
'
&

$
%

Chapter 8: Object-Oriented Databases

• New Database Applications

• The Object-Oriented Data Model

• Object-Oriented Languages

• Persistent Programming Languages

• Persistent C++ Systems

Database Systems Concepts 8.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

New Database Applications

• Data models designed for data-processing-style applications
are not adequate for new technologies such as computer-aided
design, computer-aided software engineering, multimedia and
image databases, and document/hypertext databases.

• These new applications requirement the database system to
handle features such as:

– complex data types

– data encapsulation and abstract data structures

– novel methods for indexing and querying

Database Systems Concepts 8.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object-Oriented Data Model

• Loosely speaking, an object corresponds to an entity in the E-R

model.

• The object-oriented paradigm is based on encapsulating code
and data related to an object into a single unit.

• The object-oriented data model is a logical model (like the E-R

model).

• Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.

Database Systems Concepts 8.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Structure

• An object has associated with it:

– A set of variables that contain the data for the object. The
value of each variable is itself an object.

– A set of messages to which the object responds; each
message may have zero, one, or more parameters.

– A set of methods, each of which is a body of code to
implement a message; a method returns a value as the
response to the message

• The physical representation of data is visible only to the
implementor of the object

• Messages and responses provide the only external interface to
an object.

Database Systems Concepts 8.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Messages and Methods

• The term message does not necessarily imply physical
message passing. Messages can be implemented as
procedure invocations.

• Methods are programs written in a general-purpose language
with the following features
– only variables in the object itself may be referenced directly

– data in other objects are referenced only by sending
messages

• Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, e.g., the attribute
address is represented by a variable address and two
messages get-address and set-address.

– For convenience, many object-oriented data models permit
direct access to variables of other objects

Database Systems Concepts 8.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Classes

• Similar objects are grouped into a class; each such object is
called an instance of its class

• All objects in a class have the same

– variable types

– message interface

– methods

They may differ in the values assigned to variables

• Example: Group objects for people into a person class

• Classes are analogous to entity sets in the E-R model

Database Systems Concepts 8.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Class Definition Example

class employee {
/* Variables */

string name;
string address;
date start-date;
int salary;

/* Messages */
int annual-salary();
string get-name();
string get-address();
int set-address(string new-address);
int employment-length();

};

• For strict encapsulation, methods to read and set other
variables are also needed

• employment-length is an example of a derived attribute

Database Systems Concepts 8.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Inheritance

• E.g., class of bank customers similar to class of bank
employees: both share some variables and messages, e.g.,
name and address But there are variables and messages
specific to each class e.g., salary for employees and and
credit-rating for customers

• Every employee is a person; thus employee is a specialization
of person

• Similarly, customer is a specialization of person.

• Create classes person, employee and customer

– variables/messages applicable to all persons associated
with class person.

– variables/messages specific to employees associated with
class employee; similarly for customer

Database Systems Concepts 8.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Inheritance (Cont.)

• Place classes into a specialization/IS-A hierarchy

– variables/messages belonging to class person are inherited
by class employee as well as customer

• Result is a class hierarchy

 employee

officer teller secretary

person

customer

Note analogy with ISA hierarchy in the E-R model

Database Systems Concepts 8.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Class Hierarchy Definition

class person {
string name;
string address;

};
class customer isa person {

int credit-rating;
};
class employee isa person {

date start-date;
int salary;

};
class officer isa employee {

int office-number ;
int expense-account-number ;

};
...

Database Systems Concepts 8.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Class Hierarchy Example (Cont.)

• Full variable list for objects in the class officer:

– office-number, expense-account-number: defined locally

– start-date, salary: inherited from employee

– name, address: inherited from person

• Methods inherited similar to variables.

• Substitutability — any method of a class, say person, can be
invoked equally well with any object belonging to any subclass,
such as subclass officer of person.

• class extent: set of all objects in the class. Two options:

1. Class extent of employee includes all officer, teller and
secretary objects

2. Class extent of employee includes only employee objects
that are not in a subclass such as officer, teller or secretary

Database Systems Concepts 8.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example of Multiple Inheritance

Class DAG for banking example.

employee

 full-time part-time teller secretary

person

customer

officer full-time-teller part-time-teller full-time-secretary part-time-secretary

Database Systems Concepts 8.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiple Inheritance

• The class/subclass relationship is represented by a directed
acyclic graph (DAG) — a class may have more than one
superclass.

• A class inherits variables and methods from all its
superclasses.

• There is potential for ambiguity. E.g., variable with the same
name inherited from two superclasses. Different solutions such
as flag and error, rename variables, or choose one.

• Can use multiple inheritance to model “roles” of an object.

– A person can play the roles of student, a teacher or
footballPlayer, or any combination of the three (e.g., student
teaching assistants who also play football).

– Create subclasses such as student-teacher and
student-teacher-footballPlayer that inherit from multiple
classes.

Database Systems Concepts 8.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Identity

• An object retains its identity even if some or all of the values of
variables or definitions of methods change over time.

• Object identity is a stronger notion of identity than in
programming languages or data models not based on object
orientation.

– Value – data value; used in relational systems.

– Name – supplied by user; used for variables in procedures.

– Built-in – identity built into data model or programming
language.
∗ no user-supplied identifier is required.
∗ form of identity used in object-oriented systems.

Database Systems Concepts 8.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Identifiers

• Object identifiers used to uniquely identify objects

– can be stored as a field of an object, to refer to another
object.

– E.g., the spouse field of a person object may be an identifier
of another person object.

– can be system generated (created by database) or external
(such as social-security number)

Database Systems Concepts 8.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Containment

wheel brake gear frame

bicycle

rim spokes tire lever pad cable

• Each component in a design may contain other components

• Can be modeled as containment of objects. Objects containing
other objects are called complex or composite objects.

• Multiple levels of containment create a containment hierarchy:
links interpreted as is-part-of , not is-a .

• Allows data to be viewed at different granularities by different
users

Database Systems Concepts 8.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object-Oriented Languages

• Object-oriented concepts can be used as a design tool, and be
encoded into, for example, a relational database (analogous to
modeling data with E-R diagram and then converting to a set of
relations).

• The concepts of object orientation can be incorporated into a
programming language that is used to manipulate the
database.

– Object-relational systems – add complex types and
object-orientation to relational language.

– Persistent programming languages – extend object-oriented
programming language to deal with databases by adding
concepts such as persistence and collections.

Database Systems Concepts 8.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Persistent Programming Languages

• Persistent programming languages:
– allow objects to be created and stored in a database

without any explicit format changes (format changes are
carried out transparently).

– allow objects to be manipulated in-memory – do not need to
explicitly load from or store to the database.

– allow data to be manipulated directly from the programming
language without having to go through a data manipulation
language like SQL.

• Due to power of most programming languages, it is easy to
make programming errors that damage the database.

• Complexity of languages makes automatic high-level
optimization more difficult.

• Do not support declarative querying very well.

Database Systems Concepts 8.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Persistence Of Objects

• Approaches to make transient objects persistent include
establishing persistence by:

– Class – declare all objects of a class to be persistent;
simple but inflexible.

– Creation – extend the syntax for creating transient objects
to create persistent objects.

– Marking – an object that is to persist beyond program
execution is marked as persistent before program
termination.

– Reference – declare (root) persistent objects; objects are
persistent if they are referred to (directly or indirectly) from a
root object.

Database Systems Concepts 8.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Identity and Pointers

• A persistent object is assigned a persistent object identifier.

• Degrees of permanence of identity:

– Intraprocedure – identity persists only during the execution
of a single procedure

– Intraprogram – identity persists only during execution of a
single program or query.

– Interprogram – identity persists from one program execution
to another.

– Persistent – identity persists throughout program executions
and structural reorganizations of data; required for
object-oriented systems.

Database Systems Concepts 8.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Identity and Pointers (Cont.)

• In O-O languages such as C++, an object identifier is actually
an in-memory pointer.

• Persistent pointer – persists beyond program execution; can be
thought of as a pointer into the database.

Database Systems Concepts 8.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Storage and Access of Persistent Objects

How to find objects in the database:

• Name objects (as you would name files) – cannot scale to
large number of objects.

– typically given only to class extents and other collections of
objects, but not to objects.

• Expose object identifiers or persistent pointers to the objects –
can be stored externally.

– All objects have object identifiers.

Database Systems Concepts 8.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Storage and Access of Persistent Objects (Cont.)

How to find objects in the database (Cont):

• Store collections of objects and allow programs to iterate over
the collections to find required objects.

– Model collections of objects as collection types

– Class extent – the collection of all objects belonging to the
class; usually maintained for all classes that can have
persistent objects.

Database Systems Concepts 8.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Persistent C++ Systems

• C++ language allows support for persistence to be added
without changing the language

– Declare a class called Persistent Object with attributes
and methods to support persistence

– Overloading – ability to redefine standard function names
and operators (i.e., +, −, the pointer dereference operator
->) when applied to new types

• Providing persistence without extending the C++ language is

– relatively easy to implement

– but more difficult to use

Database Systems Concepts 8.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

ODMG C++ Object Definition Language

• Standardize language extensions to C++ to support
persistence

• ODMG standard attempts to extend C++ as little as possible,
providing most functionality via template classes and class
libraries

• Template class Ref<class> used to specify references
(persistent pointers)

• Template class Set<class> used to define sets of objects.
Provides methods such as insert element and
delete element.

• The C++ object definition language (ODL) extends the C++
type definition syntax in minor ways.
Example: Use notation inverse to specify referential integrity
constraints.

Database Systems Concepts 8.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

ODMG C++ ODL: Example

class Person : public Persistent Object {
public:

String name;

String address;

};
class Customer : public Person {
public:

Date member from;

int customer id;

Ref<Branch> home branch;

Set<Ref<Account>> accounts inverse Account::owners;

};

Database Systems Concepts 8.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

ODMG C++ ODL: Example (Cont.)

class Account : public Persistent Object {
private:

int balance;

public:

int number;

Set<Ref<Customer>> owners inverse Customer::accounts;

int find balance();

int update balance(int delta);

};

Database Systems Concepts 8.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

ODMG C++ Object Manipulation Language

• Uses persistent versions of C++ operators such as new(db).

Ref<Account> account = new(bank db) Account;

new allocates the object in the specified database, rather than
in memory

• Dereference operator -> when applied on a Ref<Customer>

object loads the referenced object in memory (if not already
present) and returns in-memory pointer to the object.

• Constructor for a class – a special method to initialize objects
when they are created; called automatically when new is
executed

• Destructor for a class – a special method that is called when
objects in the class are deleted

Database Systems Concepts 8.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

ODMG C++ OML: Example

int create account owner(String name, String address) {
Database * bank db;

bank db = Database::open("Bank-DB");

Transaction Trans;

Trans.begin();

Ref<Account> account = new(bank db) Account;

Ref<Customer> cust = new(bank db) Customer;

cust->name = name;

cust->address = address;

cust->accounts.insert element(account);

account->owners.insert element(cust);

... Code to initialize customer id, account number etc.

Trans.commit();

}

Database Systems Concepts 8.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

ODMG C++ OML: Example of Iterators

int print customers() {
Database * bank db;

bank db = Database::open("Bank-DB");

Transaction Trans;

Trans.begin();

Iterator<Ref<Customer>> iter =

Customer::all customers.create iterator();

Ref<Customer> p;

while(iter.next(p)) {
print cust(p);

}
Trans.commit();

}

• Iterator construct helps step through objects in a collection.

Database Systems Concepts 8.30 Silberschatz, Korth and Sudarshan c©1997

	New Database Applications
	Object-Oriented Data Model
	Object Structure
	Messages and Methods
	Object Classes
	Class Definition Example
	Inheritance
	Inheritance (Cont.)
	Class Hierarchy Definition
	Class Hierarchy Example (Cont.)
	Example of Multiple Inheritance
	Multiple Inheritance
	Object Identity
	Object Identifiers
	Object Containment
	Object-Oriented Languages
	Persistent Programming Languages
	Persistence Of Objects
	Object Identity and Pointers
	Object Identity and Pointers (Cont.)
	Storage and Access of Persistent Objects
	Storage and Access of Persistent Objects (Cont.)
	Persistent C++ Systems
	ODMG C++ Object Definition Language
	ODMG C++ ODL: Example
	ODMG C++ ODL: Example (Cont.)
	ODMG C++ Object Manipulation Language
	ODMG C++ OML: Example
	ODMG C++ OML: Example of Iterators

