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Chapter 18: Distributed Databases

• Distributed Data Storage

• Network Transparency

• Distributed Query Processing

• Distributed Transaction Model

• Commit Protocols

• Coordinator Selection

• Concurrency Control

• Deadlock Handling

• Multidatabase Systems
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Distributed Database System

• Database is stored on several computers that communicate via
media such as wide-area networks, telephone lines, or local
area networks.

• Appears to user as a single system

• Processes complex queries

• Processing may be done at a site other than the initiator of the
request

• Transaction management

• Optimization of queries provided automatically
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Distributed Data Storage

Assume relational data model

• Replication: system maintains multiple copies of data, stored in
different sites, for faster retrieval and fault tolerance.

• Fragmentation: relation is partitioned into several fragments
stored in distinct sites.

• Replication and fragmentation: relation is partitioned into
several fragments; system maintains several identical replicas
of each such fragment.
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Data Replication

• A relation or fragment of a relation is replicated if it is stored
redundantly in two or more sites.

• Full replication of a relation is the case where the relation is
stored at all sites.

• Fully redundant databases are those in which every site
contains a copy of the entire database.
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Data Replication (Cont.)

• Advantages of Replication

– Availability: failure of a site containing relation r does not
result in unavailability of r if replicas exist.

– Parallelism: queries on r may be processed by several
nodes in parallel.

– Reduced data transfer: relation r is available locally at each
site containing a replica of r .

• Disadvantages of Replication

– Increased cost of updates: each replica of relation r must
be updated.

– Increased complexity of concurrency control: concurrent
updates to distinct replicas may lead to inconsistent data
unless special concurrency control mechanisms are
implemented.
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Data Fragmentation

• Division of relation r into fragments r1, r2, ..., rn which contain
sufficient information to reconstruct relation r .

• Horizontal fragmentation: each tuple of r is assigned to one or
more fragments.

• Vertical fragmentation: the schema for relation r is split into
several smaller schemas.
– All schemas must contain a common candidate key (or

superkey) to ensure lossless join property.
– A special attribute, the tuple-id attribute may be added to

each schema to serve as a candidate key.

• Fragments may be successively fragmented to an arbitrary
depth. Vertical and horizontal fragmentation can be mixed.

• Example: relation account with following schema

Account-schema = (branch-name, account-number, balance)
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Horizontal Fragmentation of account Relation

branch-name account-number balance

Hillside A-305 500

Hillside A-226 336

Hillside A-155 62

account1

branch-name account-number balance

Valleyview A-177 205

Valleyview A-402 10000

Valleyview A-408 1123

Valleyview A-639 750

account2
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Vertical Fragmentation of deposit Relation

branch-name customer-name tuple-id
Hillside Lowman 1
Hillside Camp 2
Valleyview Camp 3
Valleyview Kahn 4
Hillside Kahn 5
Valleyview Kahn 6
Valleyview Green 7

deposit1

account-number balance tuple-id
A-305 500 1
A-226 336 2
A-177 205 3
A-402 10000 4
A-155 62 5
A-408 1123 6
A-639 750 7

deposit2
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Advantages of Fragmentation

• Horizontal:

– allows parallel processing on a relation

– allows a global table to be split so that tuples are located
where they are most frequently accessed

• Vertical:

– allows for further decomposition than can be achieved with
normalization

– tuple-id attribute allows efficient joining of vertical fragments

– allows parallel processing on a relation

– allows tuples to be split so that each part of the tuple is
stored where it is most frequently accessed
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Network Transparency

• Degree to which system users may remain unaware of the
details of how and where the data items are stored in a
distributed system

• Consider transparency issues in relation to:

– Naming of data items

– Replication of data items

– Fragmentation of data items

– Location of fragments and replicas
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Naming of Data Items – Criteria

1. Every data item must have a system-wide unique name.

2. It should be possible to find the location of data items
efficiently.

3. It should be possible to change the location of data items
transparently.

4. Each site should be able to create new data items
autonomously.
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Centralized Scheme — Name Server

• Structure:

– name server assigns all names

– each site maintains a record of local data items

– sites ask name server to locate non-local data items

• Advantages:

– satisfies naming criteria 1-3

• Disadvantages:

– does not satisfy naming criterion 4

– name server is a potential performance bottleneck

– name server is a single point of failure
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Use of Aliases

• Alternative to centralized scheme: each site prefixes its own
site identifier to any name that it generates, i.e., site17.account.

– Fulfills having a unique identifier, and avoids problems
associated with central control.

– However, fails to achieve network transparency.

• Solution: Create a set of aliases for data items; Store the
mapping of aliases to the real names at each site.

• The user can be unaware of the physical location of a data
item, and is unaffected if the data item is moved from one site
to another.
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Use of Aliases (Cont.)

• Each replica and each fragment of a data item must have a
unique name.

– Use postscripts to determine those replicas that are
replicas of the same data item, and those fragments that
are fragments of the same data item.

– fragments of same data item: “.f1”, “.f2”, . . . , “.fn”

– replicas of same data item: “.r1”, “.r2”, . . . , “.rn”

site17.account.f3.r2

refers to replica 2 of fragment 3 of account; this item was
generated by site 17.
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Name-Translation Algorithm

if name appears in the alias table
then expression := map (name)
else expression := name;

function map (n)
if n appears in the replica table

then result := name of replica of n;
if n appears in the fragment table

then begin
result := expression to construct fragment;
for each n′ in result do begin

replace n′ in result with map (n′);
end

end
return result;
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Example of Name-Translation Scheme

• A user at the Hillside branch, (site S1), uses the alias
local-account for the local fragment account.f1 of the account
relation.

• When this user references local-account, the query-processing
subsystem looks up local-account in the alias table, and
replaces local-account with S1.account.f1.

• If S1.account.f1 is replicated, the system must consult the
replica table in order to choose a replica.

• If this replica is fragmented, the system must examine the
fragmentation table to find out how to reconstruct the relation.

• Usually only need to consult one or two tables, however, the
algorithm can deal with any combination of successive
replication and fragmentation of relations.
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Transparency and Updates

• Must ensure that all replicas of a data item are updated and
that all affected fragments are updated.

• Consider the account relation and the insertion of the tuple:

(“Valleyview”, A-733, 600)

• Horizontal fragmentation of account

account1 = σbranch-name = “Hillside” (account)
account2 = σbranch-name = “Valleyview” (account)

– Predicate Pi is associated with the i th fragment

– Apply Pi to the tuple (“Valleyview”, A-733, 600) to test
whether that tuple must be inserted in the i th fragment

– Tuple inserted into account2
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Transparency and Updates (Cont.)

• Vertical fragmentation of deposit into deposit1 and deposit2

• The tuple (“Valleyview”, A-733, ‘Jones”, 600) must be split into
two fragments:

– one to be inserted into deposit1

– one to be inserted into deposit2

• If deposit is replicated, the tuple (“Valleyview”, A-733,
“Jones”600) must be inserted in all replicas

• Problem: If deposit is accessed concurrently it is possible that
one replica will be updated earlier than another (see section on
Concurrency Control).
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Distributed Query Processing

• For centralized systems, the primary criterion for measuring
the cost of a particular strategy is the number of disk accesses.

• In a distributed system, other issues must be taken into
account:

– The cost of data transmission over the network.

– The potential gain in performance from having several sites
process parts of the query in parallel.
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Query Transformation

• Translating algebraic queries to queries on fragments.

– It must be possible to construct relation r from its fragments

– Replace relation r by the expression to construct relation r
from its fragments

• Site selection for query processing.
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Example Query

• Consider the horizontal fragmentation of the account relation
into

account1 = σbranch-name = “Hillside” (account)
account2 = σbranch-name = “Valleyview” (account)

• The query σbranch-name = “Hillside” (account) becomes

σbranch-name = “Hillside” (account1 ∪ account2)

which is optimized into

σbranch-name = “Hillside” (account1) ∪
σbranch-name = “Hillside” (account2)
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Example Query (Cont.)

• Since account1 has only tuples pertaining to the Hillside
branch, we can eliminate the selection operation.

• Apply the definition of account2 to obtain

σbranch-name = “Hillside” (σbranch-name = “Valleyview” (account))

• This expression is the empty set regardless of the contents of
the account relation.

• Final strategy is for the Hillside site to return account1 as the
result of the query.
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Simple Join Processing

Consider the following relational algebra expression in which the
three relations are neither replicated nor fragmented

account 1 depositor 1 branch

• account is stored at site S1

• depositor at S2

• branch at S3

• For a query issued at site SI, the system needs to produce the
result at site SI.
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Possible Query Processing Strategies

• Ship copies of all three relations to site SI and choose a
strategy for processing the entire query locally at site SI.

• Ship a copy of the account relation to site S2 and compute
temp1 = account 1 depositor at S2. Ship temp1 from S2 to S3,
and compute temp2 = temp1 1 branch at S3. Ship the result
temp2 to SI.

• Devise similar strategies, exchanging the roles of S1, S2, S3.

• Must consider following factors:
– amount of data being shipped

– cost of transmitting a data block between sites

– relative processing speed at each site
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Semijoin Strategy

• Let r1 be a relation with schema R1 stored at site S1

Let r2 be a relation with schema R2 stored at site S2

• Evaluate the expression r1 1 r2, and obtain the result at S1.

1. Compute temp1← ΠR1 ∩R2 (r1) at S1.

2. Ship temp1 from S1 to S2.

3. Compute temp2← r2 1 temp1 at S2.

4. Ship temp2 from S2 to S1.

5. Compute r1 1 temp2 at S1. This is the result of r1 1 r2.
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Formal Definition

• The semijoin of r1 with r2, is denoted by:

r1�< r2

it is defined by:

ΠR1 (r1 1 r2)

• Thus, r1 �< r2 selects those tuples of r1 that contributed to
r1 1 r2.

• In step 3 above, temp2 = r2 �< r1.

• For joins of several relations, the above strategy can be
extended to a series of semijoin steps.
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Join Strategies that Exploit Parallelism

• Consider r1 1 r2 1 r3 1 r4 where relation ri is stored at site
Si . The result must be presented at site S1.

• Pipelined-join strategy

– r1 is to S2 and r1 1 r2 is computed at S2; simultaneously r3

is shipped to S4 and r3 1 r4 is computed at S4

– S2 ships tuples of (r1 1 r2) to S1 as they are produced; S4

ships tuples of (r3 1 r4) to S1

– Once tuples of (r1 1 r2) and (r3 1 r4) arrive at S1,
(r1 1 r2) 1 (r3 1 r4) is computed in parallel with the
computation of (r1 1 r2) at S2 and the computation of
(r3 1 r4) at S4.
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Distributed Transaction Model

• Transactions may access data at several sites

• Each site has a local transaction manager responsible for:

– Maintaining a log for recovery purposes.

– Participating in coordinating the concurrent execution of the
transactions executing at that site.

• Each site has a transaction coordinator, which is responsible
for:

– Starting the execution of transactions that originate at the
site.

– Distributing subtransactions to appropriate sites for
execution.

– Coordinating the termination of each transaction that
originates at the site, which may result in the transaction
being committed at all sites or aborted at all sites.
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Transaction System Architecture

TM1 TMn

computer 1 computer n

TC1 TCn
transaction
coordinator

transaction
manager
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System Failure Modes

• Failures unique to distributed systems:

– Failure of a site.

– Loss of messages.

– Failure of a communication link.

– Network partition.

• The configurations of how sites are connected physically can
be compared in terms of:

– Installation cost.

– Communication cost.

– Availability.
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System Failure Modes (Cont.)

• Partially connected networks have direct links between some,
but not all, pairs of sites.

– Lower installation cost than fully connected network

– Higher communication cost to route messages between two
sites that are not directly connected
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Network Topology
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fully connected network

tree structured network

ring network

partially connected network

star network
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Network Topology (Cont.)

• A partitioned system is split into two (or more) subsystems
(partitions) that lack any connection.

• Tree-structured: low installation and communication costs; the
failure of a single link can partition network

• Ring: At least two links must fail for partition to occur;
communication cost is high

• Star:

– the failure of a single link results in a network partition, but
since one of the partitions has only a single site it can be
treated as a single-site failure

– low communication cost

– failure of the central site results in every site in the system
becoming disconnected
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Robustness

• A robust system must:

– Detect site or link failures

– Reconfigure the system so that computation may continue.

– Recover when a processor or link is repaired.

• Handling failure types:

– Retransmit lost messages.

– Unacknowledged retransmits indicate link failure; find
alternative route for message.

– Failure to find alternative route is a symptom of network
partition.

• Network link failures and site failures are generally
indistinguishable.
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Procedure to Reconfigure System

• If replicated data is stored at the failed site, update the catalog
so that queries do not reference the copy at the failed site.

• Transactions active at the failed site should be aborted.

• If the failed site is a central server for some subsystem, an
election must be held to determine the new server.

• Reconfiguration scheme must work correctly in case of
network partitioning; must avoid:

– Electing two or more central servers in distinct partitions.

– Updating replicated data item by more than one partition

• Represent recovery tasks as a series of transactions;
concurrent control subsystem and transaction management
subsystem may then be relied upon for proper reintegration.
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Commit Protocols

• Commit protocols are used to ensure atomicity across sites

– a transaction which executes at multiple sites must either
be committed at all the sites, or aborted at all the sites.

– not acceptable to have a transaction committed at one site
and aborted at another

• The two-phase commit (2PC) protocol is widely used — will
study this first

• The three-phase commit (3PC) protocol is more complicated
and more expensive, but avoids some drawbacks of two-phase
commit protocol.
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Two-Phase Commit Protocol (2PC)

• Assumes fail-stop model – failed sites simply stop working, and
do not cause any other harm, such as sending incorrect
messages to other sites.

• Execution of the protocol is initiated by the coordinator after the
last step of the transaction has been reached

• The protocol involves all the local sites at which the transaction
executed

• Let T be a transaction initiated at site Si , and let the transaction
coordinator at Si be Ci .
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Phase 1: Obtaining a Decision

• Coordinator asks all participants to prepare to commit
transaction Ti

– Ci adds the record <prepare T> to the log and forces log
to stable storage

– sends prepare T message to all sites at which T executed

• Upon receiving message, transaction manager at site
determines if it can commit the transaction

– if not, add a record <no T> to the log and send abort T
message to Ci

– if the transaction can be committed, then:
∗ add the record <ready T> to the log
∗ force all log records for T to stable storage
∗ send ready T message to Ci
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Phase 2: Recording the Decision

• T can be committed if Ci received a ready T message from all
the participating sites; otherwise T must be aborted

• Coordinator adds a decision record, <commit T> or
<abort T>, to the log and forces record onto stable storage

Once that record reaches stable storage it is irrevocable (even
if failures occur)

• Coordinator sends a message to each participant informing it
of the decision (commit or abort)

• Participants take appropriate action locally
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Handling of Failures – Site Failure

When site Sk recovers, it examines its log to determine the fate of
transactions active at the time of the failure

• Log contains <commit T> record: site executes redo (T).

• Log contains <abort T> record: site executes undo (T).

• Log contains <ready T> record: site must consult Ci to
determine the fate of T.

– if T committed, redo (T)
– if T aborted, undo (T)

• The log contains no control records concerning T: implies that
Sk failed before responding to the prepare T message from Ci

– since the failure of Sk precludes the sending of such a
response, Ci must abort T

– Sk must execute undo (T)

Database Systems Concepts 18.40 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

Handling of Failures – Coordinator Failure

If coordinator fails while the commit protocol for T is executing, then
participating sites must decide on T’s fate:
• If an active site contains a <commit T> record in its log, then

T must be committed.

• If an active site contains an <abort T> record in its log, then T
must be aborted.

• If some active site does not contain a <ready T> record in its
log, then the failed coordinator Ci cannot have decided to
commit T. Can therefore abort T.

• If none of the above cases holds, then all active sites must
have a <ready T> record in their logs, but no additional
control records (such as <abort T> or <commit T>). In this
case active sites must wait for Ci to recover, to find decision.

• Blocking problem: active sites may have to wait for failed
coordinator to recover.
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Handling of Failures – Network Partition

• If the coordinator and all its participants remain in one partition,
the failure has no effect on the commit protocol.

• If the coordinator and its participants belong to several
partitions:

– Sites that are not in the partition containing the coordinator
think the coordinator has failed, and execute the protocol to
deal with failure of the coordinator.
∗ No harm results, but sites may still have to wait for

decision from coordinator

– The coordinator and the sites that are in the same partition
as the coordinator think that the sites in the other partition
have failed, and follow the usual commit protocol.
∗ Again, no harm results
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Recovery and Concurrency Control

• In-doubt transactions have a <ready T>, but neither a
<commit T>, nor an <abort T> log record.

• The recovering site must determine the commit–abort status of
such transactions by contacting other sites; this can slow and
potentially block recovery.

• Recovery algorithms can note lock information in the log.

– Instead of <ready T>, write out <ready T, L>

L = list of locks held by T when the log is written (read locks
can be omitted).

– For every in-doubt transaction T , all the locks noted in the
<ready T, L> log record are reacquired.

• After lock reacquisition, transaction processing can resume;
the commit or rollback of in-doubt transactions is performed
concurrently with the execution of new transactions.
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Three Phase Commit (3PC)

• Assumptions:

– No network partitioning

– At any point, at least one site must be up.

– At most K sites (participants as well as coordinator) can fail

• Phase 1: Obtaining Preliminary Decision: Identical to 2PC
Phase 1.

– Every site is ready to commit if instructed to do so

– Under 2PC each site is obligated to wait for decision from
coordinator

– Under 3PC, knowledge of pre-commit decision can be used
to commit despite coordinator failure
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Phase 2: Recording the Preliminary Decision

• Coordinator adds a decision record (<abort T> or
<precommit T>) in its log and forces record to stable storage

• Coordinator sends a message to each participant informing it
of the decision

• Participant records decision in its log

– If abort decision reached then participant aborts locally

– If pre-commit decision reached then participant replies with
<acknowledge T>
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Phase 3: Recording Decision in the Database

Executed only if decision in phase 2 was to precommit

• Coordinator collects acknowledgments. It sends <commit T>

message to the participants as soon as it receives K
acknowledgments.

• Coordinator adds the record <commit T> in its log and forces
record to stable storage.

• Coordinator sends a message to each participant to
<commit T>.

• Participants take appropriate action locally
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Handling Site Failure

Site Failure . Upon recovery, a participating site examines its log
and does the following:

• Log contains <commit T> record: site executes redo (T).

• Log contains <abort T> record: site executes undo (T).

• Log contains <ready T> record, but no <abort T> or
<precommit T> record: site consults Ci to determine the fate
of T.

– if Ci says T aborted, site executes undo (T) (and writes
<abort T> record)

– if Ci says T committed, site executes redo (T) (and writes
<commit T> record)

– if Ci says T precommitted, site resumes the protocol from
receipt of precommit T message (thus recording
<precommit T> in the log, and sending acknowledge T
message sent to coordinator)
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Handling Site Failure (Cont.)

• Log contains <precommit T> record, but no <abort T> or
<commit T> record: site consults Ci to determine the fate of
transaction T.

– if Ci says T aborted, site executes undo (T)

– if Ci says T committed, site executes redo (T)

– if Ci says T still in precommit state, site resumes protocol at
this point

• Log contains no <ready T> record for a transaction T: site
executes undo (T) and writes <abort T> record.
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Coordinator-Failure Protocol

1. The active participating sites select a new coordinator, Cnew

2. Cnew requests local status of T from each participating site
3. Each participating site, including Cnew, determines the local

status of T:
• Committed . The log contains a <commit T> record.
• Aborted . The log contains an <abort T> record.
• Ready . The log contains a <ready T> record but no

<abort T> or <precommit T> record.
• Precommitted . The log contains a <precommit T> record

but no <abort T> or <commit T> record.
• Not ready . The log contains neither a <ready T> nor an

<abort T> record.
A site that failed and recovered must ignore any precommit
record in its log when determining its status.

4. Each participating site sends its local status to Cnew.
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Coordinator Failure Protocol (Cont.)

5. Cnew decides either to commit or abort T, or to restart the
three-phase commit protocol:

• Commit state for any one participant⇒ commit

• Abort state for any one participant⇒ abort

• Precommit state for any one participant and above 2 cases
do not hold⇒
A precommit message is sent to those participants in the
uncertain state. Protocol is resumed from that point.

• Uncertain state at all live participants⇒ abort
Since at least n − k sites are up, the fact that all
participants are in an uncertain state means that the
coordinator has not sent a <commit T> message, implying
that no site has committed T .
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Coordinator Selection

• Backup coordinators

– site which maintains enough information locally to assume
the role of coordinator if the actual coordinator fails

– executes the same algorithms and maintains the same
internal state information as the actual coordinator

– allows fast recovery from coordinator failure, but involves
overhead during normal processing

• Election algorithms

– used to elect a new coordinator in case of failures

– Example: Bully Algorithm—applicable to systems where
every site can send a message to every other site
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Bully Algorithm

• If site Si sends a request that is not answered by the
coordinator within a time interval T, assume that the
coordinator has failed; Si tries to elect itself as the new
coordinator.

• Si sends an election message to every site with a higher
identification number, Si then waits for any of these processes
to answer within T.

• If no response within T, assume that all sites with numbers
greater than i have failed; Si elects itself the new coordinator.

• If answer is received, Si begins time interval T ′, waiting to
receive a message that a site with a higher identification
number has been elected.
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Bully Algorithm (Cont.)

• If no message is sent within T ′, assume the site with a higher
number has failed; Si restarts the algorithm.

• After a failed site recovers, it immediately begins execution of
the same algorithm.

• If there are no active sites with higher numbers, the recovered
site forces all processes with lower numbers to let it become
the coordinator site, even if there is a currently active
coordinator with a lower number.
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Concurrency Control

• Modify concurrency control schemes for use in distributed
environment.

• We assume that each site participates in the execution of a
commit protocol to ensure global transaction atomicity.
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Single-Lock-Manager Approach

• System maintains a single lock manager that resides in a
single chosen site, say Si .

• When a transaction needs to lock a data item, it sends a lock
request to Si and lock manager determines whether the lock
can be granted immediately

– If yes, lock manager sends a message to the site which
initiated the request

– If no, request is delayed until it can be granted, at which
time a message is sent to the initiating site
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Single-Lock-Manager Approach (Cont.)

• The transaction can read the data item from any one of the
sites at which a replica of the data item resides.

• In the case of a write, all the sites where a replica of the data
item resides must be involved in the writing.

• Advantages of scheme:

– Simple implementation

– Simple deadlock handling

• Disadvantages of scheme are:

– Bottleneck: lock manager site becomes a bottleneck

– Vulnerability: system is vulnerable to lock manager site
failure
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Majority Protocol

• Local lock manager at each site administers lock and unlock
requests for data items stored at that site.

• When a transaction wishes to lock an unreplicated data item Q
residing at site Si , a message is sent to Si ’s lock manager.

• If Q is locked in an incompatible mode, then the request is
delayed until it can be granted.

• When the lock request can be granted, the lock manager
sends a message back to the initiator indicating that the lock
request has been granted.

• Advantage of simple implementation, however, since lock and
unlock requests are no longer made at a single site, deadlock
handling is more complex.
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Majority Protocol (Cont.)

• In case of replicated data, majority protocol is more
complicated to implement than the previous schemes
– If Q is replicated at n sites, then a lock request message

must be sent to more than half of the n sites in which Q is
stored.

– The transaction does not operate on Q until it has obtained
a lock on a majority of the replicas of Q.

– When writing the data item, transaction performs writes on
all replicas.

• Requires 2(n/ 2 + 1) messages for handling lock requests, and
(n/ 2 + 1) messages for handling unlock requests.

• Potential for deadlock even with single item — e.g., each of 3
transactions may have locks on 1/3rd of the replicas of a data
item
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Biased Protocol

• Local lock manager at each site as in majority protocol,
however, requests for shared locks are handled differently than
requests for exclusive locks.

– Shared locks . When a transaction needs to lock data item
Q, it simply requests a lock on Q from the lock manager at
one site containing a replica of Q.

– Exclusive locks . When a transaction needs to lock data
item Q, it requests a lock on Q from the lock manager at all
sites containing a replica of Q.

• Advantage — imposes less overhead on read operations.

• Disadvantage — additional overhead on writes and complexity
in handling deadlock.
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Primary Copy

• Choose one replica to be the primary copy, which must reside
in precisely one site (e.g., primary site of Q).

• When a transaction needs to lock a data item Q, it requests a
lock at the primary site of Q.

• Concurrency control for replicated data handled similarly to
unreplicated data—simple implementation.

• If the primary site of Q fails, Q is inaccessible even though
other sites containing a replica may be accessible.
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Timestamping

• Each site generates a unique local timestamp using either a
logical counter or the local clock.

• Global unique timestamp is obtained by concatenating the
unique local timestamp with the unique site identifier.

locally-unique globally-unique

timestamp site identifier
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Timestamping (Cont.)

• A site with a slow clock will assign smaller timestamps→
“disadvantages” transactions

• Define within each site Si a logical clock (LCi ), which
generates the unique local timestamp

• Require that Si advance its logical clock whenever a
transaction Ti with timestamp <x,y> visits that site and x is
greater than the current value of LCi .

• In this case, site Si advances its logical clock to the value x + 1.
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Deadlock Handling

Consider the following two transactions and history:

T1: write(X) T2: write(Y)

write(Y) write(X)

T1 T2

X-lock on X
write(X)

X-lock on Y
write(Y)
wait for X-lock on X

wait for X-lock on Y

deadlock
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Centralized Approach

• A global wait-for graph is constructed and maintained in a
single site: the deadlock-detection coordinator.

– Real graph: Real, but unknown, state of the system.

– Constructed graph: Approximation generated by the
controller during the execution of its algorithm.

• The global wait-for graph can be constructed when:

– a new edge is inserted in or removed from one of the local
wait-for graphs.

– a number of changes have occurred in a local wait-for
graph.

– the coordinator needs to invoke cycle-detection.

• If the coordinator finds a cycle, it selects a victim and notifies
all sites. The sites roll back the victim transaction.
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Centralized Approach (Cont.)

• Unnecessary rollbacks may result when a deadlock has indeed
occurred and a victim has been picked, and meanwhile one of
the transactions was aborted for reasons unrelated to the
deadlock.

• Unnecessary rollbacks can result from false cycles in the
global wait-for graph; however, likelihood of false cycles is low.
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False Cycles

T1

T2

T2

T1

T3

S2

T1

T3

coordinator

S1
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False Cycles (Cont.)

• Suppose that starting from state shown in figure,

1. T2 releases resources at S1 (resulting in a message remove
T1 → T2 message from the Transaction Manager at site S1

to the coordinator), and then

2. T2 requests a resource held by T3, at site S2 (resulting in a
message insert T2 → T3 from S2 to the coordinator)

• Suppose further that the insert message reaches before the
delete message. The coordinator would then find a false cycle

T1 → T2 → T3 → T1

• The false cycle above never existed in reality.

• False cycles cannot occur if two-phase locking is used
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Fully Distributed Approach

• Each site has local wait-for graph; system combines
information in these graphs to detect deadlock

• Local Wait-for Graphs

Site 1 Site 2 Site 3

T1 → T2 → T3 T3 → T4 → T5 T5 → T1

• Global Wait-for Graph

T1 → T2 → T3 → T4 → T5

↑ |
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Fully Distributed Approach (Cont.)

• System model: a transaction runs at a single site, and makes
requests to other sites for accessing non-local data.

• Each site maintains its own local wait-for graph in the normal
fashion: there is an edge Ti → Tj if Ti is waiting on a lock held
by Tj (note: Ti and Tj may be non-local).

• Additionally, arc Ti → Tex exists in the graph at site Sk if

(a) Ti is executing at site Sk , and is waiting for a reply to a
request made on another site, or

(b) Ti is non-local to site Sk , and a lock has been granted to Ti

at Sk .

• Similarly, arc Tex → Ti exists in the graph at site Sk if

(a) Ti is non-local to site Sk , and is waiting on a lock for data at
site Sk , or

(b) Ti is local to site Sk , and has accessed data from an
external site.
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Fully Distributed Approach (Cont.)

• Centralized Deadlock Detection — all graph edges sent to
central deadlock detector

• Distributed Deadlock Detection — “path pushing” algorithm

• Path pushing initiated when a site detects a local cycle
involving Tex , which indicates possibility of a deadlock.

• Suppose cycle at site Si is

Tex → Ti → Tj → . . .→ Tn → Tex

and Tn is waiting for some transaction at site Sj . Then Si

passes on information about the cycle to Sj

• Optimization: Si passes on information only if i > n.

• Sj updates it graph with new information and if it finds a cycle it
repeats above process.
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Fully Distributed Approach: Example

Site 1

EX(3)→ T1 → T2 → T3 → EX(2)

Site 2

EX(1)→ T3 → T4 → T5 → EX(3)

Site 3

EX(2)→ T5 → T1 → EX(1)

EX(i): Indicates Tex , plus wait is on/by a transaction at Site i
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Fully Distributed Approach Example (Cont.)

• Site passes wait-for information along path in graph:

– Let EX(j)→ Ti → ... Tn → EX(k) be a path in the local
wait-for graph at Site m

– Site m “pushes” the path information to site k if i > n

• Example:

– Site 1 does not pass information : 1 < 3

– Site 2 does not pass information : 3 < 5

– Site 3 passes (T5, T1) to Site 1 because:
∗ 5 > 1
∗ T1 is waiting for a data item at site 1
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Fully Distributed Approach (Cont.)

• After the path EX(2)→ T5 → T1 → EX(1) has been pushed to
Site 1 we have:

Site 1

EX(2)→ T5 → T1 → T2 → T3 → EX(2)

Site 2

EX(1)→ T3 → T4 → T5 → EX(3)

Site 3

EX(2)→ T5 → T1 → EX(1)
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Fully Distributed Approach (Cont.)

• After the push, only Site 1 has new edges. Site 1 passes
(T5, T1, T2, T3) to site 2 since 5 > 3 and T3 is waiting for a data
item at site 2

• The new state of the local wait-for graph:

Site 1
EX(2)→ T5 → T1 → T2 → T3 → EX(2)

Site 2
T5 → T1 → T2 → T3 → T4

↑ |
Deadlock Detected

Site 3
EX(2)→ T5 → T1 → EX(1)
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Multidatabase Systems

• Software layer on top of existing database systems required to
manipulate information in heterogeneous database

• Data models may differ (hierarchical, relational, etc.)

• Transaction commit protocols may be incompatible

• Concurrency control may be based on different techniques
(locking, timestamping, etc.)

• System-level details almost certainly are totally incompatible
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Advantages

• Preservation of investment in existing

– hardware
– systems software
– applications

• Local autonomy and administrative control

• Allows use of special-purpose DBMSs

• Step towards a unified homogeneous DBMS
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Unified View of Data

• Agreement on a common data model

• Agreement on a common conceptual schema

• Agreement on a single representation of shared data (that may
be stored in multiple DBMSs)

• Agreement on units of measure

• Willingness to accept limited function in global transactions
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Transaction Management

• Local transactions are executed by each local DBMS, outside of
the MDBS system control.

• Global transactions are executed under MDBS control.

• Local autonomy—local DBMSs cannot communicate directly to
synchronize global transaction execution and the MDBS has no
control over local transaction execution.

– local concurrency control scheme needed to ensure that
DBMS’s schedule is serializable

– in case of locking, DBMS must be able to guard against
local deadlocks

– need additional mechanisms to ensure global serializability
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Two-Level Serializability

• DBMS ensures local serializability among its local transactions,
including those that are part of a global transaction.

• The MDBS ensures serializability among global transactions
alone — ignoring the orderings induced by local transactions.

• 2LSR does not ensure global serializability, however, it can
fulfill requirements for strong correctness:

1. Preserve consistency as specified by a given set of
constraints

2. Guarantee that the set of data items read by each
transaction is consistent

• Global-read protocol: Global transactions can read, but not
update, local data items; local transactions do not have access
to global data. There are no consistency constraints between
local and global data items.
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Two-Level Serializability (Cont.)

• Local-read protocol: Local transactions have read access to
global data; disallows all access to local data by global
transactions.

– A transaction has a value dependency if the value that it
writes to a data item at one site depends on a value that it
read for a data item on another site.

– For strong correctness: No transaction may have a value
dependency.

• Global-read–write/local-read protocol: Local transactions have
read access to global data; global transactions may read and
write all data;

– No consistency constraints between local and global data
items.

– No transaction may have a value dependency.
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Global Serializability

• Global 2PL—each local site uses a strict 2PL (locks are
released at the end); locks set as a result of a global
transaction are released only when that transaction reaches
the end.

• Even if no information is available concerning the structure of
the various local concurrency control schemes, a very
restrictive protocol that ensures serializability is available.

– Transaction-graph: a graph with vertices being global
transaction names and site names.
An undirected edge (Ti , Sk ) exists if Ti is active at site Sk .

– Global serializability is assured if transaction-graph
contains no undirected cycles.
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Ensuring Global Serializability

• Each site Si has a special data item, called a ticket

• Every transaction Tj that runs at site Sk writes to the ticket at
site Si

• Ensures global transactions are serialized at each site,
regardless of local concurrency control method, so long as the
method guarantees local serializability

• Global transaction manager decides serial ordering of global
transactions by controlling order in which tickets are accessed

• However, above protocol results in low concurrency between
global transactions
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