
'
&

$
%

Chapter 19: Special Topics

• Security and Integrity

• Standardization

• Performance Benchmarks

• Performance Tuning

• Time In Databases

• User Interfaces

• Active Databases

Database Systems Concepts 19.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Security and Integrity

• Integrity – protection from accidental loss of consistency.

– Crashes during transaction processing

– Concurrency control.

– Anomalies caused by the distribution of data over several
computers.

– Logical error that violates assumption of database
consistency.

• Security – protection from malicious attempts to steal or
modify data.

– Physical level
– Human level
– Operating system level
– Network
– Database system level

Database Systems Concepts 19.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Physical Level Security

• Protection of equipment from floods, power failure, etc.

• Protection of disks from theft, erasure, physical damage, etc.

• Protection of network and terminal cables from wiretaps,
non-invasive electronic eavesdropping, physical damage, etc.

Solutions:

• Replicated hardware:

– mirrored disks, dual busses, etc.

– multiple access paths between every pair of devices

• Physical security: locks, police, etc.

• Software techniques to detect physical security breaches.

Database Systems Concepts 19.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Human Level Security

• Protection from stolen passwords, sabotage, etc.

• Primarily a management problem:

– Frequent change of passwords

– Use of “non-guessable” passwords

– Log all invalid access attempts

– Data audits

– Careful hiring practices

Database Systems Concepts 19.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Operating System Level Security

• Protection from invalid logins.

• File-level access protection (often not very helpful for database
security).

• Protection from improper use of “superuser” authority.

• Protection from improper use of privileged machine
instructions.

Database Systems Concepts 19.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Network-Level Security

• Each site must ensure that it communicates with trusted sites
(not intruders).

• Links must be protected from theft or modification of
messages.

• Mechanisms:

– Identification protocol (password-based).
– Cryptography.

Database Systems Concepts 19.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Database-Level Security

• Assume security at network, operating system, human, and
physical levels.

• Database specific issues:

– each user may have authority to read only part of the data
and to write only part of the data.

– user authority may correspond to entire files or relations,
but it may also correspond only to parts of files or relations.

• Local autonomy suggests site-level authorization control in a
distributed database.

• Global control suggests centralized control.

Database Systems Concepts 19.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Authorization

Forms of authorization on parts of the database:

• Read authorization – allows reading, but not modification of
data.

• Insert authorization – allows insertion of new data, but not
modification of existing data.

• Update authorization – allows modification, but not deletion
of data.

• Delete authorization – allows deletion of data.

Database Systems Concepts 19.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Authorization (Cont.)

Forms of authorization to modify the database schema:

• Index authorization – allows creation and deletion of indices.

• Resource authorization – allows creation of new relations.

• Alteration authorization – allows addition or deletion of
attributes in a relation.

• Drop authorization – allows deletion of relations.

Database Systems Concepts 19.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Authorization and Views

• Views – means of providing a user with a “personalized” model
of the database.

• Ability of views to hide data serves both to simplify usage of
the system and to enhance security.

• A combination of relational-level security and view-level
security can be used to limit a user’s access to precisely the
data that user needs.

Database Systems Concepts 19.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

View Example

• A view is defined in SQL using the create view command.

create view v as <query expression>

• A bank clerk needs to know the names of the customers of
each branch, but is not authorized to see specific loan
information. Deny direct access to the loan relation, but grant
access to the view cust-loan, which consists only of the names
of customers and the branches at which they have a loan.

• The cust-loan view is defined in SQL as follows:

create view cust-loan as
(select branch-name, customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number)

Database Systems Concepts 19.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

View Example (Cont.)

• The clerk is authorized to see the result of the query:

select *
from cust-loan

• When the query processor translates the result into a query on
the actual relations in the database, we obtain a query on
borrower and loan.

• Authorization must be checked on the clerk’s query before
query processing begins.

Database Systems Concepts 19.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Authorization on Views

• Creation of view does not require resource authorization

• The creator of a view gets only those privileges that provide no
additional authorization beyond that he already had.

• E.g. if creator of view cust-loan had only read authorization on
borrower and loan, he gets only read authorization on
cust-loan.

Database Systems Concepts 19.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Granting of Privileges

• The passage of authorization from one user to another may be
represented by an authorization graph.

– The nodes of this graph are the users.
– The root of the graph is the database administrator.
– Consider graph for update authorization on loan
– An edge Ui → Uj indicates that user Ui has granted update

authorization on loan to Uj .

U3

DBA

U1

U5U2

U4

Database Systems Concepts 19.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Authorization Grant Graph

• Requirement: All edges in an authorization graph must be part
of some path originating with the database administrator

• If DBA revokes grant from U1:

– Grant must be revoked from U4 since U1 no longer has
authorization

– Grant must not be revoked from U5 since U5 has another
authorization path from DBA through U2

• Must prevent cycles of grants with no path from the root:

– DBA grants authorization to U7
– U7 grants authorization to U8
– U8 grants authorization to U7
– DBA revokes authorization from U7

Must revoke grant U7 to U8 and from U8 to U7 since there is no
path from DBA to U7 or to U8 anymore.

Database Systems Concepts 19.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Security Specification in SQL

• The grant statement is used to confer authorization.

grant <privilege list>
on <relation name or view name> to <user list>

• <user list> is:

– a user-id

– public, which allows all valid users the privilege granted

• Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

• The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator).

Database Systems Concepts 19.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Privileges in SQL

• select : allows read access to the relation, or the ability to
query using the view

– Example: grant users U1, U2, and U3 select authorization
on the branch relation:

grant select on branch to U1, U2, U3

• insert : the ability to insert tuples

• update : the ability to update using the SQL update statement

• delete : the ability to delete tuples

• references : ability to declare foreign keys when creating
relations

Database Systems Concepts 19.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Privileges in SQL (Cont.)

• all privileges : used as a short form for all the allowable
privileges

• usage : In SQL-92; authorizes a user to use a specified domain

• with grant option : allows a user who is granted a privilege to
pass the privilege on to other users.

– Example:
grant select on branch to U1 with grant option

gives U1 the select privilege on branch and allows U1 to
grant this privilege to others

Database Systems Concepts 19.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Revoking Authorization in SQL

• The revoke statement is used to revoke authorization.

revoke <privilege list>
on <relation name or view name> from <user list>

• Example:

revoke select on branch from U1, U2, U3 cascade

• Revocation of a privilege from a user may cause other users
also to lose that privilege; referred to as cascading of the
revoke . Prevent cascading by specifying restrict :

revoke select on branch from U1, U2, U3 restrict

With restrict , the revoke command fails if cascading revokes
are required.

Database Systems Concepts 19.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Revoking Authorization in SQL (Cont.)

• <privilege-list> may be all to revoke all privileges the revokee
may hold.

• If <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

• If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

• All privileges that depend on the privilege being revoked are
also revoked.

Database Systems Concepts 19.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

SQL-3 Extensions

• SQL-3 provides notion of roles

• Privileges can be granted to or revoked from roles, just like
users

• Roles can be assigned to users, and to other roles

• E.g.

create role teller
create role manager
grant select on branch to teller
grant teller to alice
grant teller to manager

Database Systems Concepts 19.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Encryption

• Data may be encrypted when database authorization
provisions do not offer sufficient protection.

• Properties of good encryption technique:

– Relatively simple for authorized users to encrypt and
decrypt data.

– Encryption scheme depends not on the secrecy of the
algorithm but on the secrecy of a parameter of the algorithm
called the encryption key.

– Extremely difficult for an intruder to determine the
encryption key.

Database Systems Concepts 19.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Encryption (Cont.)

• Data Encryption Standard substitutes characters and
rearranges their order on the basis of an encryption key which
is provided to authorized users via a secure mechanism.
Scheme is no more secure than the key transmission
mechanism.

• Public-key encryption based on each user having two keys:

– public key – published key used to encrypt data, but cannot
be used to decrypt data

– private key – key known only to individual user, and used to
decrypt data.

Encryption scheme is such that it is impossible or extremely
hard to decrypt data given only the public key.

• The RSA public-key encryption scheme is based on the
hardness of factoring a very large number (100’s of digits) into
its prime components.

Database Systems Concepts 19.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Statistical Databases

• Problem: how to ensure privacy of individuals while allowing
use of data for statistical purposes (e.g., finding median
income, average bank balance etc.)

• Solutions:

– System rejects any query that involves fewer than some
predetermined number of individuals.
∗ Still possible to use results of multiple overlapping

queries to deduce data about an individual

– Data pollution – random falsification of data provided in
response to a query.

– Random modification of the query itself.

• There is a tradeoff between accuracy and security.

Database Systems Concepts 19.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Standardization

• The complexity of contemporary database systems and the
need for their interoperation require a variety of standards.

– syntax and semantics of programming languages

– functions in application program interfaces

– data models (i.e., object oriented database standards)

• Formal standards are standards developed by a standards
organization (ANSI, ISO), or by industry groups, through a
public process.

• De facto standards are generally accepted as standards
without any formal process of recognition

– Standards defined by dominant vendors (IBM, Microsoft)
often become de facto standards

Database Systems Concepts 19.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Standardization (Cont.)

• Anticipatory standards lead the market place, defining
features that vendors then implement

– Ensure compatibility of future products
– But at times become very large and unwieldy since

standards bodies may not pay enough attention to ease of
implementation (e.g., SQL-92 or the forthcoming SQL-3)

• Reactionary standards attempt to standardize features that
vendors have already implemented, possibly in different ways.

– Can be hard to convince vendors to change already
implemented features

– De facto standards often go through a formal process of
recognition and become formal standards

Database Systems Concepts 19.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

SQL Standards History

• SQL developed by IBM in late 70s/early 80s

• SQL-86 first formal standard

• IBM SAA standard for SQL in 1987

• SQL-89 added features to SQL-86 that were already
implemented in many systems (reactionary standard)

• SQL-92 added many new features to SQL-89 (anticipatory
standard)

– Defines levels of compliance (entry, intermediate and full)
– Even as of 1997, few database vendors had full SQL-92

implementation

• SQL-3 standard currently under development

– Adds variety of new features — extended data types, object
orientation, procedures, triggers, multimedia, etc.

Database Systems Concepts 19.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Other Standards

• Microsoft Open DataBase Connectivity (ODBC) standard for
database interconnectivity

– based on Call Level Interface (CLI) developed by X/Open
consortium

– defines application programming interface, and SQL

features that must be supported at different levels of
compliance

• X/Open XA standards define transaction management
standards for supporting distributed 2-phase commit

Database Systems Concepts 19.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Object Oriented Database Standards

• Object Database Management Group (ODMG) standard for
object-oriented databases

– version 1 in 1993 and version 2 in 1997
– provides language independent Object Definition Language

(ODL) as well as several language specific bindings
(Chapter 8)

• Object Management Group (OMG) standard for distributed
software based on objects

– Object Request Broker (ORB) provides transparent
message dispatch to distributed objects

– Interface Definition Language (IDL) for defining
language-independent data types

– Common Object Request Broker Architecture (CORBA)
defines specifications of ORB and IDL

Database Systems Concepts 19.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Performance Benchmarks

• Suites of tasks used to quantify the performance of software
systems

• Important in comparing database systems, especially as
systems become more standards compliant.

• Database-application classes:

– Online transaction processing (OLTP) requires high
concurrency and clever techniques to speed up commit
processing to support a high rate of update transactions.

– Decision support applications (including online analytical
processing, or (OLAP applications) require good query
evaluation algorithms and query optimization.

Database Systems Concepts 19.30 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Performance Benchmarks (Cont.)

• Commonly used performance measures:

– Throughput (transactions per second, or tps)
– Response time (delay from submission of transaction to

return of result)
– Availability or mean time to failure

• Suites of tasks used to characterize performance (single task
not enough for complex systems)

• Must not compute average of throughput

– E.g., suppose a system runs transaction type A at 99 tps
and transaction type B at 1 tps. Given an equal mixture of
types A and B, throughput is not (99 + 1)/ 2 = 50 tps.

– Running one transaction of each type takes time 1 + 1
99

seconds, giving a throughput of 1.98 tps.
– Must use harmonic mean: n

1/t1+1/t2+...+1/tn

Database Systems Concepts 19.31 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Benchmark Suites

• The Transaction Processing Council (TPC) benchmark suites
are widely used.

– TPC-A: simple OLTP application modeling a bank teller
application, with end-to-end measurements, including
communication with terminals

– TPC-B: same teller application, but without communication
– TPC-C: more complex OLTP application modeling an

inventory system
– TPC-D: complex decision support application (involves

plenty of aggregation)

• TPC performance measures

– transactions-per-second with specified constraints on
response time

– transactions-per-second-per-dollar accounts for cost of
owning system

Database Systems Concepts 19.32 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Benchmark Suites (Cont.)

• TPC benchmark database sizes scale up with increasing
transactions-per-second, to reflect real world applications.

• External audit of TPC performance numbers mandatory (TPC
performance claims can be trusted)

• OODB transactions require a different set of benchmarks.

– OO7 benchmark has several different operations, and
provides a separate benchmark number for each kind of
operation.

Database Systems Concepts 19.33 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Performance Tuning

• Adjusting various parameters and design choices to improve
system performance for a specific application.

• Tuning is best done by identifying bottlenecks, and eliminating
them.

• Can tune a database system at 3 levels:

– Hardware – e.g., add disks to speed up I/O, add memory to
increase buffer hits, move to a faster processor.

– Database system parameters – e.g., set buffer size to
avoid paging of buffer, set checkpointing intervals to limit
log size. System may have automatic tuning.

– Higher level database design , such as the schema,
indices and transactions (more later)

Database Systems Concepts 19.34 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Identifying Bottlenecks

• Databases are complex systems

• Transactions request a sequence of services (e.g. CPU, Disk
I/O, locks)

• With concurrent transactions, transactions may have to wait for
a requested service while other transactions are being served

• Can model database as a queueing system with a queue for
each service; transactions repeatedly do the following: request
a service, wait in queue for the service, and get serviced

• Bottlenecks in a database system typically show up as very
high utilizations (and correspondingly, very long queues) for a
particular service.

• Performance simulation using queueing model useful to
predict bottlenecks as well as the effects of tuning changes,
even without access to real system

Database Systems Concepts 19.35 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Queues in a Database System

concurrency control
manager

disk manager

CPU manager

transaction
manager

transaction
monitor

transaction
source

buffer
manager

lock
grant

lock
request

page
reply

page
request

page
reply

page
request

…

…

Database Systems Concepts 19.36 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tuning the Database Design

• Schema tuning

– Vertically partition relations to isolate the data that is
accessed most often – only fetch needed information.
∗ E.g., split account into two, one having (account-number,

branch-name) pairs, and the other having
(account-number, balance) pairs. Branch-name need not
be fetched unless required

– Improve performance by storing a denormalized relation
∗ E.g., store join of account and depositor; branch-name

and balance information is repeated for each holder of an
account, but join need not be computed repeatedly.

– Cluster records that would match in a frequently required
join together on the same disk page; compute join very
efficiently when required.

Database Systems Concepts 19.37 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tuning the Database Design (Cont.)

• Index tuning

– Create appropriate indices to speed up slow queries

– Speed up slow updates by removing excess indices
(tradeoff between queries and updates)

– Choose type of index (B-tree/hash) appropriate for most
frequent types of queries.

Database Systems Concepts 19.38 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tuning the Database Design (Cont.)

• Transaction tuning

– Combine frequent calls into a single set-oriented query:
fewer calls to database

– Use stored procedures: avoid need to re-parse and
re-optimize query

– Use mini-batch transactions to limit number of updates that
a single transaction can carry out. E.g., if a single large
transaction updates every record of a very large relation,
log may grow too big.
∗ Split large transaction into batch of “mini-transactions,”

each performing part of the updates∗ Hold locks across transactions in a mini-batch to ensure
serializability∗ In case of failure during a mini-batch, must complete its
remaining portion on recovery, to ensure atomicity.

Database Systems Concepts 19.39 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Time In Databases

• While most databases tend to model reality at a point in time
(at the “current” time), temporal databases model the states of
the real world across time.

• Facts in temporal relations have associated times when they
are valid, which can be represented as a union of intervals.

• The transaction time for a fact is the time interval during which
the fact is current within the database system.

• In a temporal relation, each tuple has an associated time when
it is true; the time may be either valid time or transaction time.

• A bi-temporal relation stores both valid and transaction time.

Database Systems Concepts 19.40 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Time In Databases (Cont.)

• Example of a temporal relation:

branch-name account- balance from to

number

Downtown A-101 500 94/1/1 9:00 94/1/24 11:30

Downtown A-101 100 94/1/24 11:30 *

Mianus A-215 700 95/6/2 15:30 95/8/8 10:00

Mianus A-215 900 95/8/8 10:00 95/9/5 8:00

Mianus A-215 700 95/9/5 8:00 *

Brighton A-217 750 94/7/5 11:00 95/5/1 16:00

• Temporal query languages have been proposed to simplify
modeling of time as well as time related queries.

Database Systems Concepts 19.41 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Time Specification in SQL-92

• date : four digits for the year (1–9999), two digits for the month
(1–12), and two digits for the date (1–31).

• time : two digits for the hour, two digits for the minute, and two
digits for the second, plus optional fractional digits.

• timestamp : the fields of date and time , with six fractional
digits for the seconds field.

• Times are specified in the Universal Coordinated Time,
abbreviated UTC (from the French); supports time with time
zone .

• interval : refers to a period of time (e.g., 2 days and 5 hours),
without specifying a particular time when this period starts;
could more accurately be termed a span.

Database Systems Concepts 19.42 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Temporal Query Languages

• Predicates precedes, overlaps, and contains can be applied on
time intervals.

• Intersect can be applied on two intervals, to give a single
(possibly empty) interval; the union of two intervals may or may
not be a single interval.

• A snapshot of a temporal relation at time t consists of the
tuples that are true at time t, with the time-interval attributes
projected out.

• Temporal selection : involves time attributes.

• Temporal projection : the tuples in the projection inherit their
time-intervals from the tuples in the original relation

• Temporal join : the time-interval of a tuple in the result is the
intersection of the time-intervals of the tuples from which it is
derived. If intersection is empty, tuple is discarded from join.

Database Systems Concepts 19.43 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Temporal Query Languages (Cont.)

• Functional dependencies must be used with care: adding a
time field may invalidate functional dependency

• A temporal functional dependency X τ→ Y holds on a
relation schema R if, for all legal instances r of R, all
snapshots of r satisfy the functional dependency X → Y .

• TSQL2 is a proposed extension to SQL-92 to improve support of
temporal data.

Database Systems Concepts 19.44 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

User Interfaces

• Several categories of user interfaces to a database:

• Line-oriented interfaces : most basic interface; good for ad
hoc querying using, e.g., SQL, but not good for repetitive tasks
such as data entry.

• Forms interfaces

– Widely used for data entry and other similar repetitive tasks.
– Actions can be associated with user inputs. E.g., entering

customer number may fetch and fill in customer name and
address.

– Simple error checks can be performed in the form interface
– Form editor programs/packages allow forms to be created

in a simple declarative manner, without programming.

• Graphical user interfaces : point-and-click paradigm using
features such as menus and icons; Web interfaces based on
HTML.

Database Systems Concepts 19.45 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

An Order Entry Form

Part Number Part Description QuantityUnit Price Subtotal

Total

Acme Supply Company Inc. Component Order Form

Customer Name: Date:

Customer Number: Order No.:

Address:

Phone Number:

Database Systems Concepts 19.46 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

User Interfaces (Cont.)

• Report writers: used for generating periodic reports based on
data in the database.

Region Category Sales

North Computer Hardware 1,000,000

Computer Software 500,000

All categories 1,500,000

South Computer Hardware 200,000

Computer Software 400,000

All categories 600,000

2,100,000

Acme Supply Company Inc.
Quarterly Sales Report

Period: Jan. 1 to March 31, 1996

Total Sales

Subtotal

• Fourth Generation Languages (4GLs): collections of
application-development tools (e.g., forms packages, report
writers)

Database Systems Concepts 19.47 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Active Databases

• Support the specification and execution of rules in the
database.

• Event–condition–action model:

on event
if condition
then action

– Rules are triggered by events

– Database system checks the conditions of the triggered
rules; if the conditions are satisfied, the database system
executes the specified actions.

Database Systems Concepts 19.48 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Active Databases (Cont.)

• Rules used for diverse purposes (e.g. alerting users to unusual
activity, reordering stock, enforcing integrity constraints).

• Example of a trigger to enforce the constraint
“salary of employee < salary of manager”:

define trigger employee-sal
on insert employee
if employee.salary >

(select E.salary from employee as E
where E.name = employee.manager)

then abort

Database Systems Concepts 19.49 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Active Databases (Cont.)

• We must ensure that the rule set will terminate, if the action of
a rule can cause an event that triggers the same rule.

• Multiple rules are executed in the order of their priority value.

• Event-execution binding specifies when a rule gets executed:

– immediate: as soon as event occurs
– deferred: at end of transaction, before it commits
– decoupled: some time after transaction has completed

• Error handling with immediate or deferred event-execution
binding is handled as part of transaction recovery.

• Error recovery for decoupled executions is very difficult — the
rule system should be designed such that run-time errors do
not occur during the execution of decoupled rules.

Database Systems Concepts 19.50 Silberschatz, Korth and Sudarshan c©1997

	Security and Integrity
	Physical Level Security
	Human Level Security
	 Operating System Level Security
	 Network-Level Security
	 Database-Level Security
	Authorization
	Authorization (Cont.)
	Authorization and Views
	View Example
	View Example (Cont.)
	Authorization on Views
	Granting of Privileges
	Authorization Grant Graph
	Security Specification in SQL
	Privileges in SQL
	Privileges in SQL (Cont.)
	Revoking Authorization in SQL
	Revoking Authorization in SQL (Cont.)
	SQL-3 Extensions
	Encryption
	Encryption (Cont.)
	Statistical Databases
	Standardization
	Standardization (Cont.)
	SQL Standards History
	Other Standards
	Object Oriented Database Standards
	Performance Benchmarks
	Performance Benchmarks (Cont.)
	Benchmark Suites
	Benchmark Suites (Cont.)
	Performance Tuning
	Identifying Bottlenecks
	Queues in a Database System
	Tuning the Database Design
	Tuning the Database Design (Cont.)
	Tuning the Database Design (Cont.)
	Time In Databases
	Time In Databases (Cont.)
	Time Specification in SQL-92
	Temporal Query Languages
	Temporal Query Languages (Cont.)
	User Interfaces
	An Order Entry Form
	User Interfaces (Cont.)
	Active Databases
	Active Databases (Cont.)
	Active Databases (Cont.)

