customer id, account number etc.

Trans.commit();

}
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ODMG C++ OML: Example of Iterators

int print customers() {
Database * bank db;

bank db = Database::open("Bank-DB");

Transaction Trans;

Trans.begin();

Iterator<Ref<Customer>> iter =

Customer::all customers.create iterator();

Ref<Customer> p;

while(iter.next(p)) {
print cust(p);

}
Trans.commit();

}

• Iterator construct helps step through objects in a collection.
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