
Octobe

Sun Mi
4150 N
Santa C
U.S.A.
Application Programming Interface

Java Card™ Platform, Version 2.2.1
r 21, 2003

crosystems, Inc.
etwork Circle
lara, California 95054

650-960-1300

Java Card™ Specification (“Specification”)
Version: 2.2.1
Status: FCS
Release: October 29, 2003
Copyright 2003 Sun Microsystems, Inc.
4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more U.S. patents, foreign patents, or
pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any form by any means without
the prior written authorization of Sun Microsystems, Inc. (“Sun”) and its licensors, if any. Any use of the Specification and the information described
therein will be governed by the terms and conditions of this license and the Export Control Guidelines as set forth in the Terms of Use on Sun's website. By
viewing, downloading or otherwise copying the Specification, you agree that you have read, understood, and will comply with all of the terms and
conditions set forth herein.

Subject to the terms and conditions of this license, Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license
(without the right to sublicense) under Sun's intellectual property rights to review the Specification internally solely for the purposes of designing and
developing your implementation of the Specification and designing and developing your applets and applications intended to run on the Java Card
platform. Other than this limited license, you acquire no right, title or interest in or to the Specification or any other Sun intellectual property. You
acknowledge that any commercial or productive use of an implementation of the Specification requires separate and appropriate licensing agreements.
The Specification contains the proprietary information of Sun and may only be used in accordance with the license terms set forth herein. This license will
terminate immediately without notice from Sun if you fail to comply with any provision of this license. Upon termination or expiration of this license, you
must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is granted hereunder. Sun, Sun Microsystems, the
Sun logo, Java, Java Card, and Java Card Compatible are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS” AND IS EXPERIMENTAL AND MAY CONTAIN DEFECTS OR DEFICIENCIES WHICH CANNOT OR
WILL NOT BE CORRECTED BY SUN. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT THAT THE
CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH
CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not
represent any commitment to release or implement any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED
TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY. SUN
MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT
ANY TIME. Any use of such changes in the Specification will be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING,
PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the Specification; (ii) the use
or distribution of your Java applications or applets; and/or (iii) any claims that later versions or releases of any Specification furnished to you are
incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or subcontractor (at any tier), then the
Government's rights in the Software and accompanying documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.
7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation of the Specification
(“Feedback”). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license, with the right to sublicense through
multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback for any purpose related to the Specification and future
versions, implementations, and test suites thereof.

.

ii Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Contents
1 Overview ... 1

2 java.io .. 5
IOException .. 6

3 java.lang .. 9
ArithmeticException ... 11
ArrayIndexOutOfBoundsException .. 13
ArrayStoreException ... 15
ClassCastException ... 17
Exception .. 19
IndexOutOfBoundsException ... 20
NegativeArraySizeException .. 22
NullPointerException .. 24
Object .. 26
RuntimeException ... 28
SecurityException ... 30
Throwable ... 32

4 java.rmi ... 33
Remote .. 34
RemoteException .. 35

5 javacard.framework .. 37
AID .. 39
APDU .. 44
APDUException .. 60
Applet .. 64
AppletEvent .. 71
CardException ... 73
CardRuntimeException ... 76
ISO7816 .. 79
ISOException .. 86
JCSystem ... 88
MultiSelectable ... 99
OwnerPIN ... 101
PIN .. 106
PINException .. 109
Shareable ... 112
SystemException ... 113
TransactionException .. 117
UserException ... 120
Util .. 122

6 javacard.framework.service ... 129
BasicService .. 131
CardRemoteObject .. 140
Dispatcher ... 142
RemoteService .. 147
RMIService ... 148
iii

Contents
SecurityService ... 152
Service ... 156
ServiceException .. 158

7 javacard.security .. 163
AESKey .. 165
Checksum .. 167
CryptoException ... 171
DESKey .. 174
DSAKey .. 176
DSAPrivateKey ... 180
DSAPublicKey .. 182
ECKey ... 184
ECPrivateKey .. 192
ECPublicKey ... 194
Key .. 197
KeyAgreement .. 199
KeyBuilder .. 203
KeyPair .. 212
MessageDigest .. 217
PrivateKey ... 221
PublicKey .. 222
RandomData .. 223
RSAPrivateCrtKey .. 226
RSAPrivateKey ... 232
RSAPublicKey .. 235
SecretKey .. 238
Signature ... 239

8 javacardx.crypto .. 253
Cipher .. 254
KeyEncryption .. 264

Almanac .. 269

Index ... 289
iv Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 1
Overview
Description
 This document is the specification for the Java Card 2.2.1 Application Programming Interface.

Java Card 2.2.1 API Notes

Referenced Standards

ISO - International Standards Organization
• Information Technology - Identification cards - integrated circuit cards with contacts: ISO 7816

• Information Technology - Security Techniques - Digital Signature Scheme Giving Message Recovery: ISO
9796

• Information Technology - Data integrity mechanism using a cryptographic check function employing a
block cipher algorithm: ISO 9797

• Information technology - Security techniques - Digital signatures with appendix: ISO 14888

RSA Data Security, Inc.
• RSA Encryption Standard: PKCS #1 Version 2.1

• Password-Based Encryption Standard: PKCS #5 Version 1.5

EMV
• The EMV 2000 ICC Specifications for Payments systems Version 4.0

• The EMV ’96 ICC Specifications for Payments systems Version 3.0

IPSec
• The Internet Key Exchange (IKE) document RFC 2409 (STD 1)

ANSI
• Public Key Cryptography for the Financial Industry: The Elliptic Curve Digital Signature Algorithm

(ECDSA): X9.62-1998

IEEE
• Standard Specifications for Public Key Cryptography, Institute of Electrical and Electronic Engineers, 2000

: IEEE 1363

FIPS
• Advanced Encryption Standard (AES): FIPS-197

Standard Names for Security and Crypto Packages
• SHA (also SHA-1): Secure Hash Algorithm, as defined in Secure Hash Standard, NIST FIPS 180-1.

• MD5: The Message Digest algorithm RSA-MD5, as defined by RSA DSI in RFC 1321.

• RIPEMD-160: as defined in ISO/IEC 10118-3:1998 Information technology - Security techniques - Hash-
1

Overview

Parameter Checking
functions - Part 3: Dedicated hash-functions

• DSA: Digital Signature Algorithm, as defined in Digital Signature Standard, NIST FIPS 186.

• DES: The Data Encryption Standard, as defined by NIST in FIPS 46-1 and 46-2.

• RSA: The Rivest, Shamir and Adleman Asymmetric Cipher algorithm.

• ECDSA: Elliptic Curve Digital Signature Algorithm.

• ECDH: Elliptic Curve Diffie-Hellman algorithm.

• AES: Advanced Encryption Standard (AES), as defined by NIST in FIPS 197.

Parameter Checking

Policy
All Java Card API implementations must conform to the Java model of parameter checking. That is, the API
code should not check for those parameter errors which the VM is expected to detect. These include all
parameter errors, such as null pointers, index out of bounds, and so forth, that result in standard runtime
exceptions. The runtime exceptions that are thrown by the Java Card VM are:

• ArithmeticException

• ArrayStoreException

• ClassCastException

• IndexOutOfBoundsException

• ArrayIndexOutOfBoundsException

• NegativeArraySizeException

• NullPointerException

• SecurityException

Exceptions to the Policy
In some cases, it may be necessary to explicitly check parameters. These exceptions to the policy are
documented in the Java Card API specification. A Java Card API implementation must not perform parameter
checking with the intent to avoid runtime exceptions, unless this is clearly specified by the Java Card API
specification.

Note—If multiple erroneous input parameters exist, any one of several runtime exceptions will be thrown by the
VM. Java programmers rely on this behavior, but they do not rely on getting a specific exception. It is not
necessary (nor is it reasonable or practical) to document the precise error handling for all possible combinations
of equivalence classes of erroneous inputs. The value of this behavior is that the logic error in the calling
program is detected and exposed via the runtime exception mechanism, rather than being masked by a normal
return.

Package Summary

Packages

java.io A subset of the java.io package in the standard Java programming language.
2 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Overview

Class Hierarchy
Class Hierarchy
java.lang.Object

javacard.framework.AID
javacard.framework.APDU
javacard.framework.Applet
javacard.framework.service.BasicService (implements javacard.framework.service.Service)

javacard.framework.service.RMIService (implements javacard.framework.service.RemoteService)
javacard.framework.service.CardRemoteObject (implements java.rmi.Remote)
javacard.security.Checksum
javacardx.crypto.Cipher
javacard.framework.service.Dispatcher
javacard.framework.JCSystem
javacard.security.KeyAgreement
javacard.security.KeyBuilder
javacard.security.KeyPair
javacard.security.MessageDigest
javacard.framework.OwnerPIN (implements javacard.framework.PIN)
javacard.security.RandomData
javacard.security.Signature
java.lang.Throwable

java.lang.Exception
javacard.framework.CardException

javacard.framework.UserException
java.io.IOException

java.rmi.RemoteException
java.lang.RuntimeException

java.lang.ArithmeticException
java.lang.ArrayStoreException
javacard.framework.CardRuntimeException

javacard.framework.APDUException
javacard.security.CryptoException
javacard.framework.ISOException
javacard.framework.PINException
javacard.framework.service.ServiceException
javacard.framework.SystemException
javacard.framework.TransactionException

java.lang.ClassCastException
java.lang.IndexOutOfBoundsException

java.lang.ArrayIndexOutOfBoundsException
java.lang.NegativeArraySizeException
java.lang.NullPointerException
java.lang.SecurityException

javacard.framework.Util

java.lang Provides classes that are fundamental to the design of the Java Card technology subset
of the Java programming language.

java.rmi The java.rmi package defines the Remote interface which identifies interfaces
whose methods can be invoked from card acceptance device (CAD) client applications.

javacard.framework Provides a framework of classes and interfaces for building, communicating with and
working with Java Card technology-based applets.

javacard.framework.
service

Provides a service framework of classes and interfaces that allow a Java Card
technology-based applet to be designed as an aggregation of service components.

javacard.security Provides classes and interfaces that contain publicly-available functionality for
implementing a security and cryptography framework on the Java Card platform.

javacardx.crypto Extension package that contains functionality, which may be subject to export controls,
for implementing a security and cryptography framework on the Java Card platform.

Package Summary
 Overview 3

Overview

Interface Hierarchy
Interface Hierarchy
javacard.framework.AppletEvent
javacard.security.DSAKey

javacard.security.DSAPrivateKey
javacard.security.DSAPublicKey

javacard.security.ECKey
javacard.security.ECPrivateKey
javacard.security.ECPublicKey

javacard.framework.ISO7816
javacard.security.Key

javacard.security.PrivateKey
javacard.security.DSAPrivateKey
javacard.security.ECPrivateKey
javacard.security.RSAPrivateCrtKey
javacard.security.RSAPrivateKey

javacard.security.PublicKey
javacard.security.DSAPublicKey
javacard.security.ECPublicKey
javacard.security.RSAPublicKey

javacard.security.SecretKey
javacard.security.AESKey
javacard.security.DESKey

javacardx.crypto.KeyEncryption
javacard.framework.MultiSelectable
javacard.framework.PIN
java.rmi.Remote
javacard.framework.service.Service

javacard.framework.service.RemoteService
javacard.framework.service.SecurityService

javacard.framework.Shareable
4 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 2
Package

java.io
Description
A subset of the java.io package in the standard Java programming language.

The java.io.IOException class is included in the Java Card API to maintain a hierarchy of exceptions
identical to the standard Java programming language. The java.io.IOException class is the superclass of
java.rmi.RemoteException, that indicates an exception occurred during a remote method call.

Class Summary

Exceptions

IOException A Java Card runtime environment-owned instance of IOException is thrown to
signal that an I/O exception of some sort has occurred.
5

IOException java.io

Declaration
java.io

IOException
Declaration
public class IOException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.io.IOException

Direct Known Subclasses: java.rmi.RemoteException

Description
A Java Card runtime environment-owned instance of IOException is thrown to signal that an I/O exception
of some sort has occurred. This class is the general class of exceptions produced by failed or interrupted I/O
operations.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Specification
for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the Java 2 Platform Standard
Edition API Specification.

Member Summary

Constructors
IOException()

Constructs an IOException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
6 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.io IOException

IOException()
Constructors

IOException()

Declaration:
public IOException()

Description:
Constructs an IOException.
 java.io IOException 7

IOException java.io

IOException()
8 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 3
Package

java.lang
Description
Provides classes that are fundamental to the design of the Java Card technology subset of the Java programming
language. The classes in this package are derived from java.lang in the standard Java programming
language and represent the core functionality required by the Java Card Virtual Machine. This core functionality
is represented by the Object class, which is the base class for all Java language classes and the Throwable
class, which is the base class for the exception and runtime exception classes.

The exceptions and runtime exceptions that are included in this package are those that can be thrown by the Java
Card Virtual Machine. They represent only a subset of the exceptions available in java.lang in the standard
Java programming language.

Class Summary

Classes

Object Class Object is the root of the Java Card platform class hierarchy.

Throwable The Throwable class is the superclass of all errors and exceptions in the Java Card
platform’s subset of the Java programming language.

Exceptions

ArithmeticException A Java Card runtime environment-owned instance of ArithmeticException is
thrown when an exceptional arithmetic condition has occurred.

ArrayIndexOutOfBound-
sException

A Java Card runtime environment-owned instance of
ArrayIndexOutOfBoundsException is thrown to indicate that an array has
been accessed with an illegal index.

ArrayStoreException A Java Card runtime environment-owned instance of ArrayStoreException is
thrown to indicate that an attempt has been made to store the wrong type of object into
an array of objects.

ClassCastException A Java Card runtime environment-owned instance of ClassCastException is
thrown to indicate that the code has attempted to cast an object to a subclass of which it
is not an instance.

Exception The class Exception and its subclasses are a form of Throwable that indicate
conditions that a reasonable applet might want to catch.

IndexOutOfBoundsExcep-
tion

A Java Card runtime environment-owned instance of
IndexOutOfBoundsException is thrown to indicate that an index of some sort
(such as to an array) is out of range.

NegativeArraySizeEx-
ception

A Java Card runtime environment-owned instance of
NegativeArraySizeException is thrown if an applet tries to create an array
with negative size.
9

java.lang

Class Summary
NullPointerException A Java Card runtime environment-owned instance of NullPointerException is
thrown when an applet attempts to use null in a case where an object is required.

RuntimeException RuntimeException is the superclass of those exceptions that can be thrown during
the normal operation of the Java Card Virtual Machine.

SecurityException A Java Card runtime environment-owned instance of SecurityException is
thrown by the Java Card Virtual Machine to indicate a security violation.

Class Summary
10 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang ArithmeticException

Declaration
java.lang

ArithmeticException
Declaration
public class ArithmeticException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.ArithmeticException

Description
A Java Card runtime environment-owned instance of ArithmeticException is thrown when an
exceptional arithmetic condition has occurred. For example, a “divide by zero” is an exceptional arithmetic
condition.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
ArithmeticException()

Constructs an ArithmeticException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 java.lang ArithmeticException 11

ArithmeticException java.lang

ArithmeticException()
Constructors

ArithmeticException()

Declaration:
public ArithmeticException()

Description:
Constructs an ArithmeticException.
12 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang ArrayIndexOutOfBoundsException

Declaration
java.lang

ArrayIndexOutOfBoundsException
Declaration
public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.IndexOutOfBoundsException

|
+--java.lang.ArrayIndexOutOfBoundsException

Description
A Java Card runtime environment-owned instance of ArrayIndexOutOfBoundsException is thrown to
indicate that an array has been accessed with an illegal index. The index is either negative or greater than or
equal to the size of the array.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
ArrayIndexOutOfBoundsException()

Constructs an ArrayIndexOutOfBoundsException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 java.lang ArrayIndexOutOfBoundsException 13

ArrayIndexOutOfBoundsException java.lang

ArrayIndexOutOfBoundsException()
Constructors

ArrayIndexOutOfBoundsException()

Declaration:
public ArrayIndexOutOfBoundsException()

Description:
Constructs an ArrayIndexOutOfBoundsException.
14 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang ArrayStoreException

Declaration
java.lang

ArrayStoreException
Declaration
public class ArrayStoreException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.ArrayStoreException

Description
A Java Card runtime environment-owned instance of ArrayStoreException is thrown to indicate that an
attempt has been made to store the wrong type of object into an array of objects. For example, the following
code generates an ArrayStoreException:

Object x[] = new AID[3];
x[0] = new OwnerPIN((byte) 3, (byte) 8);

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
ArrayStoreException()

Constructs an ArrayStoreException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 java.lang ArrayStoreException 15

ArrayStoreException java.lang

ArrayStoreException()
Constructors

ArrayStoreException()

Declaration:
public ArrayStoreException()

Description:
Constructs an ArrayStoreException.
16 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang ClassCastException

Declaration
java.lang

ClassCastException
Declaration
public class ClassCastException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.ClassCastException

Description
A Java Card runtime environment-owned instance of ClassCastException is thrown to indicate that the
code has attempted to cast an object to a subclass of which it is not an instance. For example, the following code
generates a ClassCastException:

Object x = new OwnerPIN((byte)3, (byte)8);
JCSystem.getAppletShareableInterfaceObject((AID)x, (byte)5);

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
ClassCastException()

Constructs a ClassCastException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 java.lang ClassCastException 17

ClassCastException java.lang

ClassCastException()
Constructors

ClassCastException()

Declaration:
public ClassCastException()

Description:
Constructs a ClassCastException.
18 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang Exception

Declaration
java.lang

Exception
Declaration
public class Exception extends Throwable

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

Direct Known Subclasses: javacard.framework.CardException,java.io.IOException,
RuntimeException

Description
The class Exception and its subclasses are a form of Throwable that indicate conditions that a reasonable
applet might want to catch.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Constructors

Exception()

Declaration:
public Exception()

Description:
Constructs an Exception instance.

Member Summary

Constructors
Exception()

Constructs an Exception instance.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 java.lang Exception 19

IndexOutOfBoundsException java.lang

Declaration
java.lang

IndexOutOfBoundsException
Declaration
public class IndexOutOfBoundsException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.IndexOutOfBoundsException

Direct Known Subclasses: ArrayIndexOutOfBoundsException

Description
A Java Card runtime environment-owned instance of IndexOutOfBoundsException is thrown to indicate
that an index of some sort (such as to an array) is out of range.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See JRuntime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
IndexOutOfBoundsException()

Constructs an IndexOutOfBoundsException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
20 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang IndexOutOfBoundsException

IndexOutOfBoundsException()
Constructors

IndexOutOfBoundsException()

Declaration:
public IndexOutOfBoundsException()

Description:
Constructs an IndexOutOfBoundsException.
 java.lang IndexOutOfBoundsException 21

NegativeArraySizeException java.lang

Declaration
java.lang

NegativeArraySizeException
Declaration
public class NegativeArraySizeException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.NegativeArraySizeException

Description
A Java Card runtime environment-owned instance of NegativeArraySizeException is thrown if an
applet tries to create an array with negative size.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Constructors

NegativeArraySizeException()

Declaration:
public NegativeArraySizeException()

Member Summary

Constructors
NegativeArraySizeException()

Constructs a NegativeArraySizeException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
22 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang NegativeArraySizeException

NegativeArraySizeException()
Description:
Constructs a NegativeArraySizeException.
 java.lang NegativeArraySizeException 23

NullPointerException java.lang

Declaration
java.lang

NullPointerException
Declaration
public class NullPointerException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.NullPointerException

Description
A Java Card runtime environment-owned instance of NullPointerException is thrown when an applet
attempts to use null in a case where an object is required. These include:

• Calling the instance method of a null object.

• Accessing or modifying the field of a null object.

• Taking the length of null as if it were an array.

• Accessing or modifying the slots of null as if it were an array.

• Throwing null as if it were a Throwable value.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
NullPointerException()

Constructs a NullPointerException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
24 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang NullPointerException

NullPointerException()
Constructors

NullPointerException()

Declaration:
public NullPointerException()

Description:
Constructs a NullPointerException.
 java.lang NullPointerException 25

Object java.lang

Declaration
java.lang

Object
Declaration
public class Object

java.lang.Object

Description
Class Object is the root of the Java Card platform class hierarchy. Every class has Object as a superclass.
All objects, including arrays, implement the methods of this class.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Constructors

Object()

Declaration:
public Object()

Methods

equals(Object)

Declaration:
public boolean equals(java.lang.Object obj)

Description:
Compares two Objects for equality.

The equals method implements an equivalence relation:

• It is reflexive: for any reference value x, x.equals(x) should return true.

• It is symmetric: for any reference values x and y, x.equals(y) should return true if and only if y.
equals(x) returns true.

Member Summary

Constructors
Object()

Methods
 boolean equals(Object obj)

Compares two Objects for equality.
26 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang Object

equals(Object)
• It is transitive: for any reference values x, y, and z, if x.equals(y) returns true and y.
equals(z) returns true, then x.equals(z) should return true.

• It is consistent: for any reference values x and y, multiple invocations of x.equals(y) consistently
return true or consistently return false.

• For any reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation
on objects; that is, for any reference values x and y, this method returns true if and only if x and y refer to
the same object (x==y has the value true).

Parameters:
obj - the reference object with which to compare.

Returns: true if this object is the same as the obj argument; false otherwise.
 java.lang Object 27

RuntimeException java.lang

Declaration
java.lang

RuntimeException
Declaration
public class RuntimeException extends Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

Direct Known Subclasses: ArithmeticException, ArrayStoreException, javacard.
framework.CardRuntimeException, ClassCastException,
IndexOutOfBoundsException, NegativeArraySizeException,
NullPointerException, SecurityException

Description
RuntimeException is the superclass of those exceptions that can be thrown during the normal operation of
the Java Card Virtual Machine.

A method is not required to declare in its throws clause any subclasses of RuntimeException that might be
thrown during the execution of the method but not caught.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
RuntimeException()

Constructs a RuntimeException instance.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
28 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang RuntimeException

RuntimeException()
Constructors

RuntimeException()

Declaration:
public RuntimeException()

Description:
Constructs a RuntimeException instance.
 java.lang RuntimeException 29

SecurityException java.lang

Declaration
java.lang

SecurityException
Declaration
public class SecurityException extends RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--java.lang.SecurityException

Description
A Java Card runtime environment-owned instance of SecurityException is thrown by the Java Card
Virtual Machine to indicate a security violation.

This exception is thrown when an attempt is made to illegally access an object belonging to another applet. It
may optionally be thrown by a Java Card VM implementation to indicate fundamental language restrictions,
such as attempting to invoke a private method in another class.

For security reasons, the Java Card runtime environment implementation may mute the card instead of throwing
this exception.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
SecurityException()

Constructs a SecurityException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
30 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.lang SecurityException

SecurityException()
Constructors

SecurityException()

Declaration:
public SecurityException()

Description:
Constructs a SecurityException.
 java.lang SecurityException 31

Throwable java.lang

Declaration
java.lang

Throwable
Declaration
public class Throwable

java.lang.Object
|
+--java.lang.Throwable

Direct Known Subclasses: Exception

Description
The Throwable class is the superclass of all errors and exceptions in the Java Card platform’s subset of the Java
programming language. Only objects that are instances of this class (or of one of its subclasses) are thrown by
the Java Card Virtual Machine or can be thrown by the Java programming language throw statement.
Similarly, only this class or one of its subclasses can be the argument type in a catch clause.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Constructors

Throwable()

Declaration:
public Throwable()

Description:
Constructs a new Throwable.

Member Summary

Constructors
Throwable()

Constructs a new Throwable.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
32 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 4
Package

java.rmi
Description
The java.rmi package defines the Remote interface which identifies interfaces whose methods can be
invoked from card acceptance device (CAD) client applications. It also defines a RemoteException that can
be thrown to indicate an exception occurred during the execution of a remote method call.

Class Summary

Interfaces

Remote The Remote interface serves to identify interfaces whose methods may be invoked from
a CAD client application.

Exceptions

RemoteException A Java Card runtime environment-owned instance of RemoteException is thrown
to indicate that a communication-related exception has occurred during the execution
of a remote method call.
33

Remote java.rmi

Declaration
java.rmi

Remote
Declaration
public interface Remote

All Known Implementing Classes: javacard.framework.service.CardRemoteObject

Description
The Remote interface serves to identify interfaces whose methods may be invoked from a CAD client
application. An object that is a remote object must directly or indirectly implement this interface. Only those
methods specified in a “remote interface”, an interface that extends java.rmi.Remote are available
remotely. Implementation classes can implement any number of remote interfaces and can extend other remote
implementation classes. RMI for the Java Card platform provides a convenience class called javacard.
framework.service.CardRemoteObject that remote object implementations can extend which
facilitates remote object creation. For complete details on RMI for the Java Card platform, see the Runtime
Environment Specification for the Java Card Platform and the javacard.framework.service API
package.
34 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

java.rmi RemoteException

Declaration
java.rmi

RemoteException
Declaration
public class RemoteException extends java.io.IOException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.io.IOException

|
+--java.rmi.RemoteException

Description
A Java Card runtime environment-owned instance of RemoteException is thrown to indicate that a
communication-related exception has occurred during the execution of a remote method call. Each method of a
remote interface, an interface that extends java.rmi.Remote, must list RemoteException or a
superclass in its throws clause.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

This Java Card platform class’s functionality is a strict subset of the definition in the JavaTM 2 Platform
Standard Edition (J2SETM) API Specification.

Member Summary

Constructors
RemoteException()

Constructs a RemoteException.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 java.rmi RemoteException 35

RemoteException java.rmi

RemoteException()
Constructors

RemoteException()

Declaration:
public RemoteException()

Description:
Constructs a RemoteException.
36 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 5
Package

javacard.framework
Description
Provides a framework of classes and interfaces for building, communicating with and working with Java Card
technology-based applets. These classes and interfaces provide the minimum required functionality for a Java
Card environment. If additional functionality is desired, for example to specialize the card for a particular
market, other frameworks would need to be added.

The key classes and interfaces in this package are:

• AID-encapsulates the Application Identifier (AID) associated with an applet.

• APDU-provides methods for controlling card input and output.

• Applet-the base class for all Java Card technology-based applets on the card. It provides methods for
working with applets to be loaded onto, installed into and executed on a Java Card technology-compliant
smart card.

• CardException, CardRuntimeException-provide functionality similar to java.lang.
Exception and java.lang.RuntimeException in the standard Java programming language, but
specialized for the card environment.

• ISO7816-provides important constants for working with input and output data.

• JCSystem-provides methods for controlling system functions such as transaction management, transient
objects, object deletion mechanism, resource management, and inter-applet object sharing.

• MultiSelectable-provides methods that support advanced programming techniques with logical
channels.

• Shareable-provides a mechanism that lets objects that implement this interface be shared across an
applet firewall.

• Util-provides convenient methods for working with arrays and array data.

Class Summary

Interfaces

AppletEvent The AppletEvent interface provides a callback interface for the Java Card runtime
environment to inform the applet about life cycle events.

ISO7816 ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4.

MultiSelectable The MultiSelectable interface identifies the implementing Applet subclass as
being capable of concurrent selections.

PIN This interface represents a PIN.

Shareable The Shareable interface serves to identify all shared objects.
37

javacard.framework

Class Summary
Classes

AID This class encapsulates the Application Identifier (AID) associated with an applet.

APDU Application Protocol Data Unit (APDU) is the communication format between the card
and the off-card applications.

Applet This abstract class defines an Java Card technology-based applet.

JCSystem The JCSystem class includes a collection of methods to control applet execution,
resource management, atomic transaction management, object deletion mechanism and
inter-applet object sharing in the Java Card environment.

OwnerPIN This class represents an Owner PIN, implements Personal Identification Number
functionality as defined in the PIN interface, and provides the ability to update the PIN
and thus owner functionality.

Util The Util class contains common utility functions.

Exceptions

APDUException APDUException represents an APDU related exception.

CardException The CardException class defines a field reason and two accessor methods
getReason() and setReason().

CardRuntimeException The CardRuntimeException class defines a field reason and two accessor
methods getReason() and setReason().

ISOException ISOException class encapsulates an ISO 7816-4 response status word as its
reason code.

PINException PINException represents a OwnerPIN class access-related exception.

SystemException SystemException represents a JCSystem class related exception.

TransactionException TransactionException represents an exception in the transaction subsystem.

UserException UserException represents a User exception.

Class Summary
38 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework AID

Declaration
javacard.framework

AID
Declaration
public class AID

java.lang.Object
|
+--javacard.framework.AID

Description
This class encapsulates the Application Identifier (AID) associated with an applet. An AID is defined in ISO
7816-5 to be a sequence of bytes between 5 and 16 bytes in length.

The Java Card runtime environment creates instances of AID class to identify and manage every applet on the
card. Applets need not create instances of this class. An applet may request and use the Java Card runtime
environment-owned instances to identify itself and other applet instances.

Java Card runtime environment-owned instances of AID are permanent Java Card runtime environment Entry
Point Objects and can be accessed from any applet context. References to these permanent objects can be stored
and re-used.

An applet instance can obtain a reference to Java Card runtime environment-owned instances of its own AID
object by using the JCSystem.getAID() method and another applet’s AID object via the JCSystem.
lookupAID() method.

An applet uses AID instances to request to share another applet’s object or to control access to its own shared
object from another applet. See Runtime Environment Specification for the Java Card Platform, section 6.2 for
details.

See Also: JCSystem, SystemException

Member Summary

Constructors
AID(byte[] bArray, short offset, byte length)

The Java Card runtime environment uses this constructor to create a new AID instance
encapsulating the specified AID bytes.

Methods
 boolean equals(byte[] bArray, short offset, byte length)

Checks if the specified AID bytes in bArray are the same as those encapsulated in
this AID object.

 boolean equals(java.lang.Object anObject)
Compares the AID bytes in this AID instance to the AID bytes in the specified
object.

 byte getBytes(byte[] dest, short offset)
Called to get all the AID bytes encapsulated within AID object.
 javacard.framework AID 39

AID javacard.framework

AID(byte[], short, byte)
Constructors

AID(byte[], short, byte)

Declaration:
public AID(byte[] bArray, short offset, byte length)

throws SystemException, NullPointerException,

ArrayIndexOutOfBoundsException, SecurityException

Description:
The Java Card runtime environment uses this constructor to create a new AID instance encapsulating the
specified AID bytes.

Parameters:
bArray - the byte array containing the AID bytes

offset - the start of AID bytes in bArray

length - the length of the AID bytes in bArray

Throws:
java.lang.SecurityException - if the bArray array is not accessible in the caller’s context

SystemException - with the following reason code:

• SystemException.ILLEGAL_VALUE if the length parameter is less than 5 or greater than
16

java.lang.NullPointerException - if the bArray parameter is null

java.lang.ArrayIndexOutOfBoundsException - if the offset parameter or length
parameter is negative or if offset+length is greater than the length of the bArray parameter

Methods

getBytes(byte[], short)

Declaration:
public final byte getBytes(byte[] dest, short offset)

throws NullPointerException, ArrayIndexOutOfBoundsException,

SecurityException

 byte getPartialBytes(short aidOffset, byte[] dest, short oOffset,
byte oLength)

Called to get part of the AID bytes encapsulated within the AID object starting at the
specified offset for the specified length.

 boolean partialEquals(byte[] bArray, short offset, byte length)
Checks if the specified partial AID byte sequence matches the first length bytes of
the encapsulated AID bytes within this AID object.

 boolean RIDEquals(AID otherAID)
Checks if the RID (National Registered Application provider identifier) portion of the
encapsulated AID bytes within the otherAID object matches that of this AID
object.

Member Summary
40 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework AID

equals(Object)
Description:
Called to get all the AID bytes encapsulated within AID object.

Parameters:
dest - byte array to copy the AID bytes

offset - within dest where the AID bytes begin

Returns: the length of the AID bytes

Throws:
java.lang.SecurityException - if the dest array is not accessible in the caller’s context

java.lang.NullPointerException - if the dest parameter is null

java.lang.ArrayIndexOutOfBoundsException - if the offset parameter is negative or
offset+length of AID bytes is greater than the length of the dest array

equals(Object)

Declaration:
public final boolean equals(java.lang.Object anObject)

throws SecurityException

Description:
Compares the AID bytes in this AID instance to the AID bytes in the specified object. The result is true
if and only if the argument is not null and is an AID object that encapsulates the same AID bytes as this
object.

This method does not throw NullPointerException.

Overrides: equals in class Object

Parameters:
anObject - the object to compare this AID against

Returns: true if the AID byte values are equal, false otherwise

Throws:
java.lang.SecurityException - if anObject object is not accessible in the caller’s context

equals(byte[], short, byte)

Declaration:
public final boolean equals(byte[] bArray, short offset, byte length)

throws ArrayIndexOutOfBoundsException, SecurityException

Description:
Checks if the specified AID bytes in bArray are the same as those encapsulated in this AID object. The
result is true if and only if the bArray argument is not null and the AID bytes encapsulated in this
AID object are equal to the specified AID bytes in bArray.

This method does not throw NullPointerException.

Parameters:
bArray - containing the AID bytes

offset - within bArray to begin

length - of AID bytes in bArray

Returns: true if equal, false otherwise
 javacard.framework AID 41

AID javacard.framework

partialEquals(byte[], short, byte)
Throws:
java.lang.SecurityException - if the bArray array is not accessible in the caller’s context

java.lang.ArrayIndexOutOfBoundsException - if the offset parameter or length
parameter is negative or if offset+length is greater than the length of the bArray parameter

partialEquals(byte[], short, byte)

Declaration:
public final boolean partialEquals(byte[] bArray, short offset, byte length)

throws ArrayIndexOutOfBoundsException, SecurityException

Description:
Checks if the specified partial AID byte sequence matches the first length bytes of the encapsulated AID
bytes within this AID object. The result is true if and only if the bArray argument is not null and
the input length is less than or equal to the length of the encapsulated AID bytes within this AID object
and the specified bytes match.

This method does not throw NullPointerException.

Parameters:
bArray - containing the partial AID byte sequence

offset - within bArray to begin

length - of partial AID bytes in bArray

Returns: true if equal, false otherwise

Throws:
java.lang.SecurityException - if the bArray array is not accessible in the caller’s context

java.lang.ArrayIndexOutOfBoundsException - if the offset parameter or length
parameter is negative or if offset+length is greater than the length of the bArray parameter

RIDEquals(AID)

Declaration:
public final boolean RIDEquals(javacard.framework.AID otherAID)

throws SecurityException

Description:
Checks if the RID (National Registered Application provider identifier) portion of the encapsulated AID
bytes within the otherAID object matches that of this AID object. The first 5 bytes of an AID byte
sequence is the RID. See ISO 7816-5 for details. The result is true if and only if the argument is not null
and is an AID object that encapsulates the same RID bytes as this object.

This method does not throw NullPointerException.

Parameters:
otherAID - the AID to compare against

Returns: true if the RID bytes match, false otherwise

Throws:
java.lang.SecurityException - if the otherAID object is not accessible in the caller’s
context
42 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework AID

getPartialBytes(short, byte[], short, byte)
getPartialBytes(short, byte[], short, byte)

Declaration:
public final byte getPartialBytes(short aidOffset, byte[] dest, short oOffset, byte

oLength)

throws NullPointerException, ArrayIndexOutOfBoundsException,

SecurityException

Description:
Called to get part of the AID bytes encapsulated within the AID object starting at the specified offset for the
specified length.

Parameters:
aidOffset - offset within AID array to begin copying bytes

dest - the destination byte array to copy the AID bytes into

oOffset - offset within dest where the output bytes begin

oLength - the length of bytes requested in dest. 0 implies a request to copy all remaining AID
bytes.

Returns: the actual length of the bytes returned in dest

Throws:
java.lang.SecurityException - if the dest array is not accessible in the caller’s context

java.lang.NullPointerException - if the dest parameter is null

java.lang.ArrayIndexOutOfBoundsException - if the aidOffset parameter is negative
or greater than the length of the encapsulated AID bytes or the oOffset parameter is negative or
oOffset+length of bytes requested is greater than the length of the dest array
 javacard.framework AID 43

APDU javacard.framework

Declaration
javacard.framework

APDU
Declaration
public final class APDU

java.lang.Object
|
+--javacard.framework.APDU

Description
Application Protocol Data Unit (APDU) is the communication format between the card and the off-card
applications. The format of the APDU is defined in ISO specification 7816-4.

This class only supports messages which conform to the structure of command and response defined in ISO
7816-4. The behavior of messages which use proprietary structure of messages (for example with header CLA
byte in range 0xD0-0xFE) is undefined. This class does not support extended length fields.

The APDU object is owned by the Java Card runtime environment. The APDU class maintains a byte array buffer
which is used to transfer incoming APDU header and data bytes as well as outgoing data. The buffer length
must be at least 133 bytes (5 bytes of header and 128 bytes of data). The Java Card runtime environment must
zero out the APDU buffer before each new message received from the CAD.

The Java Card runtime environment designates the APDU object as a temporary Java Card runtime environment
Entry Point Object (See Runtime Specification for the Java Card Platform, section 6.2.1 for details). A
temporary Java Card runtime environment Entry Point Object can be accessed from any applet context.
References to these temporary objects cannot be stored in class variables or instance variables or array
components.

The Java Card runtime environment similarly marks the APDU buffer as a global array (See Runtime
Specification for the Java Card Platform, section 6.2.2 for details). A global array can be accessed from any
applet context. References to global arrays cannot be stored in class variables or instance variables or array
components.

The applet receives the APDU instance to process from the Java Card runtime environment in the Applet.
process(APDU) method, and the first five bytes [CLA, INS, P1, P2, P3] are available in the APDU buffer.

The APDU class API is designed to be transport protocol independent. In other words, applets can use the same
APDU methods regardless of whether the underlying protocol in use is T=0 or T=1 (as defined in ISO 7816-3).

The incoming APDU data size may be bigger than the APDU buffer size and may therefore need to be read in
portions by the applet. Similarly, the outgoing response APDU data size may be bigger than the APDU buffer
size and may need to be written in portions by the applet. The APDU class has methods to facilitate this.

For sending large byte arrays as response data, the APDU class provides a special method sendBytesLong()
which manages the APDU buffer.

// The purpose of this example is to show most of the methods
// in use and not to depict any particular APDU processing
public void process(APDU apdu){
// ...
byte[] buffer = apdu.getBuffer();
byte cla = buffer[ISO7816.OFFSET_CLA];
byte ins = buffer[ISO7816.OFFSET_INS];
...
// assume this command has incoming data
// Lc tells us the incoming apdu command length
44 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

Member Summary
short bytesLeft = (short) (buffer[ISO7816.OFFSET_LC] & 0x00FF);
if (bytesLeft < (short)55) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
short readCount = apdu.setIncomingAndReceive();
while (bytesLeft > 0){

// process bytes in buffer[5] to buffer[readCount+4];
bytesLeft -= readCount;
readCount = apdu.receiveBytes (ISO7816.OFFSET_CDATA);
}

//
//...
//
// Note that for a short response as in the case illustrated here
// the three APDU method calls shown : setOutgoing(),setOutgoingLength() & sendBytes()
// could be replaced by one APDU method call : setOutgoingAndSend().
// construct the reply APDU
short le = apdu.setOutgoing();
if (le < (short)2) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
apdu.setOutgoingLength((short)3);
// build response data in apdu.buffer[0.. outCount-1];
buffer[0] = (byte)1; buffer[1] = (byte)2; buffer[3] = (byte)3;
apdu.sendBytes ((short)0 , (short)3);
// return good complete status 90 00
}

The APDU class also defines a set of STATE_.. constants which represent the various processing states of the
APDUobject based on the methods invoked and the state of the data transfers. The getCurrentState()
method returns the current state.

Note that the state number assignments are ordered as follows: STATE_INITIAL <
STATE_PARTIAL_INCOMING < STATE_FULL_INCOMING < STATE_OUTGOING <
STATE_OUTGOING_LENGTH_KNOWN < STATE_PARTIAL_OUTGOING <
STATE_FULL_OUTGOING.

The following are processing error states and have negative state number assignments :
STATE_ERROR_NO_T0_GETRESPONSE, STATE_ERROR_T1_IFD_ABORT, STATE_ERROR_IO and
STATE_ERROR_NO_T0_REISSUE.

See Also: APDUException, ISOException

Member Summary

Fields
static byte PROTOCOL_MEDIA_CONTACTLESS_TYPE_A

Transport protocol Media - Contactless Type A
static byte PROTOCOL_MEDIA_CONTACTLESS_TYPE_B

Transport protocol Media - Contactless Type B
static byte PROTOCOL_MEDIA_DEFAULT

Transport protocol Media - Contacted Asynchronous Half Duplex
static byte PROTOCOL_MEDIA_MASK

Media nibble mask in protocol byte
static byte PROTOCOL_MEDIA_USB

Transport protocol Media - USB
static byte PROTOCOL_T0

ISO 7816 transport protocol type T=0.
static byte PROTOCOL_T1

This constant is used to denote both the ISO 7816 transport protocol type T=1 and the
variant for contactless cards defined in ISO 14443-4.
 javacard.framework APDU 45

APDU javacard.framework

Member Summary
static byte PROTOCOL_TYPE_MASK
Type nibble mask in protocol byte

static byte STATE_ERROR_IO
This error state of a APDU object occurs when an APDUException with reason code
APDUException.IO_ERROR has been thrown.

static byte STATE_ERROR_NO_T0_GETRESPONSE
This error state of a APDU object occurs when an APDUException with reason code
APDUException.NO_T0_GETRESPONSE has been thrown.

static byte STATE_ERROR_NO_T0_REISSUE
This error state of a APDU object occurs when an APDUException with reason code
APDUException.NO_T0_REISSUE has been thrown.

static byte STATE_ERROR_T1_IFD_ABORT
This error state of a APDU object occurs when an APDUException with reason code
APDUException.T1_IFD_ABORT has been thrown.

static byte STATE_FULL_INCOMING
This is the state of a APDU object when all the incoming data been received.

static byte STATE_FULL_OUTGOING
This is the state of a APDU object when all outbound data has been transferred.

static byte STATE_INITIAL
This is the state of a new APDU object when only the command header is valid.

static byte STATE_OUTGOING
This is the state of a new APDU object when data transfer mode is outbound but length
is not yet known.

static byte STATE_OUTGOING_LENGTH_KNOWN
This is the state of a APDU object when data transfer mode is outbound and outbound
length is known.

static byte STATE_PARTIAL_INCOMING
This is the state of a APDU object when incoming data has partially been received.

static byte STATE_PARTIAL_OUTGOING
This is the state of a APDU object when some outbound data has been transferred but
not all.

Methods
 byte[] getBuffer()

Returns the APDU buffer byte array.
static byte getCLAChannel()

Returns the logical channel number associated with the current APDU command based
on the CLA byte.

static APDU getCurrentAPDU()
This method is called to obtain a reference to the current APDU object.

static byte[] getCurrentAPDUBuffer()
This method is called to obtain a reference to the current APDU buffer.

 byte getCurrentState()
This method returns the current processing state of the APDU object.

static short getInBlockSize()
Returns the configured incoming block size.

 byte getNAD()
Returns the Node Address byte (NAD) in T=1 protocol, and 0 in T=0 protocol.

static short getOutBlockSize()
Returns the configured outgoing block size.

static byte getProtocol()
Returns the ISO 7816 transport protocol type, T=1 or T=0 in the low nibble and the
transport media in the upper nibble in use.

Member Summary
46 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

Inherited Member Summary
Fields

STATE_INITIAL

Declaration:
public static final byte STATE_INITIAL

Description:
This is the state of a new APDU object when only the command header is valid.

STATE_PARTIAL_INCOMING

Declaration:
public static final byte STATE_PARTIAL_INCOMING

Description:
This is the state of a APDU object when incoming data has partially been received.

 short receiveBytes(short bOff)
Gets as many data bytes as will fit without APDU buffer overflow, at the specified
offset bOff.

 void sendBytes(short bOff, short len)
Sends len more bytes from APDU buffer at specified offset bOff.

 void sendBytesLong(byte[] outData, short bOff, short len)
Sends len more bytes from outData byte array starting at specified offset bOff.

 short setIncomingAndReceive()
This is the primary receive method.

 short setOutgoing()
This method is used to set the data transfer direction to outbound and to obtain the
expected length of response (Le).

 void setOutgoingAndSend(short bOff, short len)
This is the “convenience” send method.

 void setOutgoingLength(short len)
Sets the actual length of response data.

 short setOutgoingNoChaining()
This method is used to set the data transfer direction to outbound without using
BLOCK CHAINING (See ISO 7816-3/4) and to obtain the expected length of
response (Le).

static void waitExtension()
Requests additional processing time from CAD.

Inherited Member Summary

Methods inherited from class Object

equals(Object)

Member Summary
 javacard.framework APDU 47

APDU javacard.framework

STATE_FULL_INCOMING
STATE_FULL_INCOMING

Declaration:
public static final byte STATE_FULL_INCOMING

Description:
This is the state of a APDU object when all the incoming data been received.

STATE_OUTGOING

Declaration:
public static final byte STATE_OUTGOING

Description:
This is the state of a new APDU object when data transfer mode is outbound but length is not yet known.

STATE_OUTGOING_LENGTH_KNOWN

Declaration:
public static final byte STATE_OUTGOING_LENGTH_KNOWN

Description:
This is the state of a APDU object when data transfer mode is outbound and outbound length is known.

STATE_PARTIAL_OUTGOING

Declaration:
public static final byte STATE_PARTIAL_OUTGOING

Description:
This is the state of a APDU object when some outbound data has been transferred but not all.

STATE_FULL_OUTGOING

Declaration:
public static final byte STATE_FULL_OUTGOING

Description:
This is the state of a APDU object when all outbound data has been transferred.

STATE_ERROR_NO_T0_GETRESPONSE

Declaration:
public static final byte STATE_ERROR_NO_T0_GETRESPONSE

Description:
This error state of a APDU object occurs when an APDUException with reason code
APDUException.NO_T0_GETRESPONSE has been thrown.

STATE_ERROR_T1_IFD_ABORT

Declaration:
public static final byte STATE_ERROR_T1_IFD_ABORT

Description:
This error state of a APDU object occurs when an APDUException with reason code
APDUException.T1_IFD_ABORT has been thrown.
48 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

STATE_ERROR_IO
STATE_ERROR_IO

Declaration:
public static final byte STATE_ERROR_IO

Description:
This error state of a APDU object occurs when an APDUException with reason code
APDUException.IO_ERROR has been thrown.

STATE_ERROR_NO_T0_REISSUE

Declaration:
public static final byte STATE_ERROR_NO_T0_REISSUE

Description:
This error state of a APDU object occurs when an APDUException with reason code
APDUException.NO_T0_REISSUE has been thrown.

PROTOCOL_MEDIA_MASK

Declaration:
public static final byte PROTOCOL_MEDIA_MASK

Description:
Media nibble mask in protocol byte

PROTOCOL_TYPE_MASK

Declaration:
public static final byte PROTOCOL_TYPE_MASK

Description:
Type nibble mask in protocol byte

PROTOCOL_T0

Declaration:
public static final byte PROTOCOL_T0

Description:
ISO 7816 transport protocol type T=0.

PROTOCOL_T1

Declaration:
public static final byte PROTOCOL_T1

Description:
This constant is used to denote both the ISO 7816 transport protocol type T=1 and the variant for
contactless cards defined in ISO 14443-4.

PROTOCOL_MEDIA_DEFAULT

Declaration:
public static final byte PROTOCOL_MEDIA_DEFAULT

Description:
Transport protocol Media - Contacted Asynchronous Half Duplex
 javacard.framework APDU 49

APDU javacard.framework

PROTOCOL_MEDIA_CONTACTLESS_TYPE_A
PROTOCOL_MEDIA_CONTACTLESS_TYPE_A

Declaration:
public static final byte PROTOCOL_MEDIA_CONTACTLESS_TYPE_A

Description:
Transport protocol Media - Contactless Type A

PROTOCOL_MEDIA_CONTACTLESS_TYPE_B

Declaration:
public static final byte PROTOCOL_MEDIA_CONTACTLESS_TYPE_B

Description:
Transport protocol Media - Contactless Type B

PROTOCOL_MEDIA_USB

Declaration:
public static final byte PROTOCOL_MEDIA_USB

Description:
Transport protocol Media - USB

Methods

getBuffer()

Declaration:
public byte[] getBuffer()

Description:
Returns the APDU buffer byte array.

Note:

• References to the APDU buffer byte array cannot be stored in class variables or instance variables or
array components. See Runtime Specification for the Java Card Platform, section 6.2.2 for details.

Returns: byte array containing the APDU buffer

getInBlockSize()

Declaration:
public static short getInBlockSize()

Description:
Returns the configured incoming block size. In T=1 protocol, this corresponds to IFSC (information field
size for ICC), the maximum size of incoming data blocks into the card. In T=0 protocol, this method returns
1. IFSC is defined in ISO 7816-3.

This information may be used to ensure that there is enough space remaining in the APDU buffer when
receiveBytes() is invoked.

Note:

• On receiveBytes() the bOff param should account for this potential blocksize.

Returns: incoming block size setting
50 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

getOutBlockSize()
See Also: receiveBytes(short)

getOutBlockSize()

Declaration:
public static short getOutBlockSize()

Description:
Returns the configured outgoing block size. In T=1 protocol, this corresponds to IFSD (information field
size for interface device), the maximum size of outgoing data blocks to the CAD. In T=0 protocol, this
method returns 258 (accounts for 2 status bytes). IFSD is defined in ISO 7816-3.

This information may be used prior to invoking the setOutgoingLength() method, to limit the length
of outgoing messages when BLOCK CHAINING is not allowed.

Note:

• On setOutgoingLength() the len param should account for this potential blocksize.

Returns: outgoing block size setting

See Also: setOutgoingLength(short)

getProtocol()

Declaration:
public static byte getProtocol()

Description:
Returns the ISO 7816 transport protocol type, T=1 or T=0 in the low nibble and the transport media in the
upper nibble in use.

Returns: the protocol media and type in progress Valid nibble codes are listed in PROTOCOL_ ..
constants above. See PROTOCOL_T0

getNAD()

Declaration:
public byte getNAD()

Description:
Returns the Node Address byte (NAD) in T=1 protocol, and 0 in T=0 protocol. This may be used as
additional information to maintain multiple contexts.

Returns: NAD transport byte as defined in ISO 7816-3

setOutgoing()

Declaration:
public short setOutgoing()

throws APDUException

Description:
This method is used to set the data transfer direction to outbound and to obtain the expected length of
response (Le).

Notes.

• Any remaining incoming data will be discarded.

• In T=0 (Case 4) protocol, this method will return 256.
 javacard.framework APDU 51

APDU javacard.framework

setOutgoingNoChaining()
• This method sets the state of the APDU object to STATE_OUTGOING.

Returns: Le, the expected length of response

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if this method, or setOutgoingNoChaining() method
already invoked.

• APDUException.IO_ERROR on I/O error.

setOutgoingNoChaining()

Declaration:
public short setOutgoingNoChaining()

throws APDUException

Description:
This method is used to set the data transfer direction to outbound without using BLOCK CHAINING (See
ISO 7816-3/4) and to obtain the expected length of response (Le). This method should be used in place of
the setOutgoing() method by applets which need to be compatible with legacy CAD/terminals which
do not support ISO 7816-3/4 defined block chaining. See Runtime Specification for the Java Card Platform,
section 9.4 for details.

Notes.

• Any remaining incoming data will be discarded.

• In T=0 (Case 4) protocol, this method will return 256.

• When this method is used, the waitExtension() method cannot be used.

• In T=1 protocol, retransmission on error may be restricted.

• In T=0 protocol, the outbound transfer must be performed without using (ISO7816.
SW_BYTES_REMAINING_00+count) response status chaining.

• In T=1 protocol, the outbound transfer must not set the More(M) Bit in the PCB of the I block. See ISO
7816-3.

• This method sets the state of the APDU object to STATE_OUTGOING.

Returns: Le, the expected length of response data

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if this method, or setOutgoing() method already invoked.

• APDUException.IO_ERROR on I/O error

setOutgoingLength(short)

Declaration:
public void setOutgoingLength(short len)

throws APDUException

Description:
Sets the actual length of response data. If a length of 0 is specified, no data will be output.

Note:
52 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

receiveBytes(short)
• In T=0 (Case 2&4) protocol, the length is used by the Java Card runtime environment to prompt the
CAD for GET RESPONSE commands.

• This method sets the state of the APDU object to STATE_OUTGOING_LENGTH_KNOWN.

Parameters:
len - the length of response data

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setOutgoing() not called or this method already
invoked.

• APDUException.BAD_LENGTH if len is greater than 256 or if non BLOCK CHAINED data
transfer is requested and len is greater than (IFSD-2), where IFSD is the Outgoing Block Size. The
-2 accounts for the status bytes in T=1.

• APDUException.NO_GETRESPONSE if T=0 protocol is in use and the CAD does not respond to
(ISO7816.SW_BYTES_REMAINING_00+count) response status with GET RESPONSE
command on the same origin logical channel number as that of the current APDU command.

• APDUException.NO_T0_REISSUE if T=0 protocol is in use and the CAD does not respond to
(ISO7816.SW_CORRECT_LENGTH_00+count) response status by re-issuing same APDU
command on the same origin logical channel number as that of the current APDU command with the
corrected length.

• APDUException.IO_ERROR on I/O error.

See Also: getOutBlockSize()

receiveBytes(short)

Declaration:
public short receiveBytes(short bOff)

throws APDUException

Description:
Gets as many data bytes as will fit without APDU buffer overflow, at the specified offset bOff. Gets all the
remaining bytes if they fit.

Notes:

• The space in the buffer must allow for incoming block size.

• In T=1 protocol, if all the remaining bytes do not fit in the buffer, this method may return less bytes than
the maximum incoming block size (IFSC).

• In T=0 protocol, if all the remaining bytes do not fit in the buffer, this method may return less than a full
buffer of bytes to optimize and reduce protocol overhead.

• In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason code, the
Java Card runtime environment will restart APDU command processing using the newly received
command. No more input data can be received. No output data can be transmitted. No error status
response can be returned.

• This method sets the state of the APDU object to STATE_PARTIAL_INCOMING if all incoming bytes
are not received.

• This method sets the state of the APDU object to STATE_FULL_INCOMING if all incoming bytes are
received.
 javacard.framework APDU 53

APDU javacard.framework

setIncomingAndReceive()
Parameters:
bOff - the offset into APDU buffer

Returns: number of bytes read. Returns 0 if no bytes are available

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setIncomingAndReceive() not called or if
setOutgoing() or setOutgoingNoChaining() previously invoked.

• APDUException.BUFFER_BOUNDS if not enough buffer space for incoming block size.

• APDUException.IO_ERROR on I/O error.

• APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an ABORT S-
Block command to abort the data transfer.

See Also: getInBlockSize()

setIncomingAndReceive()

Declaration:
public short setIncomingAndReceive()

throws APDUException

Description:
This is the primary receive method. Calling this method indicates that this APDU has incoming data. This
method gets as many bytes as will fit without buffer overflow in the APDU buffer following the header. It
gets all the incoming bytes if they fit.

Notes:

• In T=0 (Case 3&4) protocol, the P3 param is assumed to be Lc.

• Data is read into the buffer at offset 5.

• In T=1 protocol, if all the incoming bytes do not fit in the buffer, this method may return less bytes than
the maximum incoming block size (IFSC).

• In T=0 protocol, if all the incoming bytes do not fit in the buffer, this method may return less than a full
buffer of bytes to optimize and reduce protocol overhead.

• This method sets the transfer direction to be inbound and calls receiveBytes(5).

• This method may only be called once in a Applet.process() method.

• This method sets the state of the APDU object to STATE_PARTIAL_INCOMING if all incoming bytes
are not received.

• This method sets the state of the APDU object to STATE_FULL_INCOMING if all incoming bytes are
received.

Returns: number of data bytes read. The Le byte, if any, is not included in the count. Returns 0 if no bytes
are available.

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setIncomingAndReceive() already invoked or if
setOutgoing() or setOutgoingNoChaining() previously invoked.

• APDUException.IO_ERROR on I/O error.
54 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

sendBytes(short, short)
• APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an ABORT S-
Block command to abort the data transfer.

sendBytes(short, short)

Declaration:
public void sendBytes(short bOff, short len)

throws APDUException

Description:
Sends len more bytes from APDU buffer at specified offset bOff.

If the last part of the response is being sent by the invocation of this method, the APDU buffer must not be
altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the buffer not be
altered allows the implementation to reduce protocol overhead by transmitting the last part of the response
along with the status bytes.

Notes:

• If setOutgoingNoChaining() was invoked, output block chaining must not be used.

• In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted before
(ISO7816.SW_BYTES_REMAINING_00+remaining bytes) response status is returned.

• In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE or
NO_T0_REISSUE reason code, the Java Card runtime environment will restart APDU command
processing using the newly received command. No more output data can be transmitted. No error status
response can be returned.

• In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason code, the
Java Card runtime environment will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.

• This method sets the state of the APDU object to STATE_PARTIAL_OUTGOING if all outgoing bytes
have not been sent.

• This method sets the state of the APDU object to STATE_FULL_OUTGOING if all outgoing bytes have
been sent.

Parameters:
bOff - the offset into APDU buffer

len - the length of the data in bytes to send

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setOutgoingLength() not called or
setOutgoingAndSend() previously invoked or response byte count exceeded or if
APDUException.NO_T0_GETRESPONSE or APDUException.NO_T0_REISSUE or
APDUException.T1_IFD_ABORT previously thrown.

• APDUException.BUFFER_BOUNDS if bOff is negative or len is negative or bOff+len
exceeds the buffer size.

• APDUException.IO_ERROR on I/O error.

• APDUException.NO_GETRESPONSE if T=0 protocol is in use and the CAD does not respond to
(ISO7816.SW_BYTES_REMAINING_00+count) response status with GET RESPONSE
command on the same origin logical channel number as that of the current APDU command.
 javacard.framework APDU 55

APDU javacard.framework

sendBytesLong(byte[], short, short)
• APDUException.NO_T0_REISSUE if T=0 protocol is in use and the CAD does not respond to
(ISO7816.SW_CORRECT_LENGTH_00+count) response status by re-issuing same APDU
command on the same origin logical channel number as that of the current APDU command with the
corrected length.

• APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an ABORT S-
Block command to abort the data transfer.

See Also: setOutgoing(), setOutgoingNoChaining()

sendBytesLong(byte[], short, short)

Declaration:
public void sendBytesLong(byte[] outData, short bOff, short len)

throws APDUException, SecurityException

Description:
Sends len more bytes from outData byte array starting at specified offset bOff.

If the last of the response is being sent by the invocation of this method, the APDU buffer must not be
altered. If the data is altered, incorrect output may be sent to the CAD. Requiring that the buffer not be
altered allows the implementation to reduce protocol overhead by transmitting the last part of the response
along with the status bytes.

The Java Card runtime environment may use the APDU buffer to send data to the CAD.

Notes:

• If setOutgoingNoChaining() was invoked, output block chaining must not be used.

• In T=0 protocol, if setOutgoingNoChaining() was invoked, Le bytes must be transmitted before
(ISO7816.SW_BYTES_REMAINING_00+remaining bytes) response status is returned.

• In T=0 protocol, if this method throws an APDUException with NO_T0_GETRESPONSE or
NO_T0_REISSUE reason code, the Java Card runtime environment will restart APDU command
processing using the newly received command. No more output data can be transmitted. No error status
response can be returned.

• In T=1 protocol, if this method throws an APDUException with T1_IFD_ABORT reason code, the
Java Card runtime environment will restart APDU command processing using the newly received
command. No more output data can be transmitted. No error status response can be returned.

• This method sets the state of the APDU object to STATE_PARTIAL_OUTGOING if all outgoing bytes
have not been sent.

• This method sets the state of the APDU object to STATE_FULL_OUTGOING if all outgoing bytes have
been sent.

Parameters:
outData - the source data byte array

bOff - the offset into OutData array

len - the byte length of the data to send

Throws:
java.lang.SecurityException - if the outData array is not accessible in the caller’s context

APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setOutgoingLength() not called or
56 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

setOutgoingAndSend(short, short)
setOutgoingAndSend() previously invoked or response byte count exceeded or if
APDUException.NO_T0_GETRESPONSE or APDUException.NO_T0_REISSUE or
APDUException.NO_T0_REISSUE previously thrown.

• APDUException.IO_ERROR on I/O error.

• APDUException.NO_T0_GETRESPONSE if T=0 protocol is in use and CAD does not respond
to (ISO7816.SW_BYTES_REMAINING_00+count) response status with GET RESPONSE
command on the same origin logical channel number as that of the current APDU command.

• APDUException.T1_IFD_ABORT if T=1 protocol is in use and the CAD sends in an ABORT S-
Block command to abort the data transfer.

See Also: setOutgoing(), setOutgoingNoChaining()

setOutgoingAndSend(short, short)

Declaration:
public void setOutgoingAndSend(short bOff, short len)

throws APDUException

Description:
This is the “convenience” send method. It provides for the most efficient way to send a short response
which fits in the buffer and needs the least protocol overhead. This method is a combination of
setOutgoing(), setOutgoingLength(len) followed by sendBytes (bOff, len).
In addition, once this method is invoked, sendBytes() and sendBytesLong() methods cannot be
invoked and the APDU buffer must not be altered.

Sends len byte response from the APDU buffer starting at the specified offset bOff.

Notes:

• No other APDU send methods can be invoked.

• The APDU buffer must not be altered. If the data is altered, incorrect output may be sent to the CAD.

• The actual data transmission may only take place on return from Applet.process()

• This method sets the state of the APDU object to STATE_FULL_OUTGOING.

Parameters:
bOff - the offset into APDU buffer

len - the bytelength of the data to send

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setOutgoing() or setOutgoingAndSend()
previously invoked or response byte count exceeded.

• APDUException.IO_ERROR on I/O error.

getCurrentState()

Declaration:
public byte getCurrentState()
 javacard.framework APDU 57

APDU javacard.framework

getCurrentAPDU()
Description:
This method returns the current processing state of the APDU object. It is used by the BasicService
class to help services collaborate in the processing of an incoming APDU command. Valid codes are listed
in STATE_ .. constants above. See STATE_INITIAL

Returns: the current processing state of the APDU

See Also: javacard.framework.service.BasicService

getCurrentAPDU()

Declaration:
public static javacard.framework.APDU getCurrentAPDU()

throws SecurityException

Description:
This method is called to obtain a reference to the current APDU object. This method can only be called in
the context of the currently selected applet.

Note:

• Do not call this method directly or indirectly from within a method invoked remotely via Java Card RMI
method invocation from the client. The APDU object and APDU buffer are reserved for use by
RMIService. Remote method parameter data may become corrupted.

Returns: the current APDU object being processed

Throws:
java.lang.SecurityException - if

• the current context is not the context of the currently selected applet instance or

• this method was not called, directly or indirectly, from the applet’s process method (called directly by
the Java Card runtime environment), or

• the method is called during applet installation or deletion.

getCurrentAPDUBuffer()

Declaration:
public static byte[] getCurrentAPDUBuffer()

throws SecurityException

Description:
This method is called to obtain a reference to the current APDU buffer. This method can only be called in
the context of the currently selected applet.

Note:

• Do not call this method directly or indirectly from within a method invoked remotely via Java Card RMI
method invocation from the client. The APDU object and APDU buffer are reserved for use by
RMIService. Remote method parameter data may become corrupted.

Returns: the APDU buffer of the APDU object being processed

Throws:
java.lang.SecurityException - if

• the current context is not the context of the currently selected applet or

• this method was not called, directly or indirectly, from the applet’s process method (called directly by
the Java Card runtime environment), or
58 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDU

getCLAChannel()
• the method is called during applet installation or deletion.

getCLAChannel()

Declaration:
public static byte getCLAChannel()

Description:
Returns the logical channel number associated with the current APDU command based on the CLA byte. A
number in the range 0-3 based on the least significant two bits of the CLA byte is returned if the command
contains logical channel encoding. If the command does not contain logical channel information, 0 is
returned. See Runtime Specification for the Java Card Platform, section 4.3 for encoding details.

Returns: logical channel number, if present, within the CLA byte, 0 otherwise

waitExtension()

Declaration:
public static void waitExtension()

throws APDUException

Description:
Requests additional processing time from CAD. The implementation should ensure that this method needs
to be invoked only under unusual conditions requiring excessive processing times.

Notes:

• In T=0 protocol, a NULL procedure byte is sent to reset the work waiting time (see ISO 7816-3).

• In T=1 protocol, the implementation needs to request the same T=0 protocol work waiting time
quantum by sending a T=1 protocol request for wait time extension(see ISO 7816-3).

• If the implementation uses an automatic timer mechanism instead, this method may do nothing.

Throws:
APDUException - with the following reason codes:

• APDUException.ILLEGAL_USE if setOutgoingNoChaining() previously invoked.

• APDUException.IO_ERROR on I/O error.
 javacard.framework APDU 59

APDUException javacard.framework

Declaration
javacard.framework

APDUException
Declaration
public class APDUException extends CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.framework.APDUException

Description
APDUException represents an APDU related exception.

The APDU class throws Java Card runtime environment-owned instances of APDUException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

See Also: APDU

Member Summary

Fields
static short BAD_LENGTH

This reason code is used by the APDU.setOutgoingLength() method to
indicate that the length parameter is greater that 256 or if non BLOCK CHAINED data
transfer is requested and len is greater than (IFSD-2), where IFSD is the Outgoing
Block Size.

static short BUFFER_BOUNDS
This reason code is used by the APDU.sendBytes() method to indicate that the
sum of buffer offset parameter and the byte length parameter exceeds the APDU buffer
size.

static short ILLEGAL_USE
This APDUException reason code indicates that the method should not be invoked
based on the current state of the APDU.

static short IO_ERROR
This reason code indicates that an unrecoverable error occurred in the I/O transmission
layer.

static short NO_T0_GETRESPONSE
This reason code indicates that during T=0 protocol, the CAD did not return a GET
RESPONSE command in response to a <61xx> response status to send additional
data.
60 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDUException

Inherited Member Summary
Fields

ILLEGAL_USE

Declaration:
public static final short ILLEGAL_USE

Description:
This APDUException reason code indicates that the method should not be invoked based on the current
state of the APDU.

BUFFER_BOUNDS

Declaration:
public static final short BUFFER_BOUNDS

Description:
This reason code is used by the APDU.sendBytes() method to indicate that the sum of buffer offset
parameter and the byte length parameter exceeds the APDU buffer size.

static short NO_T0_REISSUE
This reason code indicates that during T=0 protocol, the CAD did not reissue the same
APDU command with the corrected length in response to a <6Cxx> response status to
request command reissue with the specified length.

static short T1_IFD_ABORT
This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-
Block command and aborted the data transfer.

Constructors
APDUException(short reason)

Constructs an APDUException.

Methods
static void throwIt(short reason)

Throws the Java Card runtime environment-owned instance of APDUException
with the specified reason.

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)

Member Summary
 javacard.framework APDUException 61

APDUException javacard.framework

BAD_LENGTH
BAD_LENGTH

Declaration:
public static final short BAD_LENGTH

Description:
This reason code is used by the APDU.setOutgoingLength() method to indicate that the length
parameter is greater that 256 or if non BLOCK CHAINED data transfer is requested and len is greater
than (IFSD-2), where IFSD is the Outgoing Block Size.

IO_ERROR

Declaration:
public static final short IO_ERROR

Description:
This reason code indicates that an unrecoverable error occurred in the I/O transmission layer.

NO_T0_GETRESPONSE

Declaration:
public static final short NO_T0_GETRESPONSE

Description:
This reason code indicates that during T=0 protocol, the CAD did not return a GET RESPONSE command
in response to a <61xx> response status to send additional data. The outgoing transfer has been aborted. No
more data or status can be sent to the CAD in this Applet.process() method.

T1_IFD_ABORT

Declaration:
public static final short T1_IFD_ABORT

Description:
This reason code indicates that during T=1 protocol, the CAD returned an ABORT S-Block command and
aborted the data transfer. The incoming or outgoing transfer has been aborted. No more data can be received
from the CAD. No more data or status can be sent to the CAD in this Applet.process() method.

NO_T0_REISSUE

Declaration:
public static final short NO_T0_REISSUE

Description:
This reason code indicates that during T=0 protocol, the CAD did not reissue the same APDU command
with the corrected length in response to a <6Cxx> response status to request command reissue with the
specified length. The outgoing transfer has been aborted. No more data or status can be sent to the CAD in
this Applet.process() method.

Constructors

APDUException(short)

Declaration:
public APDUException(short reason)
62 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework APDUException

throwIt(short)
Description:
Constructs an APDUException. To conserve on resources use throwIt() to use the Java Card runtime
environment-owned instance of this class.

Parameters:
reason - the reason for the exception.

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

Description:
Throws the Java Card runtime environment-owned instance of APDUException with the specified
reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Throws:
APDUException - always
 javacard.framework APDUException 63

Applet javacard.framework

Declaration
javacard.framework

Applet
Declaration
public abstract class Applet

java.lang.Object
|
+--javacard.framework.Applet

Description
This abstract class defines an Java Card technology-based applet.

The Applet class must be extended by any applet that is intended to be loaded onto, installed into and
executed on a Java Card technology-compliant smart card.

Example usage of Applet

public class MyApplet extends javacard.framework.Applet{
static byte someByteArray[];
public static void install(byte[] bArray, short bOffset, byte bLength) throws

ISOException {
// make all my allocations here, so I do not run
// out of memory later
MyApplet theApplet = new MyApplet();
// check incoming parameter data
byte iLen = bArray[bOffset]; // aid length
bOffset = (short) (bOffset+iLen+1);
byte cLen = bArray[bOffset]; // info length
bOffset = (short) (bOffset+cLen+1);
byte aLen = bArray[bOffset]; // applet data length
// read first applet data byte
byte bLen = bArray[(short)(bOffset+1)];
if (bLen!=0) { someByteArray = new byte[bLen]; theApplet.register(); return; }
else ISOException.throwIt(ISO7816.SW_FUNC_NOT_SUPPORTED);
}

public boolean select(){
// selection initialization
someByteArray[17] = 42; // set selection state
return true;
}

public void process(APDU apdu) throws ISOException{
byte[] buffer = apdu.getBuffer();
// .. process the incoming data and reply
if (buffer[ISO7816.OFFSET_CLA] == (byte)0) {

switch (buffer[ISO7816.OFFSET_INS]) {
case ISO.INS_SELECT:

...
// send response data to select command
short Le = apdu.setOutgoing();
// assume data containing response bytes in replyData[] array.
if (Le < ..) ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);
apdu.setOutgoingLength((short)replyData.length);
apdu.sendBytesLong(replyData, (short) 0, (short)replyData.length);
break;

case ...
}

}
}

}

64 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework Applet

Member Summary
See Also: SystemException, JCSystem

Constructors

Applet()

Declaration:
protected Applet()

Member Summary

Constructors
protected Applet()

Only this class’s install() method should create the applet object.

Methods
 void deselect()

Called by the Java Card runtime environment to inform that this currently selected
applet is being deselected on this logical channel and no applet from the same package
is still active on any other logical channel.

 Shareable getShareableInterfaceObject(AID clientAID, byte parameter)
Called by the Java Card runtime environment to obtain a shareable interface object
from this server applet, on behalf of a request from a client applet.

static void install(byte[] bArray, short bOffset, byte bLength)
To create an instance of the Applet subclass, the Java Card runtime environment will
call this static method first.

abstract void process(APDU apdu)
Called by the Java Card runtime environment to process an incoming APDU
command.

protected void register()
This method is used by the applet to register this applet instance with the Java Card
runtime environment and to assign the Java Card platform name of the applet as its
instance AID bytes.

protected void register(byte[] bArray, short bOffset, byte bLength)
This method is used by the applet to register this applet instance with the Java Card
runtime environment and assign the specified AID bytes as its instance AID bytes.

 boolean select()
Called by the Java Card runtime environment to inform this applet that it has been
selected when no applet from the same package is active on any other logical channel.

protected boolean selectingApplet()
This method is used by the applet process() method to distinguish the SELECT
APDU command which selected this applet, from all other other SELECT APDU
commands which may relate to file or internal applet state selection.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.framework Applet 65

Applet javacard.framework

install(byte[], short, byte)
Description:
Only this class’s install() method should create the applet object.

Methods

install(byte[], short, byte)

Declaration:
public static void install(byte[] bArray, short bOffset, byte bLength)

throws ISOException

Description:
To create an instance of the Applet subclass, the Java Card runtime environment will call this static
method first.

The applet should perform any necessary initializations and must call one of the register() methods.
Only one Applet instance can be successfully registered from within this install. The installation is
considered successful when the call to register() completes without an exception. The installation is
deemed unsuccessful if the install method does not call a register() method, or if an exception is
thrown from within the install method prior to the call to a register() method, or if every call to
the register() method results in an exception. If the installation is unsuccessful, the Java Card runtime
environment must perform all the necessary clean up when it receives control. Successful installation
makes the applet instance capable of being selected via a SELECT APDU command.

Installation parameters are supplied in the byte array parameter and must be in a format using length-value
(LV) pairs as defined below:

bArray[0] = length(Li) of instance AID, bArray[1..Li] = instance AID bytes,
bArray[Li+1]= length(Lc) of control info, bArray[Li+2..Li+Lc+1] = control info,
bArray[Li+Lc+2] = length(La) of applet data, bArray[Li+Lc+2..Li+Lc+La+1] = applet data

In the above format, any of the lengths: Li, Lc or La may be zero. The control information is
implementation dependent.

The bArray object is a global array. If the applet desires to preserve any of this data, it should copy the
data into its own object.

bArray is zeroed by the Java Card runtime environment after the return from the install() method.

References to the bArray object cannot be stored in class variables or instance variables or array
components. See Runtime Environment Specification for the Java Card Platform, section 6.2.2 for details.

The implementation of this method provided by Applet class throws an ISOException with reason
code = ISO7816.SW_FUNC_NOT_SUPPORTED.

Note:

• Exceptions thrown by this method after successful installation are caught by the Java Card runtime
environment and processed by the Installer.

Parameters:
bArray - the array containing installation parameters

bOffset - the starting offset in bArray

bLength - the length in bytes of the parameter data in bArray The maximum value of bLength is 127.

Throws:
ISOException - if the install method failed
66 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework Applet

process(APDU)
process(APDU)

Declaration:
public abstract void process(javacard.framework.APDU apdu)

throws ISOException

Description:
Called by the Java Card runtime environment to process an incoming APDU command. An applet is
expected to perform the action requested and return response data if any to the terminal.

Upon normal return from this method the Java Card runtime environment sends the ISO 7816-4 defined
success status (90 00) in APDU response. If this method throws an ISOException the Java Card runtime
environment sends the associated reason code as the response status instead.

The Java Card runtime environment zeroes out the APDU buffer before receiving a new APDU command
from the CAD. The five header bytes of the APDU command are available in APDU buffer[0..4] at the time
this method is called.

The APDU object parameter is a temporary Java Card runtime environment Entry Point Object. A
temporary Java Card runtime environment Entry Point Object can be accessed from any applet context.
References to these temporary objects cannot be stored in class variables or instance variables or array
components.

Notes:

• APDU buffer[5..] is undefined and should not be read or written prior to invoking the APDU.
setIncomingAndReceive() method if incoming data is expected. Altering the APDU buffer[5..]
could corrupt incoming data.

Parameters:
apdu - the incoming APDU object

Throws:
ISOException - with the response bytes per ISO 7816-4

See Also: APDU

select()

Declaration:
public boolean select()

Description:
Called by the Java Card runtime environment to inform this applet that it has been selected when no applet
from the same package is active on any other logical channel.

It is called when a SELECT APDU command or MANAGE CHANNEL OPEN APDU command is
received and before the applet is selected. SELECT APDU commands use instance AID bytes for applet
selection. See Runtime Environment Specification for the Java Card Platform, section 4.5 for details.

A subclass of Applet should override this method if it should perform any initialization that may be
required to process APDU commands that may follow. This method returns a boolean to indicate that it is
ready to accept incoming APDU commands via its process() method. If this method returns false, it
indicates to the Java Card runtime environment that this Applet declines to be selected.

Note:

• The javacard.framework.MultiSelectable.select() method is not called if this method is invoked.

The implementation of this method provided by Applet class returns true.
 javacard.framework Applet 67

Applet javacard.framework

deselect()
Returns: true to indicate success, false otherwise

deselect()

Declaration:
public void deselect()

Description:
Called by the Java Card runtime environment to inform that this currently selected applet is being
deselected on this logical channel and no applet from the same package is still active on any other logical
channel. After deselection, this logical channel will be closed or another applet (or the same applet) will be
selected on this logical channel. It is called when a SELECT APDU command or a MANAGE CHANNEL
CLOSE APDU command is received by the Java Card runtime environment. This method is invoked prior
to another applet’s or this very applet’s select() method being invoked.

A subclass of Applet should override this method if it has any cleanup or bookkeeping work to be
performed before another applet is selected.

The default implementation of this method provided by Applet class does nothing.

Notes:

• The javacard.framework.MultiSelectable.deselect() method is not called if this method is invoked.

• Unchecked exceptions thrown by this method are caught by the Java Card runtime environment but the
applet is deselected.

• Transient objects of JCSystem.CLEAR_ON_DESELECT clear event type are cleared to their default
value by the Java Card runtime environment after this method.

• This method is NOT called on reset or power loss.

getShareableInterfaceObject(AID, byte)

Declaration:
public javacard.framework.Shareable getShareableInterfaceObject(javacard.framework.AID

clientAID, byte parameter)

Description:
Called by the Java Card runtime environment to obtain a shareable interface object from this server applet,
on behalf of a request from a client applet. This method executes in the applet context of this applet
instance. The client applet initiated this request by calling the JCSystem.
getAppletShareableInterfaceObject() method. See Runtime Environment Specification for
the Java Card Platform, section 6.2.4 for details.

Note:

• The clientAID parameter is a Java Card runtime environment-owned AID instance. Java Card
runtime environment-owned instances of AID are permanent Java Card runtime environment Entry
Point Objects and can be accessed from any applet context. References to these permanent objects can
be stored and re-used.

Parameters:
clientAID - the AID object of the client applet

parameter - optional parameter byte. The parameter byte may be used by the client to specify which
shareable interface object is being requested.

Returns: the shareable interface object or null
68 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework Applet

register()
See Also: JCSystem.getAppletShareableInterfaceObject(AID, byte)

register()

Declaration:
protected final void register()

throws SystemException

Description:
This method is used by the applet to register this applet instance with the Java Card runtime environment
and to assign the Java Card platform name of the applet as its instance AID bytes. One of the
register() methods must be called from within install() to be registered with the Java Card
runtime environment. See Runtime Environment Specification for the Java Card Platform, section 3.1 for
details.

Note:

• The phrase “Java Card platform name of the applet” is a reference to the AID[AID_length] item
in the applets[] item of the applet_component, as documented in Section 6.5 Applet
Component in the Virtual Machine Specification for the Java Card Platform.

Throws:
SystemException - with the following reason codes:

• SystemException.ILLEGAL_AID if the Applet subclass AID bytes are in use or if the applet
instance has previously successfully registered with the Java Card runtime environment via one of
the register() methods or if a Java Card runtime environment initiated install() method
execution is not in progress.

register(byte[], short, byte)

Declaration:
protected final void register(byte[] bArray, short bOffset, byte bLength)

throws SystemException

Description:
This method is used by the applet to register this applet instance with the Java Card runtime environment
and assign the specified AID bytes as its instance AID bytes. One of the register() methods must be
called from within install() to be registered with the Java Card runtime environment. See Runtime
Environment Specification for the Java Card Platform, section 3.1 for details.

Note:

• The implementation may require that the instance AID bytes specified are the same as that supplied in
the install parameter data. An ILLEGAL_AID exception may be thrown otherwise.

Parameters:
bArray - the byte array containing the AID bytes

bOffset - the start of AID bytes in bArray

bLength - the length of the AID bytes in bArray

Throws:
SystemException - with the following reason code:

• SystemException.ILLEGAL_VALUE if the bLength parameter is less than 5 or greater than
16.

• SystemException.ILLEGAL_AID if the specified instance AID bytes are in use or if the applet
 javacard.framework Applet 69

Applet javacard.framework

selectingApplet()
instance has previously successfully registered with the Java Card runtime environment via one of
the register() methods or if a Java Card runtime environment-initiated install() method
execution is not in progress.

See Also: install(byte[], short, byte)

selectingApplet()

Declaration:
protected final boolean selectingApplet()

Description:
This method is used by the applet process() method to distinguish the SELECT APDU command
which selected this applet, from all other other SELECT APDU commands which may relate to file or
internal applet state selection.

Returns: true if this applet is being selected
70 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework AppletEvent

Declaration
javacard.framework

AppletEvent
Declaration
public interface AppletEvent

Description
The AppletEvent interface provides a callback interface for the Java Card runtime environment to inform
the applet about life cycle events. An applet instance - subclass of Applet - should implement this interface if
it needs to be informed about supported life cycle events.

See Runtime Environment Specification for the Java Card Platform for details.

Methods

uninstall()

Declaration:
public void uninstall()

Description:
Called by the Java Card runtime environment to inform this applet instance that the Applet Deletion
Manager has been requested to delete it. This method is invoked by the Applet Deletion Manager before
any dependency checks are performed. The Applet Deletion Manager will perform dependency checks
upon return from this method. If the dependency check rules disallow it, the applet instance will not be
deleted.

See Runtime Environment Specification for the Java Card Platform, section 11.3.4 for details.

This method executes in the context of the applet instance and as the currently selected applet. This method
should make changes to state in a consistent manner using the transaction API to ensure atomicity and
proper behavior in the event of a tear or reset.

A subclass of Applet should, within this method, perform any cleanup required for deletion such as
release resources, backup data, or notify other dependent applets.

Note:

• Exceptions thrown by this method are caught by the Java Card runtime environment and ignored.

• The Java Card runtime environment will not rollback state automatically if applet deletion fails.

• This method may be called by the Java Card runtime environment multiple times, once for each attempt

Member Summary

Methods
 void uninstall()

Called by the Java Card runtime environment to inform this applet instance that the
Applet Deletion Manager has been requested to delete it.
 javacard.framework AppletEvent 71

AppletEvent javacard.framework

uninstall()
to delete this applet instance.
72 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework CardException

Declaration
javacard.framework

CardException
Declaration
public class CardException extends java.lang.Exception

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javacard.framework.CardException

Direct Known Subclasses: UserException

Description
The CardException class defines a field reason and two accessor methods getReason() and
setReason(). The reason field encapsulates an exception cause identifier in the Java Card platform. All
Java Card platform checked Exception classes should extend CardException. This class also provides a
resource-saving mechanism (throwIt() method) for using a Java Card runtime environment-owned instance
of this class.

Even if a transaction is in progress, the update of the internal reason field shall not participate in the
transaction. The value of the internal reason field of Java Card runtime environment-owned instance is reset
to 0 on a tear or reset.

Member Summary

Constructors
CardException(short reason)

Construct a CardException instance with the specified reason.

Methods
 short getReason()

Get reason code
 void setReason(short reason)

Set reason code
static void throwIt(short reason)

Throw the Java Card runtime environment-owned instance of CardException class
with the specified reason.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.framework CardException 73

CardException javacard.framework

CardException(short)
Constructors

CardException(short)

Declaration:
public CardException(short reason)

Description:
Construct a CardException instance with the specified reason. To conserve on resources, use the
throwIt() method to use the Java Card runtime environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

getReason()

Declaration:
public short getReason()

Description:
Get reason code

Returns: the reason for the exception

setReason(short)

Declaration:
public void setReason(short reason)

Description:
Set reason code

Parameters:
reason - the reason for the exception

throwIt(short)

Declaration:
public static void throwIt(short reason)

throws CardException

Description:
Throw the Java Card runtime environment-owned instance of CardException class with the specified
reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception
74 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework CardException

throwIt(short)
Throws:
CardException - always
 javacard.framework CardException 75

CardRuntimeException javacard.framework

Declaration
javacard.framework

CardRuntimeException
Declaration
public class CardRuntimeException extends java.lang.RuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

Direct Known Subclasses: APDUException, javacard.security.CryptoException,
ISOException, PINException, javacard.framework.service.ServiceException,
SystemException, TransactionException

Description
The CardRuntimeException class defines a field reason and two accessor methods getReason()
and setReason(). The reason field encapsulates an exception cause identifier in the Java Card platform.
All Java Card platform unchecked Exception classes should extend CardRuntimeException. This class
also provides a resource-saving mechanism (throwIt() method) for using a Java Card runtime environment-
owned instance of this class.

Even if a transaction is in progress, the update of the internal reason field shall not participate in the
transaction. The value of the internal reason field of Java Card runtime environment-owned instance is reset
to 0 on a tear or reset.

Member Summary

Constructors
CardRuntimeException(short reason)

Constructs a CardRuntimeException instance with the specified reason.

Methods
 short getReason()

Gets the reason code
 void setReason(short reason)

Sets the reason code.
static void throwIt(short reason)

Throws the Java Card runtime environment-owned instance of the
CardRuntimeException class with the specified reason.
76 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework CardRuntimeException

Inherited Member Summary
Constructors

CardRuntimeException(short)

Declaration:
public CardRuntimeException(short reason)

Description:
Constructs a CardRuntimeException instance with the specified reason. To conserve on resources, use the
throwIt() method to employ the Java Card runtime environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

getReason()

Declaration:
public short getReason()

Description:
Gets the reason code

Returns: the reason for the exception

setReason(short)

Declaration:
public void setReason(short reason)

Description:
Sets the reason code. Even if a transaction is in progress, the update of the internal reason field shall not
participate in the transaction.

Parameters:
reason - the reason for the exception

throwIt(short)

Declaration:
public static void throwIt(short reason)

throws CardRuntimeException

Description:
Throws the Java Card runtime environment-owned instance of the CardRuntimeException class with
the specified reason.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.framework CardRuntimeException 77

CardRuntimeException javacard.framework

throwIt(short)
Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Throws:
CardRuntimeException - always
78 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework ISO7816

Declaration
javacard.framework

ISO7816
Declaration
public interface ISO7816

Description
ISO7816 encapsulates constants related to ISO 7816-3 and ISO 7816-4. ISO7816 interface contains only
static fields.

The static fields with SW_ prefixes define constants for the ISO 7816-4 defined response status word. The fields
which use the _00 suffix require the low order byte to be customized appropriately e.g (ISO7816.
SW_CORRECT_LENGTH_00 + (0x0025 & 0xFF)).

The static fields with OFFSET_ prefixes define constants to be used to index into the APDU buffer byte array to
access ISO 7816-4 defined header information.

Member Summary

Fields
static byte CLA_ISO7816

APDU command CLA : ISO 7816 = 0x00
static byte INS_EXTERNAL_AUTHENTICATE

APDU command INS : EXTERNAL AUTHENTICATE = 0x82
static byte INS_SELECT

APDU command INS : SELECT = 0xA4
static byte OFFSET_CDATA

APDU command data offset : CDATA = 5
static byte OFFSET_CLA

APDU header offset : CLA = 0
static byte OFFSET_INS

APDU header offset : INS = 1
static byte OFFSET_LC

APDU header offset : LC = 4
static byte OFFSET_P1

APDU header offset : P1 = 2
static byte OFFSET_P2

APDU header offset : P2 = 3
static short SW_APPLET_SELECT_FAILED

Response status : Applet selection failed = 0x6999;
static short SW_BYTES_REMAINING_00

Response status : Response bytes remaining = 0x6100
static short SW_CLA_NOT_SUPPORTED

Response status : CLA value not supported = 0x6E00
static short SW_COMMAND_NOT_ALLOWED

Response status : Command not allowed (no current EF) = 0x6986
static short SW_CONDITIONS_NOT_SATISFIED

Response status : Conditions of use not satisfied = 0x6985
static short SW_CORRECT_LENGTH_00

Response status : Correct Expected Length (Le) = 0x6C00
 javacard.framework ISO7816 79

ISO7816 javacard.framework

SW_NO_ERROR
Fields

SW_NO_ERROR

Declaration:
public static final short SW_NO_ERROR

Description:
Response status : No Error = (short)0x9000

SW_BYTES_REMAINING_00

Declaration:
public static final short SW_BYTES_REMAINING_00

Description:
Response status : Response bytes remaining = 0x6100

static short SW_DATA_INVALID
Response status : Data invalid = 0x6984

static short SW_FILE_FULL
Response status : Not enough memory space in the file = 0x6A84

static short SW_FILE_INVALID
Response status : File invalid = 0x6983

static short SW_FILE_NOT_FOUND
Response status : File not found = 0x6A82

static short SW_FUNC_NOT_SUPPORTED
Response status : Function not supported = 0x6A81

static short SW_INCORRECT_P1P2
Response status : Incorrect parameters (P1,P2) = 0x6A86

static short SW_INS_NOT_SUPPORTED
Response status : INS value not supported = 0x6D00

static short SW_LOGICAL_CHANNEL_NOT_SUPPORTED
Response status : Card does not support logical channels = 0x6881

static short SW_NO_ERROR
Response status : No Error = (short)0x9000

static short SW_RECORD_NOT_FOUND
Response status : Record not found = 0x6A83

static short SW_SECURE_MESSAGING_NOT_SUPPORTED
Response status : Card does not support secure messaging = 0x6882

static short SW_SECURITY_STATUS_NOT_SATISFIED
Response status : Security condition not satisfied = 0x6982

static short SW_UNKNOWN
Response status : No precise diagnosis = 0x6F00

static short SW_WARNING_STATE_UNCHANGED
Response status : Warning, card state unchanged = 0x6200

static short SW_WRONG_DATA
Response status : Wrong data = 0x6A80

static short SW_WRONG_LENGTH
Response status : Wrong length = 0x6700

static short SW_WRONG_P1P2
Response status : Incorrect parameters (P1,P2) = 0x6B00

Member Summary
80 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework ISO7816

SW_WRONG_LENGTH
SW_WRONG_LENGTH

Declaration:
public static final short SW_WRONG_LENGTH

Description:
Response status : Wrong length = 0x6700

SW_SECURITY_STATUS_NOT_SATISFIED

Declaration:
public static final short SW_SECURITY_STATUS_NOT_SATISFIED

Description:
Response status : Security condition not satisfied = 0x6982

SW_FILE_INVALID

Declaration:
public static final short SW_FILE_INVALID

Description:
Response status : File invalid = 0x6983

SW_DATA_INVALID

Declaration:
public static final short SW_DATA_INVALID

Description:
Response status : Data invalid = 0x6984

SW_CONDITIONS_NOT_SATISFIED

Declaration:
public static final short SW_CONDITIONS_NOT_SATISFIED

Description:
Response status : Conditions of use not satisfied = 0x6985

SW_COMMAND_NOT_ALLOWED

Declaration:
public static final short SW_COMMAND_NOT_ALLOWED

Description:
Response status : Command not allowed (no current EF) = 0x6986

SW_APPLET_SELECT_FAILED

Declaration:
public static final short SW_APPLET_SELECT_FAILED

Description:
Response status : Applet selection failed = 0x6999;
 javacard.framework ISO7816 81

ISO7816 javacard.framework

SW_WRONG_DATA
SW_WRONG_DATA

Declaration:
public static final short SW_WRONG_DATA

Description:
Response status : Wrong data = 0x6A80

SW_FUNC_NOT_SUPPORTED

Declaration:
public static final short SW_FUNC_NOT_SUPPORTED

Description:
Response status : Function not supported = 0x6A81

SW_FILE_NOT_FOUND

Declaration:
public static final short SW_FILE_NOT_FOUND

Description:
Response status : File not found = 0x6A82

SW_RECORD_NOT_FOUND

Declaration:
public static final short SW_RECORD_NOT_FOUND

Description:
Response status : Record not found = 0x6A83

SW_INCORRECT_P1P2

Declaration:
public static final short SW_INCORRECT_P1P2

Description:
Response status : Incorrect parameters (P1,P2) = 0x6A86

SW_WRONG_P1P2

Declaration:
public static final short SW_WRONG_P1P2

Description:
Response status : Incorrect parameters (P1,P2) = 0x6B00

SW_CORRECT_LENGTH_00

Declaration:
public static final short SW_CORRECT_LENGTH_00

Description:
Response status : Correct Expected Length (Le) = 0x6C00
82 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework ISO7816

SW_INS_NOT_SUPPORTED
SW_INS_NOT_SUPPORTED

Declaration:
public static final short SW_INS_NOT_SUPPORTED

Description:
Response status : INS value not supported = 0x6D00

SW_CLA_NOT_SUPPORTED

Declaration:
public static final short SW_CLA_NOT_SUPPORTED

Description:
Response status : CLA value not supported = 0x6E00

SW_UNKNOWN

Declaration:
public static final short SW_UNKNOWN

Description:
Response status : No precise diagnosis = 0x6F00

SW_FILE_FULL

Declaration:
public static final short SW_FILE_FULL

Description:
Response status : Not enough memory space in the file = 0x6A84

SW_LOGICAL_CHANNEL_NOT_SUPPORTED

Declaration:
public static final short SW_LOGICAL_CHANNEL_NOT_SUPPORTED

Description:
Response status : Card does not support logical channels = 0x6881

SW_SECURE_MESSAGING_NOT_SUPPORTED

Declaration:
public static final short SW_SECURE_MESSAGING_NOT_SUPPORTED

Description:
Response status : Card does not support secure messaging = 0x6882

SW_WARNING_STATE_UNCHANGED

Declaration:
public static final short SW_WARNING_STATE_UNCHANGED

Description:
Response status : Warning, card state unchanged = 0x6200
 javacard.framework ISO7816 83

ISO7816 javacard.framework

OFFSET_CLA
OFFSET_CLA

Declaration:
public static final byte OFFSET_CLA

Description:
APDU header offset : CLA = 0

OFFSET_INS

Declaration:
public static final byte OFFSET_INS

Description:
APDU header offset : INS = 1

OFFSET_P1

Declaration:
public static final byte OFFSET_P1

Description:
APDU header offset : P1 = 2

OFFSET_P2

Declaration:
public static final byte OFFSET_P2

Description:
APDU header offset : P2 = 3

OFFSET_LC

Declaration:
public static final byte OFFSET_LC

Description:
APDU header offset : LC = 4

OFFSET_CDATA

Declaration:
public static final byte OFFSET_CDATA

Description:
APDU command data offset : CDATA = 5

CLA_ISO7816

Declaration:
public static final byte CLA_ISO7816

Description:
APDU command CLA : ISO 7816 = 0x00
84 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework ISO7816

INS_SELECT
INS_SELECT

Declaration:
public static final byte INS_SELECT

Description:
APDU command INS : SELECT = 0xA4

INS_EXTERNAL_AUTHENTICATE

Declaration:
public static final byte INS_EXTERNAL_AUTHENTICATE

Description:
APDU command INS : EXTERNAL AUTHENTICATE = 0x82
 javacard.framework ISO7816 85

ISOException javacard.framework

Declaration
javacard.framework

ISOException
Declaration
public class ISOException extends CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.framework.ISOException

Description
ISOException class encapsulates an ISO 7816-4 response status word as its reason code.

The APDU class throws Java Card runtime environment-owned instances of ISOException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

Member Summary

Constructors
ISOException(short sw)

Constructs an ISOException instance with the specified status word.

Methods
static void throwIt(short sw)

Throws the Java Card runtime environment-owned instance of the ISOException class
with the specified status word.

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)
86 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework ISOException

ISOException(short)
Constructors

ISOException(short)

Declaration:
public ISOException(short sw)

Description:
Constructs an ISOException instance with the specified status word. To conserve on resources use
throwIt() to employ the Java Card runtime environment-owned instance of this class.

Parameters:
sw - the ISO 7816-4 defined status word

Methods

throwIt(short)

Declaration:
public static void throwIt(short sw)

Description:
Throws the Java Card runtime environment-owned instance of the ISOException class with the specified
status word.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
sw - ISO 7816-4 defined status word

Throws:
ISOException - always
 javacard.framework ISOException 87

JCSystem javacard.framework

Declaration
javacard.framework

JCSystem
Declaration
public final class JCSystem

java.lang.Object
|
+--javacard.framework.JCSystem

Description
The JCSystem class includes a collection of methods to control applet execution, resource management,
atomic transaction management, object deletion mechanism and inter-applet object sharing in the Java Card
environment. All methods in JCSystem class are static methods.

This class also includes methods to control the persistence and transience of objects. The term persistent means
that objects and their values persist from one CAD session to the next, indefinitely. Persistent object values are
updated atomically using transactions.

The makeTransient...Array() methods can be used to create transient arrays. Transient array data is
lost (in an undefined state, but the real data is unavailable) immediately upon power loss, and is reset to the
default value at the occurrence of certain events such as card reset or deselect. Updates to the values of transient
arrays are not atomic and are not affected by transactions.

The Java Card runtime environment maintains an atomic transaction commit buffer which is initialized on card
reset (or power on). When a transaction is in progress, the Java Card runtime environment journals all updates to
persistent data space into this buffer so that it can always guarantee, at commit time, that everything in the buffer
is written or nothing at all is written. The JCSystem includes methods to control an atomic transaction. See
Runtime Environment Specification for the Java Card Platform for details.

See Also: SystemException, TransactionException, Applet

Member Summary

Fields
static byte CLEAR_ON_DESELECT

This event code indicates that the contents of the transient object are cleared to the
default value on applet deselection event or in CLEAR_ON_RESET cases.

static byte CLEAR_ON_RESET
This event code indicates that the contents of the transient object are cleared to the
default value on card reset (or power on) event.

static byte MEMORY_TYPE_PERSISTENT
Constant to indicate persistent memory type.

static byte MEMORY_TYPE_TRANSIENT_DESELECT
Constant to indicate transient memory of CLEAR_ON_DESELECT type.

static byte MEMORY_TYPE_TRANSIENT_RESET
Constant to indicate transient memory of CLEAR_ON_RESET type.

static byte NOT_A_TRANSIENT_OBJECT
This event code indicates that the object is not transient.
88 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework JCSystem

Member Summary
Methods
static void abortTransaction()

Aborts the atomic transaction.
static void beginTransaction()

Begins an atomic transaction.
static void commitTransaction()

Commits an atomic transaction.
static AID getAID()

Returns the Java Card runtime environment-owned instance of the AID object
associated with the current applet context, or null if the Applet.register()
method has not yet been invoked.

static Shareable getAppletShareableInterfaceObject(AID serverAID, byte parame-
ter)

Called by a client applet to get a server applet’s shareable interface object.
static byte getAssignedChannel()

This method is called to obtain the logical channel number assigned to the currently
selected applet instance.

static short getAvailableMemory(byte memoryType)
Obtains the amount of memory of the specified type that is available to the applet.

static short getMaxCommitCapacity()
Returns the total number of bytes in the commit buffer.

static AID getPreviousContextAID()
Obtains the Java Card runtime environment-owned instance of the AID object
associated with the previously active applet context.

static byte getTransactionDepth()
Returns the current transaction nesting depth level.

static short getUnusedCommitCapacity()
Returns the number of bytes left in the commit buffer.

static short getVersion()
Returns the current major and minor version of the Java Card API.

static boolean isAppletActive(AID theApplet)
This method is used to determine if the specified applet is active on the card.

static boolean isObjectDeletionSupported()
This method is used to determine if the implementation for the Java Card platform
supports the object deletion mechanism.

static byte isTransient(java.lang.Object theObj)
Checks if the specified object is transient.

static AID lookupAID(byte[] buffer, short offset, byte length)
Returns the Java Card runtime environment-owned instance of the AID object, if any,
encapsulating the specified AID bytes in the buffer parameter if there exists a
successfully installed applet on the card whose instance AID exactly matches that of
the specified AID bytes.

static boolean[] makeTransientBooleanArray(short length, byte event)
Creates a transient boolean array with the specified array length.

static byte[] makeTransientByteArray(short length, byte event)
Creates a transient byte array with the specified array length.

static java.lang.
Object[]

makeTransientObjectArray(short length, byte event)
Creates a transient array of Object with the specified array length.

static short[] makeTransientShortArray(short length, byte event)
Creates a transient short array with the specified array length.

static void requestObjectDeletion()
This method is invoked by the applet to trigger the object deletion service of the Java
Card runtime environment.

Member Summary
 javacard.framework JCSystem 89

JCSystem javacard.framework

Inherited Member Summary
Fields

MEMORY_TYPE_PERSISTENT

Declaration:
public static final byte MEMORY_TYPE_PERSISTENT

Description:
Constant to indicate persistent memory type.

MEMORY_TYPE_TRANSIENT_RESET

Declaration:
public static final byte MEMORY_TYPE_TRANSIENT_RESET

Description:
Constant to indicate transient memory of CLEAR_ON_RESET type.

MEMORY_TYPE_TRANSIENT_DESELECT

Declaration:
public static final byte MEMORY_TYPE_TRANSIENT_DESELECT

Description:
Constant to indicate transient memory of CLEAR_ON_DESELECT type.

NOT_A_TRANSIENT_OBJECT

Declaration:
public static final byte NOT_A_TRANSIENT_OBJECT

Description:
This event code indicates that the object is not transient.

CLEAR_ON_RESET

Declaration:
public static final byte CLEAR_ON_RESET

Description:
This event code indicates that the contents of the transient object are cleared to the default value on card
reset (or power on) event.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
90 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework JCSystem

CLEAR_ON_DESELECT
CLEAR_ON_DESELECT

Declaration:
public static final byte CLEAR_ON_DESELECT

Description:
This event code indicates that the contents of the transient object are cleared to the default value on applet
deselection event or in CLEAR_ON_RESET cases.

Notes:

• CLEAR_ON_DESELECT transient objects can be accessed only when the applet which created the
object is in the same context as the currently selected applet.

• The Java Card runtime environment will throw a SecurityException if a
CLEAR_ON_DESELECT transient object is accessed when the currently selected applet is not in the
same context as the applet which created the object.

Methods

isTransient(Object)

Declaration:
public static byte isTransient(java.lang.Object theObj)

Description:
Checks if the specified object is transient.

Note: This method returns NOT_A_TRANSIENT_OBJECT if the specified object is null or is not an array
type.

Parameters:
theObj - the object being queried

Returns: NOT_A_TRANSIENT_OBJECT, CLEAR_ON_RESET, or CLEAR_ON_DESELECT

See Also: makeTransientBooleanArray(short, byte),
makeTransientByteArray(short, byte), makeTransientShortArray(short,
byte), makeTransientObjectArray(short, byte)

makeTransientBooleanArray(short, byte)

Declaration:
public static boolean[] makeTransientBooleanArray(short length, byte event)

throws NegativeArraySizeException, SystemException

Description:
Creates a transient boolean array with the specified array length.

Parameters:
length - the length of the boolean array

event - the CLEAR_ON... event which causes the array elements to be cleared

Returns: the new transient boolean array

Throws:
java.lang.NegativeArraySizeException - if the length parameter is negative

SystemException - with the following reason codes:
 javacard.framework JCSystem 91

JCSystem javacard.framework

makeTransientByteArray(short, byte)
• SystemException.ILLEGAL_VALUE if event is not a valid event code.

• SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not available.

• SystemException.ILLEGAL_TRANSIENT if the current applet context is not the currently
selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientByteArray(short, byte)

Declaration:
public static byte[] makeTransientByteArray(short length, byte event)

throws NegativeArraySizeException, SystemException

Description:
Creates a transient byte array with the specified array length.

Parameters:
length - the length of the byte array

event - the CLEAR_ON... event which causes the array elements to be cleared

Returns: the new transient byte array

Throws:
java.lang.NegativeArraySizeException - if the length parameter is negative

SystemException - with the following reason codes:

• SystemException.ILLEGAL_VALUE if event is not a valid event code.

• SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not available.

• SystemException.ILLEGAL_TRANSIENT if the current applet context is not the currently
selected applet context and CLEAR_ON_DESELECT is specified.

makeTransientShortArray(short, byte)

Declaration:
public static short[] makeTransientShortArray(short length, byte event)

throws NegativeArraySizeException, SystemException

Description:
Creates a transient short array with the specified array length.

Parameters:
length - the length of the short array

event - the CLEAR_ON... event which causes the array elements to be cleared

Returns: the new transient short array

Throws:
java.lang.NegativeArraySizeException - if the length parameter is negative

SystemException - with the following reason codes:

• SystemException.ILLEGAL_VALUE if event is not a valid event code.

• SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not available.

• SystemException.ILLEGAL_TRANSIENT if the current applet context is not the currently
selected applet context and CLEAR_ON_DESELECT is specified.
92 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework JCSystem

makeTransientObjectArray(short, byte)
makeTransientObjectArray(short, byte)

Declaration:
public static java.lang.Object[] makeTransientObjectArray(short length, byte event)

throws NegativeArraySizeException, SystemException

Description:
Creates a transient array of Object with the specified array length.

Parameters:
length - the length of the Object array

event - the CLEAR_ON... event which causes the array elements to be cleared

Returns: the new transient Object array

Throws:
java.lang.NegativeArraySizeException - if the length parameter is negative

SystemException - with the following reason codes:

• SystemException.ILLEGAL_VALUE if event is not a valid event code.

• SystemException.NO_TRANSIENT_SPACE if sufficient transient space is not available.

• SystemException.ILLEGAL_TRANSIENT if the current applet context is not the currently
selected applet context and CLEAR_ON_DESELECT is specified.

getVersion()

Declaration:
public static short getVersion()

Description:
Returns the current major and minor version of the Java Card API.

Returns: version number as byte.byte (major.minor)

getAID()

Declaration:
public static javacard.framework.AID getAID()

Description:
Returns the Java Card runtime environment-owned instance of the AID object associated with the current
applet context, or null if the Applet.register() method has not yet been invoked.

Java Card runtime environment-owned instances of AID are permanent Java Card runtime environment
Entry Point Objects and can be accessed from any applet context. References to these permanent objects
can be stored and re-used.

See Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Returns: the AID object

lookupAID(byte[], short, byte)

Declaration:
public static javacard.framework.AID lookupAID(byte[] buffer, short offset, byte length)
 javacard.framework JCSystem 93

JCSystem javacard.framework

beginTransaction()
Description:
Returns the Java Card runtime environment-owned instance of the AID object, if any, encapsulating the
specified AID bytes in the buffer parameter if there exists a successfully installed applet on the card
whose instance AID exactly matches that of the specified AID bytes.

Java Card runtime environment-owned instances of AID are permanent Java Card runtime environment
Entry Point Objects and can be accessed from any applet context. References to these permanent objects
can be stored and re-used.

See Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
buffer - byte array containing the AID bytes

offset - offset within buffer where AID bytes begin

length - length of AID bytes in buffer

Returns: the AID object, if any; null otherwise. A VM exception is thrown if buffer is null, or if
offset or length are out of range.

beginTransaction()

Declaration:
public static void beginTransaction()

throws TransactionException

Description:
Begins an atomic transaction. If a transaction is already in progress (transaction nesting depth level != 0), a
TransactionException is thrown.

Note:

• This method may do nothing if the Applet.register() method has not yet been invoked. In case of tear or
failure prior to successful registration, the Java Card runtime environment will roll back all atomically
updated persistent state.

Throws:
TransactionException - with the following reason codes:

• TransactionException.IN_PROGRESS if a transaction is already in progress.

See Also: commitTransaction(), abortTransaction()

abortTransaction()

Declaration:
public static void abortTransaction()

throws TransactionException

Description:
Aborts the atomic transaction. The contents of the commit buffer is discarded.

Note:

• This method may do nothing if the Applet.register() method has not yet been invoked. In case of tear or
failure prior to successful registration, the Java Card runtime environment will roll back all atomically
updated persistent state.

• Do not call this method from within a transaction which creates new objects because the Java Card
runtime environment may not recover the heap space used by the new object instances.
94 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework JCSystem

commitTransaction()
• Do not call this method from within a transaction which creates new objects because the Java Card
runtime environment may, to ensure the security of the card and to avoid heap space loss, lock up the
card session to force tear/reset processing.

• The Java Card runtime environment ensures that any variable of reference type which references an
object instantiated from within this aborted transaction is equivalent to a null reference.

Throws:
TransactionException - with the following reason codes:

• TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.

See Also: beginTransaction(), commitTransaction()

commitTransaction()

Declaration:
public static void commitTransaction()

throws TransactionException

Description:
Commits an atomic transaction. The contents of commit buffer is atomically committed. If a transaction is
not in progress (transaction nesting depth level == 0) then a TransactionException is thrown.

Note:

• This method may do nothing if the Applet.register() method has not yet been invoked. In case of tear or
failure prior to successful registration, the Java Card runtime environment will roll back all atomically
updated persistent state.

Throws:
TransactionException - with the following reason codes:

• TransactionException.NOT_IN_PROGRESS if a transaction is not in progress.

See Also: beginTransaction(), abortTransaction()

getTransactionDepth()

Declaration:
public static byte getTransactionDepth()

Description:
Returns the current transaction nesting depth level. At present, only 1 transaction can be in progress at a
time.

Returns: 1 if transaction in progress, 0 if not

getUnusedCommitCapacity()

Declaration:
public static short getUnusedCommitCapacity()

Description:
Returns the number of bytes left in the commit buffer.

Note:

• If the number of bytes left in the commit buffer is greater than 32767, then this method returns 32767.

Returns: the number of bytes left in the commit buffer
 javacard.framework JCSystem 95

JCSystem javacard.framework

getMaxCommitCapacity()
See Also: getMaxCommitCapacity()

getMaxCommitCapacity()

Declaration:
public static short getMaxCommitCapacity()

Description:
Returns the total number of bytes in the commit buffer. This is approximately the maximum number of
bytes of persistent data which can be modified during a transaction. However, the transaction subsystem
requires additional bytes of overhead data to be included in the commit buffer, and this depends on the
number of fields modified and the implementation of the transaction subsystem. The application cannot
determine the actual maximum amount of data which can be modified during a transaction without taking
these overhead bytes into consideration.

Note:

• If the total number of bytes in the commit buffer is greater than 32767, then this method returns 32767.

Returns: the total number of bytes in the commit buffer

See Also: getUnusedCommitCapacity()

getPreviousContextAID()

Declaration:
public static javacard.framework.AID getPreviousContextAID()

Description:
Obtains the Java Card runtime environment-owned instance of the AID object associated with the
previously active applet context. This method is typically used by a server applet, while executing a
shareable interface method to determine the identity of its client and thereby control access privileges.

Java Card runtime environment-owned instances of AID are permanent Java Card runtime environment
Entry Point Objects and can be accessed from any applet context. References to these permanent objects
can be stored and re-used.

See Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Returns: the AID object of the previous context, or null if Java Card runtime environment

getAvailableMemory(byte)

Declaration:
public static short getAvailableMemory(byte memoryType)

throws SystemException

Description:
Obtains the amount of memory of the specified type that is available to the applet. Note that
implementation-dependent memory overhead structures may also use the same memory pool.

Notes:

• The number of bytes returned is only an upper bound on the amount of memory available due to
overhead requirements.

• Allocation of CLEAR_ON_RESET transient objects may affect the amount of CLEAR_ON_DESELECT
transient memory available.

• Allocation of CLEAR_ON_DESELECT transient objects may affect the amount of CLEAR_ON_RESET
96 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework JCSystem

getAppletShareableInterfaceObject(AID, byte)
transient memory available.

• If the number of available bytes is greater than 32767, then this method returns 32767.

• The returned count is not an indicator of the size of object which may be created since memory
fragmentation is possible.

Parameters:
memoryType - the type of memory being queried. One of the MEMORY_TYPE_.. constants defined
above. See MEMORY_TYPE_PERSISTENT

Returns: the upper bound on available bytes of memory for the specified type

Throws:
SystemException - with the following reason codes:

• SystemException.ILLEGAL_VALUE if memoryType is not a valid memory type.

getAppletShareableInterfaceObject(AID, byte)

Declaration:
public static javacard.framework.Shareable getAppletShareableInterfaceObject(javacard.

framework.AID serverAID, byte parameter)

Description:
Called by a client applet to get a server applet’s shareable interface object.

This method returns null if:

• the Applet.register() has not yet been invoked

• the server does not exist

• the server returns null

Parameters:
serverAID - the AID of the server applet

parameter - optional parameter data

Returns: the shareable interface object or null

See Also: Applet.getShareableInterfaceObject(AID, byte)

isObjectDeletionSupported()

Declaration:
public static boolean isObjectDeletionSupported()

Description:
This method is used to determine if the implementation for the Java Card platform supports the object
deletion mechanism.

Returns: true if the object deletion mechanism is supported, false otherwise

requestObjectDeletion()

Declaration:
public static void requestObjectDeletion()

throws SystemException
 javacard.framework JCSystem 97

JCSystem javacard.framework

getAssignedChannel()
Description:
This method is invoked by the applet to trigger the object deletion service of the Java Card runtime
environment. If the Java Card runtime environment implements the object deletion mechanism, the request
is merely logged at this time. The Java Card runtime environment must schedule the object deletion service
prior to the next invocation of the Applet.process() method. The object deletion mechanism must
ensure that :

• Any unreferenced persistent object owned by the current applet context is deleted and the associated
space is recovered for reuse prior to the next invocation of the Applet.process() method.

• Any unreferenced CLEAR_ON_DESELECT or CLEAR_ON_RESET transient object owned by the
current applet context is deleted and the associated space is recovered for reuse before the next card
reset session.

Throws:
SystemException - with the following reason codes:

• SystemException.ILLEGAL_USE if the object deletion mechanism is not implemented.

getAssignedChannel()

Declaration:
public static byte getAssignedChannel()

Description:
This method is called to obtain the logical channel number assigned to the currently selected applet
instance. The assigned logical channel is the logical channel on which the currently selected applet instance
is or will be the active applet instance. This logical channel number is always equal to the origin logical
channel number returned by the APDU.getCLAChannel() method except during selection and deselection
via the MANAGE CHANNEL APDU command. If this method is called from the Applet.select(),
Applet.deselect(), MultiSelectable.select(boolean) and MultiSelectable.
deselect(boolean) methods during MANAGE CHANNEL APDU command processing, the logical
channel number returned may be different.

Returns: the logical channel number in the range 0-3 assigned to the currently selected applet instance

isAppletActive(AID)

Declaration:
public static boolean isAppletActive(javacard.framework.AID theApplet)

Description:
This method is used to determine if the specified applet is active on the card.

Note:

• This method returns false if the specified applet is not active, even if its context is active.

Parameters:
theApplet - the AID of the applet object being queried

Returns: true if and only if the applet specified by the AID parameter is currently active on this or
another logical channel

See Also: lookupAID(byte[], short, byte)
98 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework MultiSelectable

Declaration
javacard.framework

MultiSelectable
Declaration
public interface MultiSelectable

Description
The MultiSelectable interface identifies the implementing Applet subclass as being capable of concurrent
selections. A multiselectable applet is a subclass of javacard.framework.Applet which directly or
indirectly implements this interface. All of the applets within an applet package must be multiselectable. If they
are not, then none of the applets can be multiselectable.

An instance of a multiselectable applet can be selected on one logical channel while the same applet instance or
another applet instance from within the same package is active on another logical channel.

The methods of this interface are invoked by the Java Card runtime environment only when:

• the same applet instance is still active on another logical channel, or

• another applet instance from the same package is still active on another logical channel.

See Runtime Environment Specification for the Java Card Platform for details.

Methods

select(boolean)

Declaration:
public boolean select(boolean appInstAlreadyActive)

Description:
Called by the Java Card runtime environment to inform that this applet instance has been selected while the
same applet instance or another applet instance from the same package is active on another logical channel.

It is called either when the MANAGE CHANNEL APDU (open) command or the SELECT APDU
command is received and before the applet instance is selected. SELECT APDU commands use instance

Member Summary

Methods
 void deselect(boolean appInstStillActive)

Called by the Java Card runtime environment to inform that this currently selected
applet instance is being deselected on this logical channel while the same applet
instance or another applet instance from the same package is still active on another
logical channel.

 boolean select(boolean appInstAlreadyActive)
Called by the Java Card runtime environment to inform that this applet instance has
been selected while the same applet instance or another applet instance from the same
package is active on another logical channel.
 javacard.framework MultiSelectable 99

MultiSelectable javacard.framework

deselect(boolean)
AID bytes for applet selection. See Runtime Environment Specification for the Java Card Platform, section
4.5 for details.

A subclass of Applet should, within this method, perform any initialization that may be required to
process APDU commands that may follow. This method returns a boolean to indicate that it is ready to
accept incoming APDU commands via its process() method. If this method returns false, it indicates to
the Java Card runtime environment that this applet instance declines to be selected.

Note:

• The javacard.framework.Applet.select() method is not called if this method is invoked.

Parameters:
appInstAlreadyActive - boolean flag is true when the same applet instance is already active
on another logical channel and false otherwise

Returns: true if the applet instance accepts selection, false otherwise

deselect(boolean)

Declaration:
public void deselect(boolean appInstStillActive)

Description:
Called by the Java Card runtime environment to inform that this currently selected applet instance is being
deselected on this logical channel while the same applet instance or another applet instance from the same
package is still active on another logical channel. After deselection, this logical channel will be closed or
another applet instance (or the same applet instance) will be selected on this logical channel. It is called
when a SELECT APDU command or a MANAGE CHANNEL (close) command is received by the Java
Card runtime environment. This method is called prior to invoking either another applet instance’s or this
applet instance’s select() method.

A subclass of Applet should, within this method, perform any cleanup or bookkeeping work before
another applet instance is selected or the logical channel is closed.

Notes:

• The javacard.framework.Applet.deselect() method is not called if this method is invoked.

• Unchecked exceptions thrown by this method are caught and ignored by the Java Card runtime
environment but the applet instance is deselected.

• The Java Card runtime environment does NOT clear any transient objects of JCSystem.
CLEAR_ON_DESELECT clear event type owned by this applet instance since at least one applet
instance from the same package is still active.

• This method is NOT called on reset or power loss.

Parameters:
appInstStillActive - boolean flag is true when the same applet instance is still active on
another logical channel and false otherwise
100 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework OwnerPIN

Declaration
javacard.framework

OwnerPIN
Declaration
public class OwnerPIN implements PIN

java.lang.Object
|
+--javacard.framework.OwnerPIN

All Implemented Interfaces: PIN

Description
This class represents an Owner PIN, implements Personal Identification Number functionality as defined in the
PIN interface, and provides the ability to update the PIN and thus owner functionality.

The implementation of this class must protect against attacks based on program flow prediction. In addition,
even if a transaction is in progress, update of internal state, such as the try counter, the validated flag, and the
blocking state, shall not participate in the transaction during PIN presentation.

If an implementation of this class creates transient arrays, it must ensure that they are CLEAR_ON_RESET
transient objects.

The protected methods getValidatedFlag and setValidatedFlag allow a subclass of this class to
optimize the storage for the validated boolean state.

Some methods of instances of this class are only suitable for sharing when there exists a trust relationship
among the applets. A typical shared usage would use a proxy PIN interface which extends both the PIN
interface and the Shareable interface and re-declares the methods of the PIN interface.

Any of the methods of the OwnerPIN may be called with a transaction in progress. None of the methods of
OwnerPIN class initiate or alter the state of the transaction if one is in progress.

See Also: PINException, PIN, Shareable, JCSystem

Member Summary

Constructors
OwnerPIN(byte tryLimit, byte maxPINSize)

Constructor.

Methods
 boolean check(byte[] pin, short offset, byte length)

Compares pin against the PIN value.
 byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before
the PIN is blocked.

protected boolean getValidatedFlag()
This protected method returns the validated flag.
 javacard.framework OwnerPIN 101

OwnerPIN javacard.framework

Inherited Member Summary
Constructors

OwnerPIN(byte, byte)

Declaration:
public OwnerPIN(byte tryLimit, byte maxPINSize)

throws PINException

Description:
Constructor. Allocates a new PIN instance with validated flag set to false.

Parameters:
tryLimit - the maximum number of times an incorrect PIN can be presented. tryLimit must be
>=1

maxPINSize - the maximum allowed PIN size. maxPINSize must be >=1

Throws:
PINException - with the following reason codes:

• PINException.ILLEGAL_VALUE if tryLimit parameter is less than 1.

• PINException.ILLEGAL_VALUE if maxPINSize parameter is less than 1.

 boolean isValidated()
Returns true if a valid PIN has been presented since the last card reset or last call to
reset().

 void reset()
If the validated flag is set, this method resets the validated flag and resets the PIN try
counter to the value of the PIN try limit.

 void resetAndUnblock()
This method resets the validated flag and resets the PIN try counter to the value of the
PIN try limit.

protected void setValidatedFlag(boolean value)
This protected method sets the value of the validated flag.

 void update(byte[] pin, short offset, byte length)
This method sets a new value for the PIN and resets the PIN try counter to the value of
the PIN try limit.

Inherited Member Summary

Methods inherited from class Object

equals(Object)

Member Summary
102 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework OwnerPIN

getValidatedFlag()
Methods

getValidatedFlag()

Declaration:
protected boolean getValidatedFlag()

Description:
This protected method returns the validated flag. This method is intended for subclass of this OwnerPIN to
access or override the internal PIN state of the OwnerPIN.

Returns: the boolean state of the PIN validated flag

setValidatedFlag(boolean)

Declaration:
protected void setValidatedFlag(boolean value)

Description:
This protected method sets the value of the validated flag. This method is intended for subclass of this
OwnerPIN to control or override the internal PIN state of the OwnerPIN.

Parameters:
value - the new value for the validated flag

getTriesRemaining()

Declaration:
public byte getTriesRemaining()

Description:
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is blocked.

Specified By: getTriesRemaining in interface PIN

Returns: the number of times remaining

check(byte[], short, byte)

Declaration:
public boolean check(byte[] pin, short offset, byte length)

throws ArrayIndexOutOfBoundsException, NullPointerException

Description:
Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated flag
and resets the try counter to its maximum. If it does not match, it decrements the try counter and, if the
counter has reached zero, blocks the PIN. Even if a transaction is in progress, update of internal state - the
try counter, the validated flag, and the blocking state, shall not participate in the transaction.

Note:

• If NullPointerException or ArrayIndexOutOfBoundsException is thrown, the
validated flag must be set to false, the try counter must be decremented and, the PIN blocked if the
counter reaches zero.

• If offset or length parameter is negative an ArrayIndexOutOfBoundsException
exception is thrown.
 javacard.framework OwnerPIN 103

OwnerPIN javacard.framework

isValidated()
• If offset+length is greater than pin.length, the length of the pin array, an
ArrayIndexOutOfBoundsException exception is thrown.

• If pin parameter is null a NullPointerException exception is thrown.

Specified By: check in interface PIN

Parameters:
pin - the byte array containing the PIN value being checked

offset - the starting offset in the pin array

length - the length of pin

Returns: true if the PIN value matches; false otherwise

Throws:
java.lang.ArrayIndexOutOfBoundsException - if the check operation would cause
access of data outside array bounds.

java.lang.NullPointerException - if pin is null

isValidated()

Declaration:
public boolean isValidated()

Description:
Returns true if a valid PIN has been presented since the last card reset or last call to reset().

Specified By: isValidated in interface PIN

Returns: true if validated; false otherwise

reset()

Declaration:
public void reset()

Description:
If the validated flag is set, this method resets the validated flag and resets the PIN try counter to the value of
the PIN try limit. Even if a transaction is in progress, update of internal state - the try counter, the validated
flag, and the blocking state, shall not participate in the transaction. If the validated flag is not set, this
method does nothing.

Specified By: reset in interface PIN

update(byte[], short, byte)

Declaration:
public void update(byte[] pin, short offset, byte length)

throws PINException

Description:
This method sets a new value for the PIN and resets the PIN try counter to the value of the PIN try limit. It
also resets the validated flag.

This method copies the input pin parameter into an internal representation. If a transaction is in progress,
the new pin and try counter update must be conditional i.e the copy operation must use the transaction
facility.
104 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework OwnerPIN

resetAndUnblock()
Parameters:
pin - the byte array containing the new PIN value

offset - the starting offset in the pin array

length - the length of the new PIN

Throws:
PINException - with the following reason codes:

• PINException.ILLEGAL_VALUE if length is greater than configured maximum PIN size.

See Also: JCSystem.beginTransaction()

resetAndUnblock()

Declaration:
public void resetAndUnblock()

Description:
This method resets the validated flag and resets the PIN try counter to the value of the PIN try limit. Even
if a transaction is in progress, update of internal state - the try counter, the validated flag, and the blocking
state, shall not participate in the transaction. This method is used by the owner to re-enable the blocked
PIN.
 javacard.framework OwnerPIN 105

PIN javacard.framework

Declaration
javacard.framework

PIN
Declaration
public interface PIN

All Known Implementing Classes: OwnerPIN

Description
This interface represents a PIN. An implementation must maintain these internal values:

• PIN value.

• Try limit - the maximum number of times an incorrect PIN can be presented before the PIN is blocked.
When the PIN is blocked, it cannot be validated even on valid PIN presentation.

• Max PIN size - the maximum length of PIN allowed.

• Try counter - the remaining number of times an incorrect PIN presentation is permitted before the PIN
becomes blocked.

• Validated flag - true if a valid PIN has been presented. This flag is reset on every card reset.

This interface does not make any assumptions about where the data for the PIN value comparison is stored.

An owner implementation of this interface must provide a way to initialize/update the PIN value. The owner
implementation of the interface must protect against attacks based on program flow prediction. In addition, even
if a transaction is in progress, update of internal state such as the try counter, the validated flag, and the blocking
state, shall not participate in the transaction during PIN presentation.

A typical card global PIN usage will combine an instance of OwnerPIN class and a a Proxy PIN interface
which extends both the PIN and the Shareable interfaces and re-declares the methods of the PIN interface.
The OwnerPIN instance would be manipulated only by the owner who has update privilege. All others would
access the global PIN functionality via the proxy PIN interface.

See Also: OwnerPIN, Shareable

Member Summary

Methods
 boolean check(byte[] pin, short offset, byte length)

Compares pin against the PIN value.
 byte getTriesRemaining()

Returns the number of times remaining that an incorrect PIN can be presented before
the PIN is blocked.

 boolean isValidated()
Returns true if a valid PIN value has been presented since the last card reset or last
call to reset().

 void reset()
If the validated flag is set, this method resets the validated flag and resets the PIN try
counter to the value of the PIN try limit.
106 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework PIN

getTriesRemaining()
Methods

getTriesRemaining()

Declaration:
public byte getTriesRemaining()

Description:
Returns the number of times remaining that an incorrect PIN can be presented before the PIN is blocked.

Returns: the number of times remaining

check(byte[], short, byte)

Declaration:
public boolean check(byte[] pin, short offset, byte length)

throws ArrayIndexOutOfBoundsException, NullPointerException

Description:
Compares pin against the PIN value. If they match and the PIN is not blocked, it sets the validated flag
and resets the try counter to its maximum. If it does not match, it decrements the try counter and, if the
counter has reached zero, blocks the PIN. Even if a transaction is in progress, update of internal state - the
try counter, the validated flag, and the blocking state, shall not participate in the transaction.

Note:

• If NullPointerException or ArrayIndexOutOfBoundsException is thrown, the
validated flag must be set to false, the try counter must be decremented and, the PIN blocked if the
counter reaches zero.

• If offset or length parameter is negative an ArrayIndexOutOfBoundsException
exception is thrown.

• If offset+length is greater than pin.length, the length of the pin array, an
ArrayIndexOutOfBoundsException exception is thrown.

• If pin parameter is null a NullPointerException exception is thrown.

Parameters:
pin - the byte array containing the PIN value being checked

offset - the starting offset in the pin array

length - the length of pin

Returns: true if the PIN value matches; false otherwise

Throws:
java.lang.ArrayIndexOutOfBoundsException - if the check operation would cause
access of data outside array bounds.

java.lang.NullPointerException - if pin is null

isValidated()

Declaration:
public boolean isValidated()

Description:
Returns true if a valid PIN value has been presented since the last card reset or last call to reset().
 javacard.framework PIN 107

PIN javacard.framework

reset()
Returns: true if validated; false otherwise

reset()

Declaration:
public void reset()

Description:
If the validated flag is set, this method resets the validated flag and resets the PIN try counter to the value of
the PIN try limit. If the validated flag is not set, this method does nothing.
108 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework PINException

Declaration
javacard.framework

PINException
Declaration
public class PINException extends CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.framework.PINException

Description
PINException represents a OwnerPIN class access-related exception.

The OwnerPIN class throws Java Card runtime environment-owned instances of PINException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

See Also: OwnerPIN

Member Summary

Fields
static short ILLEGAL_VALUE

This reason code is used to indicate that one or more input parameters is out of allowed
bounds.

Constructors
PINException(short reason)

Constructs a PINException.

Methods
static void throwIt(short reason)

Throws the Java Card runtime environment-owned instance of PINException with
the specified reason.
 javacard.framework PINException 109

PINException javacard.framework

Inherited Member Summary
Fields

ILLEGAL_VALUE

Declaration:
public static final short ILLEGAL_VALUE

Description:
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

Constructors

PINException(short)

Declaration:
public PINException(short reason)

Description:
Constructs a PINException. To conserve on resources use throwIt() to employ the Java Card runtime
environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

Description:
Throws the Java Card runtime environment-owned instance of PINException with the specified reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)
110 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework PINException

throwIt(short)
Throws:
PINException - always
 javacard.framework PINException 111

Shareable javacard.framework

Declaration
javacard.framework

Shareable
Declaration
public interface Shareable

Description
The Shareable interface serves to identify all shared objects. Any object that needs to be shared through the
applet firewall must directly or indirectly implement this interface. Only those methods specified in a shareable
interface are available through the firewall. Implementation classes can implement any number of shareable
interfaces and can extend other shareable implementation classes.
112 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework SystemException

Declaration
javacard.framework

SystemException
Declaration
public class SystemException extends CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.framework.SystemException

Description
SystemException represents a JCSystem class related exception. It is also thrown by the javacard.
framework.Applet.register() methods and by the AID class constructor.

These API classes throw Java Card runtime environment-owned instances of SystemException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

See Also: JCSystem, Applet, AID

Member Summary

Fields
static short ILLEGAL_AID

This reason code is used by the javacard.framework.Applet.register()
method to indicate that the input AID parameter is not a legal AID value.

static short ILLEGAL_TRANSIENT
This reason code is used to indicate that the request to create a transient object is not
allowed in the current applet context.

static short ILLEGAL_USE
This reason code is used to indicate that the requested function is not allowed.

static short ILLEGAL_VALUE
This reason code is used to indicate that one or more input parameters is out of allowed
bounds.

static short NO_RESOURCE
This reason code is used to indicate that there is insufficient resource in the Card for
the request.

static short NO_TRANSIENT_SPACE
This reason code is used by the makeTransient..() methods to indicate that no
room is available in volatile memory for the requested object.
 javacard.framework SystemException 113

SystemException javacard.framework

Inherited Member Summary
Fields

ILLEGAL_VALUE

Declaration:
public static final short ILLEGAL_VALUE

Description:
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

NO_TRANSIENT_SPACE

Declaration:
public static final short NO_TRANSIENT_SPACE

Description:
This reason code is used by the makeTransient..() methods to indicate that no room is available in
volatile memory for the requested object.

ILLEGAL_TRANSIENT

Declaration:
public static final short ILLEGAL_TRANSIENT

Description:
This reason code is used to indicate that the request to create a transient object is not allowed in the current
applet context. See Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Constructors
SystemException(short reason)

Constructs a SystemException.

Methods
static void throwIt(short reason)

Throws the Java Card runtime environment-owned instance of SystemException
with the specified reason.

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)

Member Summary
114 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework SystemException

ILLEGAL_AID
ILLEGAL_AID

Declaration:
public static final short ILLEGAL_AID

Description:
This reason code is used by the javacard.framework.Applet.register() method to indicate
that the input AID parameter is not a legal AID value.

NO_RESOURCE

Declaration:
public static final short NO_RESOURCE

Description:
This reason code is used to indicate that there is insufficient resource in the Card for the request.

For example, the Java Card Virtual Machine may throw this exception reason when there is insufficient
heap space to create a new instance.

ILLEGAL_USE

Declaration:
public static final short ILLEGAL_USE

Description:
This reason code is used to indicate that the requested function is not allowed. For example, JCSystem.
requestObjectDeletion() method throws this exception if the object deletion mechanism is not
implemented.

Constructors

SystemException(short)

Declaration:
public SystemException(short reason)

Description:
Constructs a SystemException. To conserve on resources use throwIt() to use the Java Card runtime
environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

throws SystemException
 javacard.framework SystemException 115

SystemException javacard.framework

throwIt(short)
Description:
Throws the Java Card runtime environment-owned instance of SystemException with the specified
reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Throws:
SystemException - always
116 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework TransactionException

Declaration
javacard.framework

TransactionException
Declaration
public class TransactionException extends CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.framework.TransactionException

Description
TransactionException represents an exception in the transaction subsystem. The methods referred to in
this class are in the JCSystem class.

The JCSystem class and the transaction facility throw Java Card runtime environment-owned instances of
TransactionException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

See Also: JCSystem

Member Summary

Fields
static short BUFFER_FULL

This reason code is used during a transaction to indicate that the commit buffer is full.
static short IN_PROGRESS

This reason code is used by the beginTransaction method to indicate a
transaction is already in progress.

static short INTERNAL_FAILURE
This reason code is used during a transaction to indicate an internal Java Card runtime
environment problem (fatal error).

static short NOT_IN_PROGRESS
This reason code is used by the abortTransaction and commitTransaction
methods when a transaction is not in progress.

Constructors
TransactionException(short reason)

Constructs a TransactionException with the specified reason.

Methods
 javacard.framework TransactionException 117

TransactionException javacard.framework

Inherited Member Summary
Fields

IN_PROGRESS

Declaration:
public static final short IN_PROGRESS

Description:
This reason code is used by the beginTransaction method to indicate a transaction is already in
progress.

NOT_IN_PROGRESS

Declaration:
public static final short NOT_IN_PROGRESS

Description:
This reason code is used by the abortTransaction and commitTransaction methods when a
transaction is not in progress.

BUFFER_FULL

Declaration:
public static final short BUFFER_FULL

Description:
This reason code is used during a transaction to indicate that the commit buffer is full.

INTERNAL_FAILURE

Declaration:
public static final short INTERNAL_FAILURE

Description:
This reason code is used during a transaction to indicate an internal Java Card runtime environment
problem (fatal error).

static void throwIt(short reason)
Throws the Java Card runtime environment-owned instance of
TransactionException with the specified reason.

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)

Member Summary
118 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework TransactionException

TransactionException(short)
Constructors

TransactionException(short)

Declaration:
public TransactionException(short reason)

Description:
Constructs a TransactionException with the specified reason. To conserve on resources use throwIt() to
use the Java Card runtime environment-owned instance of this class.

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

Description:
Throws the Java Card runtime environment-owned instance of TransactionException with the
specified reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Throws:
TransactionException - always
 javacard.framework TransactionException 119

UserException javacard.framework

Declaration
javacard.framework

UserException
Declaration
public class UserException extends CardException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--javacard.framework.CardException

|
+--javacard.framework.UserException

Description
UserException represents a User exception. This class also provides a resource-saving mechanism (the
throwIt() method) for user exceptions by using a Java Card runtime environment-owned instance.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

Member Summary

Constructors
UserException()

Constructs a UserException with reason = 0.
UserException(short reason)

Constructs a UserException with the specified reason.

Methods
static void throwIt(short reason)

Throws the Java Card runtime environment-owned instance of UserException
with the specified reason.

Inherited Member Summary

Methods inherited from interface CardException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)
120 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework UserException

UserException()
Constructors

UserException()

Declaration:
public UserException()

Description:
Constructs a UserException with reason = 0. To conserve on resources use throwIt() to use the
Java Card runtime environment-owned instance of this class.

UserException(short)

Declaration:
public UserException(short reason)

Description:
Constructs a UserException with the specified reason. To conserve on resources use throwIt() to
use the Java Card runtime environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

throws UserException

Description:
Throws the Java Card runtime environment-owned instance of UserException with the specified
reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Throws:
UserException - always
 javacard.framework UserException 121

Util javacard.framework

Declaration
javacard.framework

Util
Declaration
public class Util

java.lang.Object
|
+--javacard.framework.Util

Description
The Util class contains common utility functions. Some of the methods may be implemented as native
functions for performance reasons. All methods in Util, class are static methods.

Some methods of Util, namely arrayCopy(), arrayCopyNonAtomic(),
arrayFillNonAtomic() and setShort(), refer to the persistence of array objects. The term persistent
means that arrays and their values persist from one CAD session to the next, indefinitely. The JCSystem class
is used to control the persistence and transience of objects.

See Also: JCSystem

Member Summary

Methods
static byte arrayCompare(byte[] src, short srcOff, byte[] dest, short

destOff, short length)
Compares an array from the specified source array, beginning at the specified position,
with the specified position of the destination array from left to right.

static short arrayCopy(byte[] src, short srcOff, byte[] dest, short dest-
Off, short length)

Copies an array from the specified source array, beginning at the specified position, to
the specified position of the destination array.

static short arrayCopyNonAtomic(byte[] src, short srcOff, byte[] dest,
short destOff, short length)

Copies an array from the specified source array, beginning at the specified position, to
the specified position of the destination array (non-atomically).

static short arrayFillNonAtomic(byte[] bArray, short bOff, short bLen,
byte bValue)

Fills the byte array (non-atomically) beginning at the specified position, for the
specified length with the specified byte value.

static short getShort(byte[] bArray, short bOff)
Concatenates two bytes in a byte array to form a short value.

static short makeShort(byte b1, byte b2)
Concatenates the two parameter bytes to form a short value.

static short setShort(byte[] bArray, short bOff, short sValue)
Deposits the short value as two successive bytes at the specified offset in the byte
array.
122 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework Util

Inherited Member Summary
Methods

arrayCopy(byte[], short, byte[], short, short)

Declaration:
public static final short arrayCopy(byte[] src, short srcOff, byte[] dest, short destOff,

short length)

throws ArrayIndexOutOfBoundsException, NullPointerException,

TransactionException

Description:
Copies an array from the specified source array, beginning at the specified position, to the specified position
of the destination array.

Note:

• If srcOff or destOff or length parameter is negative an
ArrayIndexOutOfBoundsException exception is thrown.

• If srcOff+length is greater than src.length, the length of the src array a
ArrayIndexOutOfBoundsException exception is thrown and no copy is performed.

• If destOff+length is greater than dest.length, the length of the dest array an
ArrayIndexOutOfBoundsException exception is thrown and no copy is performed.

• If src or dest parameter is null a NullPointerException exception is thrown.

• If the src and dest arguments refer to the same array object, then the copying is performed as if the
components at positions srcOff through srcOff+length-1 were first copied to a temporary
array with length components and then the contents of the temporary array were copied into positions
destOff through destOff+length-1 of the argument array.

• If the destination array is persistent, the entire copy is performed atomically.

• The copy operation is subject to atomic commit capacity limitations. If the commit capacity is
exceeded, no copy is performed and a TransactionException exception is thrown.

Parameters:
src - source byte array

srcOff - offset within source byte array to start copy from

dest - destination byte array

destOff - offset within destination byte array to start copy into

length - byte length to be copied

Returns: destOff+length

Throws:
java.lang.ArrayIndexOutOfBoundsException - if copying would cause access of data
outside array bounds

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.framework Util 123

Util javacard.framework

arrayCopyNonAtomic(byte[], short, byte[], short, short)
java.lang.NullPointerException - if either src or dest is null

TransactionException - if copying would cause the commit capacity to be exceeded

See Also: JCSystem.getUnusedCommitCapacity()

arrayCopyNonAtomic(byte[], short, byte[], short, short)

Declaration:
public static final short arrayCopyNonAtomic(byte[] src, short srcOff, byte[] dest,

short destOff, short length)

throws ArrayIndexOutOfBoundsException, NullPointerException

Description:
Copies an array from the specified source array, beginning at the specified position, to the specified position
of the destination array (non-atomically).

This method does not use the transaction facility during the copy operation even if a transaction is in
progress. Thus, this method is suitable for use only when the contents of the destination array can be left in
a partially modified state in the event of a power loss in the middle of the copy operation.

Note:

• If srcOff or destOff or length parameter is negative an
ArrayIndexOutOfBoundsException exception is thrown.

• If srcOff+length is greater than src.length, the length of the src array a
ArrayIndexOutOfBoundsException exception is thrown and no copy is performed.

• If destOff+length is greater than dest.length, the length of the dest array an
ArrayIndexOutOfBoundsException exception is thrown and no copy is performed.

• If src or dest parameter is null a NullPointerException exception is thrown.

• If the src and dest arguments refer to the same array object, then the copying is performed as if the
components at positions srcOff through srcOff+length-1 were first copied to a temporary
array with length components and then the contents of the temporary array were copied into positions
destOff through destOff+length-1 of the argument array.

• If power is lost during the copy operation and the destination array is persistent, a partially changed
destination array could result.

• The copy length parameter is not constrained by the atomic commit capacity limitations.

Parameters:
src - source byte array

srcOff - offset within source byte array to start copy from

dest - destination byte array

destOff - offset within destination byte array to start copy into

length - byte length to be copied

Returns: destOff+length

Throws:
java.lang.ArrayIndexOutOfBoundsException - if copying would cause access of data
outside array bounds

java.lang.NullPointerException - if either src or dest is null
124 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework Util

arrayFillNonAtomic(byte[], short, short, byte)
See Also: JCSystem.getUnusedCommitCapacity()

arrayFillNonAtomic(byte[], short, short, byte)

Declaration:
public static final short arrayFillNonAtomic(byte[] bArray, short bOff, short bLen, byte

bValue)

throws ArrayIndexOutOfBoundsException, NullPointerException

Description:
Fills the byte array (non-atomically) beginning at the specified position, for the specified length with the
specified byte value.

This method does not use the transaction facility during the fill operation even if a transaction is in progress.
Thus, this method is suitable for use only when the contents of the byte array can be left in a partially filled
state in the event of a power loss in the middle of the fill operation.

Note:

• If bOff or bLen parameter is negative an ArrayIndexOutOfBoundsException exception is
thrown.

• If bOff+bLen is greater than bArray.length, the length of the bArray array an
ArrayIndexOutOfBoundsException exception is thrown.

• If bArray parameter is null a NullPointerException exception is thrown.

• If power is lost during the copy operation and the byte array is persistent, a partially changed byte
array could result.

• The bLen parameter is not constrained by the atomic commit capacity limitations.

Parameters:
bArray - the byte array

bOff - offset within byte array to start filling bValue into

bLen - byte length to be filled

bValue - the value to fill the byte array with

Returns: bOff+bLen

Throws:
java.lang.ArrayIndexOutOfBoundsException - if the fill operation would cause access
of data outside array bounds

java.lang.NullPointerException - if bArray is null

See Also: JCSystem.getUnusedCommitCapacity()

arrayCompare(byte[], short, byte[], short, short)

Declaration:
public static final byte arrayCompare(byte[] src, short srcOff, byte[] dest, short

destOff, short length)

throws ArrayIndexOutOfBoundsException, NullPointerException

Description:
Compares an array from the specified source array, beginning at the specified position, with the specified
position of the destination array from left to right. Returns the ternary result of the comparison : less than(-
1), equal(0) or greater than(1).
 javacard.framework Util 125

Util javacard.framework

makeShort(byte, byte)
Note:

• If srcOff or destOff or length parameter is negative an
ArrayIndexOutOfBoundsException exception is thrown.

• If srcOff+length is greater than src.length, the length of the src array a
ArrayIndexOutOfBoundsException exception is thrown.

• If destOff+length is greater than dest.length, the length of the dest array an
ArrayIndexOutOfBoundsException exception is thrown.

• If src or dest parameter is null a NullPointerException exception is thrown.

Parameters:
src - source byte array

srcOff - offset within source byte array to start compare

dest - destination byte array

destOff - offset within destination byte array to start compare

length - byte length to be compared

Returns: the result of the comparison as follows:

• 0 if identical

• -1 if the first miscomparing byte in source array is less than that in destination array

• 1 if the first miscomparing byte in source array is greater that that in destination array

Throws:
java.lang.ArrayIndexOutOfBoundsException - if comparing all bytes would cause
access of data outside array bounds

java.lang.NullPointerException - if either src or dest is null

makeShort(byte, byte)

Declaration:
public static final short makeShort(byte b1, byte b2)

Description:
Concatenates the two parameter bytes to form a short value.

Parameters:
b1 - the first byte (high order byte)

b2 - the second byte (low order byte)

Returns: the short value the concatenated result

getShort(byte[], short)

Declaration:
public static final short getShort(byte[] bArray, short bOff)

throws NullPointerException, ArrayIndexOutOfBoundsException

Description:
Concatenates two bytes in a byte array to form a short value.

Parameters:
bArray - byte array
126 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework Util

setShort(byte[], short, short)
bOff - offset within byte array containing first byte (the high order byte)

Returns: the short value the concatenated result

Throws:
java.lang.NullPointerException - if the bArray parameter is null

java.lang.ArrayIndexOutOfBoundsException - if the bOff parameter is negative or if
bOff+1 is greater than the length of bArray

setShort(byte[], short, short)

Declaration:
public static final short setShort(byte[] bArray, short bOff, short sValue)

throws TransactionException, NullPointerException,

ArrayIndexOutOfBoundsException

Description:
Deposits the short value as two successive bytes at the specified offset in the byte array.

Parameters:
bArray - byte array

bOff - offset within byte array to deposit the first byte (the high order byte)

sValue - the short value to set into array.

Returns: bOff+2

Note:

• If the byte array is persistent, this operation is performed atomically. If the commit capacity is
exceeded, no operation is performed and a TransactionException exception is thrown.

Throws:
TransactionException - if the operation would cause the commit capacity to be exceeded

java.lang.ArrayIndexOutOfBoundsException - if the bOff parameter is negative or if
bOff+1 is greater than the length of bArray

java.lang.NullPointerException - if the bArray parameter is null

See Also: JCSystem.getUnusedCommitCapacity()
 javacard.framework Util 127

Util javacard.framework

setShort(byte[], short, short)
128 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 6
Package

javacard.framework.service
Description
Provides a service framework of classes and interfaces that allow a Java Card technology-based applet to be
designed as an aggregation of service components. The package contains an aggregator class called
Dispatcher which includes methods to add services to its registry, dispatch APDU commands to registered
services, and remove services from its registry.

The package also contains the Service interface which contains methods to process APDU commands, and
allow the dispatcher to be aware of multiple services. Subinterfaces allow an implementation services with
added functionality:

• RemoteService-use this subinterface to define services that allow remote processes to access the
services present on a card that supports the Java Card platform.

• SecurityService-use this subinterface to define services that provide methods to query the current
security status.

The class BasicService provides the basic functionality of a service, and all services are built as subclasses
of this class. BasicService provides a default implementation for the methods defined in the Service
interface, and defines a set of helper methods that allow the APDU buffer to enable cooperation among different
services.

RMI Classes for the Java Card Platform
The CardRemoteObject and RMIService classes allow a Java programming language program running
on a virtual machine on the client platform to invoke methods on remote objects in a Java Card technology-
based applet. These classes contain the minimum required functionality to implement Remote Method
Invocation for the Java Card platform (JCRMI).

Class Summary

Interfaces

RemoteService This interface defines the generic API for remote object access services, which allow
remote processes to access the services present on a Java Card technology-enabled
smart card.

SecurityService This interface describes the functions of a generic security service.

Service This is the base interface for the service framework on the Java Card platform.

Classes

BasicService This class should be used as the base class for implementing services.

CardRemoteObject A convenient base class for remote objects for the Java Card platform.

Dispatcher A Dispatcher is used to build an application by aggregating several services.
129

javacard.framework.service

Class Summary
RMIService An implementation of a service that is used to process Java Card platform RMI requests
for remotely accessible objects.

Exceptions

ServiceException ServiceException represents a service framework-related exception.

Class Summary
130 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service BasicService

Declaration
javacard.framework.service

BasicService
Declaration
public class BasicService implements Service

java.lang.Object
|
+--javacard.framework.service.BasicService

All Implemented Interfaces: Service

Direct Known Subclasses: RMIService

Description
This class should be used as the base class for implementing services. It provides a default implementation for
the methods defined in the Service interface, and defines a set of helper methods that manage the APDU
buffer to enable co-operation among different Services.

The BasicService class uses the state of APDU processing to enforce the validity of the various helper
operations. It expects and maintains the following Common Service Format (CSF) of data in the APDU Buffer
corresponding to the various APDU processing states (See javacard.framework.APDU):

Init State format of APDU Buffer. This format corresponds to the
APDU processing state - STATE_INITIAL :
0 1 2 3 4 5 <- offset
+--+
| CLA | INS | P1 | P2 | P3 | ... Implementation dependent ...|
+--+
Input Ready format of APDU Buffer. This format corresponds
to the APDU processing state - STATE_FULL_INCOMING.
0 1 2 3 4 5 <- offset
+--+
| CLA | INS | P1 | P2 | Lc | Incoming Data(Lc bytes) |
+--+
Output Ready format of APDU Buffer. This format corresponds
to the APDU processing status - STATE_OUTGOING .. STATE_FULL_OUTGOING
0 1 2 3 4 5 <- offset
+--+
| CLA | INS | SW1 | SW2 | La | Outgoing Data(La bytes) |
+--+

When the APDU buffer is in the Init and Input Ready formats, the helper methods allow input access methods
but flag errors if output access is attempted. Conversely, when the APDU buffer is in the Output format, input
access methods result in exceptions.

If the header areas maintained by the BasicService helper methods are modified directly in the APDU
buffer and the format of the APDU buffer described above is not maintained, unexpected behavior might result.

In addition, both La=0 and La=256 are represented in the CSF format as La=0. The distinction is
implementation dependent. The getOutputLength method must be used to avoid ambiguity.

Many of the helper methods also throw exceptions if the APDU object is in an error state (processing status
code < 0).
 javacard.framework.service BasicService 131

BasicService javacard.framework.service

Member Summary
See Also: javacard.framework.APDU

Member Summary

Constructors
BasicService()

Creates new BasicService.

Methods
 boolean fail(javacard.framework.APDU apdu, short sw)

Sets the processing state for the command in the APDU object to processed, and
indicates that the processing has failed.

 byte getCLA(javacard.framework.APDU apdu)
Returns the class byte for the command in the APDU object.

 byte getINS(javacard.framework.APDU apdu)
Returns the instruction byte for the command in the APDU object.

 short getOutputLength(javacard.framework.APDU apdu)
Returns the output length for the command in the APDU object.

 byte getP1(javacard.framework.APDU apdu)
Returns the first parameter byte for the command in the APDU object.

 byte getP2(javacard.framework.APDU apdu)
Returns the second parameter byte for the command in the APDU object.

 short getStatusWord(javacard.framework.APDU apdu)
Returns the response status word for the command in the APDU object.

 boolean isProcessed(javacard.framework.APDU apdu)
Checks if the command in the APDU object has already been processed.

 boolean processCommand(javacard.framework.APDU apdu)
This BasicService method is a default implementation and simply returns false
without performing any processing.

 boolean processDataIn(javacard.framework.APDU apdu)
This BasicService method is a default implementation and simply returns false
without performing any processing.

 boolean processDataOut(javacard.framework.APDU apdu)
This BasicService method is a default implementation and simply returns false
without performing any processing.

 short receiveInData(javacard.framework.APDU apdu)
Receives the input data for the command in the APDU object if the input has not
already been received.

 boolean selectingApplet()
This method is used to determine if the command in the APDU object is the applet
SELECT FILE command which selected the currently selected applet.

 void setOutputLength(javacard.framework.APDU apdu, short length)
Sets the output length of the outgoing response for the command in the APDU object.

 void setProcessed(javacard.framework.APDU apdu)
Sets the processing state of the command in the APDU object to processed.

 void setStatusWord(javacard.framework.APDU apdu, short sw)
Sets the response status word for the command in the APDU object.

 boolean succeed(javacard.framework.APDU apdu)
Sets the processing state for the command in the APDU object to processed, and
indicates that the processing has succeeded.

 boolean succeedWithStatusWord(javacard.framework.APDU apdu, short sw)
Sets the processing state for the command in the APDU object to processed, and
indicates that the processing has partially succeeded.
132 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service BasicService

Inherited Member Summary
Constructors

BasicService()

Declaration:
public BasicService()

Description:
Creates new BasicService.

Methods

processDataIn(APDU)

Declaration:
public boolean processDataIn(javacard.framework.APDU apdu)

Description:
This BasicService method is a default implementation and simply returns false without performing
any processing.

Specified By: processDataIn in interface Service

Parameters:
apdu - the APDU object containing the command being processed

Returns: false

processCommand(APDU)

Declaration:
public boolean processCommand(javacard.framework.APDU apdu)

Description:
This BasicService method is a default implementation and simply returns false without performing
any processing.

Specified By: processCommand in interface Service

Parameters:
apdu - the APDU object containing the command being processed

Returns: false

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.framework.service BasicService 133

BasicService javacard.framework.service

processDataOut(APDU)
processDataOut(APDU)

Declaration:
public boolean processDataOut(javacard.framework.APDU apdu)

Description:
This BasicService method is a default implementation and simply returns false without performing
any processing.

Specified By: processDataOut in interface Service

Parameters:
apdu - the APDU object containing the command being processed

Returns: false

receiveInData(APDU)

Declaration:
public short receiveInData(javacard.framework.APDU apdu)

throws ServiceException

Description:
Receives the input data for the command in the APDU object if the input has not already been received. The
entire input data must fit in the APDU buffer starting at offset 5. When invoked, the APDU object must
either be in STATE_INITIAL with the APDU buffer in the Init format or in STATE_FULL_INCOMING
with the APDU buffer in the Input Ready format

Parameters:
apdu - the APDU object containing the apdu being processed

Returns: the length of input data received and present in the APDU Buffer

Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_IN_COMMAND if the APDU object is not in
STATE_INITIAL or in STATE_FULL_INCOMING or,

• ServiceException.COMMAND_DATA_TOO_LONG if the input data does not fit in the APDU
buffer starting at offset 5.

setProcessed(APDU)

Declaration:
public void setProcessed(javacard.framework.APDU apdu)

throws ServiceException

Description:
Sets the processing state of the command in the APDU object to processed. This is done by setting the APDU
object in outgoing mode by invoking the APDU.setOutgoing method. If the APDU is already in
outgoing mode, this method does nothing (allowing the method to be called several times).

Parameters:
apdu - the APDU object containing the command being processed

Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_OUT_COMMAND if the APDU object is not accessible
(APDU object in STATE_ERROR_..)
134 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service BasicService

isProcessed(APDU)
See Also: javacard.framework.APDU.getCurrentState()

isProcessed(APDU)

Declaration:
public boolean isProcessed(javacard.framework.APDU apdu)

Description:
Checks if the command in the APDU object has already been processed. This is done by checking whether
or not the APDU object has been set in outgoing mode via a previous invocation of the APDU.
setOutgoing method.

Note:

• This method returns true if the APDU object is not accessible (APDU object in STATE_ERROR_..).

Parameters:
apdu - the APDU object containing the command being processed

Returns: true if the command has been processed, false otherwise

setOutputLength(APDU, short)

Declaration:
public void setOutputLength(javacard.framework.APDU apdu, short length)

throws ServiceException

Description:
Sets the output length of the outgoing response for the command in the APDU object. This method can be
called regardless of the current state of the APDU processing.

Parameters:
apdu - the APDU object containing the command being processed

length - the number of bytes in the response to the command

Throws:
ServiceException - with the following reason code:

• ServiceException.ILLEGAL_PARAM if the length parameter is greater than 256 or if the
outgoing response will not fit within the APDU Buffer.

getOutputLength(APDU)

Declaration:
public short getOutputLength(javacard.framework.APDU apdu)

throws ServiceException

Description:
Returns the output length for the command in the APDU object. This method can only be called if the
APDU processing state indicates that the command has been processed.

Parameters:
apdu - the APDU object containing the command being processed

Returns: a value in the range: 0 to 256(inclusive), that represents the number of bytes to be returned for
this command

Throws:
ServiceException - with the following reason code:
 javacard.framework.service BasicService 135

BasicService javacard.framework.service

setStatusWord(APDU, short)
• ServiceException.CANNOT_ACCESS_OUT_COMMAND if the command is not processed or if
the APDU object is not accessible (APDU object in STATE_ERROR_..)

See Also: javacard.framework.APDU.getCurrentState()

setStatusWord(APDU, short)

Declaration:
public void setStatusWord(javacard.framework.APDU apdu, short sw)

Description:
Sets the response status word for the command in the APDU object. This method can be called regardless of
the APDU processing state of the current command.

Parameters:
apdu - the APDU object containing the command being processed

sw - the status word response for this command

getStatusWord(APDU)

Declaration:
public short getStatusWord(javacard.framework.APDU apdu)

throws ServiceException

Description:
Returns the response status word for the command in the APDU object. This method can only be called if
the APDU processing state indicates that the command has been processed.

Parameters:
apdu - the APDU object containing the command being processed

Returns: the status word response for this command

Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_OUT_COMMAND if the command is not processed or if
the APDU object is not accessible (APDU object in STATE_ERROR_..)

See Also: javacard.framework.APDU.getCurrentState()

fail(APDU, short)

Declaration:
public boolean fail(javacard.framework.APDU apdu, short sw)

throws ServiceException

Description:
Sets the processing state for the command in the APDU object to processed, and indicates that the
processing has failed. Sets the output length to 0 and the status word of the response to the specified value.

Parameters:
apdu - the APDU object containing the command being processed

sw - the status word response for this command

Returns: true

Throws:
ServiceException - with the following reason code:
136 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service BasicService

succeed(APDU)
• ServiceException.CANNOT_ACCESS_OUT_COMMAND if the APDU object is not accessible
(APDU object in STATE_ERROR_..)

See Also: javacard.framework.APDU.getCurrentState()

succeed(APDU)

Declaration:
public boolean succeed(javacard.framework.APDU apdu)

throws ServiceException

Description:
Sets the processing state for the command in the APDU object to processed, and indicates that the
processing has succeeded. Sets the status word of the response to 0x9000. The output length of the
response must be set separately.

Parameters:
apdu - the APDU object containing the command being processed.

Returns: true

Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_OUT_COMMAND if the APDU object is not accessible
(APDU object in STATE_ERROR_..)

See Also: javacard.framework.APDU.getCurrentState()

succeedWithStatusWord(APDU, short)

Declaration:
public boolean succeedWithStatusWord(javacard.framework.APDU apdu, short sw)

throws ServiceException

Description:
Sets the processing state for the command in the APDU object to processed, and indicates that the
processing has partially succeeded. Sets the the status word of the response to the specified value. The
output length of the response must be set separately.

Parameters:
apdu - the APDU object containing the command being processed

sw - the status word to be returned for this command

Returns: true

Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_OUT_COMMAND if the APDU object is not accessible
(APDU object in STATE_ERROR_..)

See Also: javacard.framework.APDU.getCurrentState()

getCLA(APDU)

Declaration:
public byte getCLA(javacard.framework.APDU apdu)
 javacard.framework.service BasicService 137

BasicService javacard.framework.service

getINS(APDU)
Description:
Returns the class byte for the command in the APDU object. This method can be called regardless of the
APDU processing state of the current command.

Parameters:
apdu - the APDU object containing the command being processed

Returns: the value of the CLA byte

getINS(APDU)

Declaration:
public byte getINS(javacard.framework.APDU apdu)

Description:
Returns the instruction byte for the command in the APDU object. This method can be called regardless of
the APDU processing state of the current command.

Parameters:
apdu - the APDU object containing the command being processed

Returns: the value of the INS byte

getP1(APDU)

Declaration:
public byte getP1(javacard.framework.APDU apdu)

throws ServiceException

Description:
Returns the first parameter byte for the command in the APDU object. When invoked, the APDU object must
be in STATE_INITIAL or STATE_FULL_INCOMING.

Parameters:
apdu - the APDU object containing the command being processed

Returns: the value of the P1 byte

Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_IN_COMMAND if the APDU object is not in
STATE_INITIAL or in STATE_FULL_INCOMING.

getP2(APDU)

Declaration:
public byte getP2(javacard.framework.APDU apdu)

throws ServiceException

Description:
Returns the second parameter byte for the command in the APDU object. When invoked, the APDU object
must be in STATE_INITIAL or STATE_FULL_INCOMING.

Parameters:
apdu - the APDU object containing the command being processed

Returns: the value of the P2 byte
138 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service BasicService

selectingApplet()
Throws:
ServiceException - with the following reason code:

• ServiceException.CANNOT_ACCESS_IN_COMMAND if the APDU object is not in
STATE_INITIAL or in STATE_FULL_INCOMING.

selectingApplet()

Declaration:
public boolean selectingApplet()

Description:
This method is used to determine if the command in the APDU object is the applet SELECT FILE command
which selected the currently selected applet.

Returns: true if applet SELECT FILE command is being processed
 javacard.framework.service BasicService 139

CardRemoteObject javacard.framework.service

Declaration
javacard.framework.service

CardRemoteObject
Declaration
public class CardRemoteObject implements java.rmi.Remote

java.lang.Object
|
+--javacard.framework.service.CardRemoteObject

All Implemented Interfaces: java.rmi.Remote

Description
A convenient base class for remote objects for the Java Card platform. An instance of a subclass of this
CardRemoteObject class will be exported automatically upon construction.

Constructors

CardRemoteObject()

Declaration:
public CardRemoteObject()

Description:
Creates a new CardRemoteObject and automatically exports it. When exported, the object is enabled
for remote access from outside the card until unexported. Only when the object is enabled for remote access

Member Summary

Constructors
CardRemoteObject()

Creates a new CardRemoteObject and automatically exports it.

Methods
static void export(java.rmi.Remote obj)

Exports the specified remote object.
static void unexport(java.rmi.Remote obj)

Unexports the specified remote object.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
140 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service CardRemoteObject

export(Remote)
can it be returned as the initial reference during selection or returned by a remote method. In addition,
remote methods can be invoked only on objects enabled for remote access.

Methods

export(Remote)

Declaration:
public static void export(java.rmi.Remote obj)

throws SecurityException

Description:
Exports the specified remote object. The object is now enabled for remote access from outside the card until
unexported. In order to remotely access the remote object from the terminal client, it must either be set as
the initial reference or be returned by a remote method.

Parameters:
obj - the remotely accessible object

Throws:
java.lang.SecurityException - if the specified obj parameter is not owned by the caller
context

javacard.framework.SystemException - with the following reason codes:

• SystemException.NO_RESOURCE if too many exported remote objects. All implementations
must support a minimum of 16 exported remote objects.

unexport(Remote)

Declaration:
public static void unexport(java.rmi.Remote obj)

throws SecurityException

Description:
Unexports the specified remote object. After applying this method, the object cannot be remotely accessed
from outside the card until it is exported again.

Note:

• If this method is called during the session in which the specified remote object parameter is the initial
reference object or has been returned by a remote method, the specified remote object will continue to
be remotely accessible until the end of the associated selection session(s).

Parameters:
obj - the remotely accessible object

Throws:
java.lang.SecurityException - if the specified obj parameter is not owned by the caller
context
 javacard.framework.service CardRemoteObject 141

Dispatcher javacard.framework.service

Declaration
javacard.framework.service

Dispatcher
Declaration
public class Dispatcher

java.lang.Object
|
+--javacard.framework.service.Dispatcher

Description
A Dispatcher is used to build an application by aggregating several services.

The dispatcher maintains a registry of Service objects. A Service is categorized by the type of processing
it performs:

• A pre-processing service pre-processes input data for the command being processed. It is associated with
the PROCESS_INPUT_DATA phase.

• A command processing service processes the input data and generates output data. It is associated with the
PROCESS_COMMAND phase.

• A post-processing service post-processes the generated output data. It is associated with the
PROCESS_OUTPUT_DATA phase.

The dispatcher simply dispatches incoming APDU object containing the command being processed to the
registered services.

Member Summary

Fields
static byte PROCESS_COMMAND

Identifies the main command processing phase.
static byte PROCESS_INPUT_DATA

Identifies the input data processing phase.
static byte PROCESS_NONE

Identifies the null processing phase.
static byte PROCESS_OUTPUT_DATA

Identifies the output data processing phase.

Constructors
Dispatcher(short maxServices)

Creates a Dispatcher with a designated maximum number of services.

Methods
 void addService(Service service, byte phase)

Atomically adds the specified service to the dispatcher registry for the specified
processing phase.

 java.lang.Exception dispatch(javacard.framework.APDU command, byte phase)
Manages the processing of the command in the APDU object.

 void process(javacard.framework.APDU command)
Manages the entire processing of the command in the APDU object input parameter.
142 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service Dispatcher

Inherited Member Summary
Fields

PROCESS_NONE

Declaration:
public static final byte PROCESS_NONE

Description:
Identifies the null processing phase.

PROCESS_INPUT_DATA

Declaration:
public static final byte PROCESS_INPUT_DATA

Description:
Identifies the input data processing phase.

PROCESS_COMMAND

Declaration:
public static final byte PROCESS_COMMAND

Description:
Identifies the main command processing phase.

PROCESS_OUTPUT_DATA

Declaration:
public static final byte PROCESS_OUTPUT_DATA

Description:
Identifies the output data processing phase.

 void removeService(Service service, byte phase)
Atomically removes the specified service for the specified processing phase from the
dispatcher registry.

Inherited Member Summary

Methods inherited from class Object

equals(Object)

Member Summary
 javacard.framework.service Dispatcher 143

Dispatcher javacard.framework.service

Dispatcher(short)
Constructors

Dispatcher(short)

Declaration:
public Dispatcher(short maxServices)

throws ServiceException

Description:
Creates a Dispatcher with a designated maximum number of services.

Parameters:
maxServices - the maximum number of services that can be registered to this dispatcher

Throws:
ServiceException - with the following reason code:

• ServiceException.ILLEGAL_PARAM if the maxServices parameter is negative.

Methods

addService(Service, byte)

Declaration:
public void addService(javacard.framework.service.Service service, byte phase)

throws ServiceException

Description:
Atomically adds the specified service to the dispatcher registry for the specified processing phase. Services
are invoked in the order in which they are added to the registry during the processing of that phase. If the
requested service is already registered for the specified processing phase, this method does nothing.

Parameters:
service - the Service to be added to the dispatcher

phase - the processing phase associated with this service

Throws:
ServiceException - with the following reason code:

• ServiceException.DISPATCH_TABLE_FULL if the maximum number of registered services
is exceeded.

• ServiceException.ILLEGAL_PARAM if the phase parameter is undefined or if the service
parameter is null.

removeService(Service, byte)

Declaration:
public void removeService(javacard.framework.service.Service service, byte phase)

throws ServiceException

Description:
Atomically removes the specified service for the specified processing phase from the dispatcher registry.
Upon removal, the slot used by the specified service in the dispatcher registry is available for re-use. If the
specified service is not registered for the specified processing phase, this method does nothing.
144 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service Dispatcher

dispatch(APDU, byte)
Parameters:
service - the Service to be deleted from the dispatcher

phase - the processing phase associated with this service

Throws:
ServiceException - with the following reason code:

• ServiceException.ILLEGAL_PARAM if the phase parameter is unknown or if the service
parameter is null.

dispatch(APDU, byte)

Declaration:
public java.lang.Exception dispatch(javacard.framework.APDU command, byte phase)

throws ServiceException

Description:
Manages the processing of the command in the APDU object. This method is called when only partial
processing using the registered services is required or when the APDU response folowing an error during
the processing needs to be controlled.

It sequences through the registered services by calling the appopriate processing methods. Processing starts
with the phase indicated in the input parameter. Services registered for that processing phase are called in
the sequence in which they were registered until all the services for the processing phase have been called
or a service indicates that processing for that phase is complete by returning true from its processing
method. The dispatcher then processes the next phases in a similar manner until all the phases have been
processed. The PROCESS_OUTPUT_DATA processing phase is performed only if the command processing
has completed normally (APDU object state is APDU.STATE_OUTGOING).

The processing sequence is PROCESS_INPUT_DATA phase, followed by the PROCESS_COMMAND phase
and lastly the PROCESS_OUTPUT_DATA. The processing is performed as follows:

• PROCESS_INPUT_DATA phase invokes the Service.processDataIn(APDU) method

• PROCESS_COMMAND phase invokes the Service.processCommand(APDU) method

• PROCESS_OUTPUT_DATA phase invokes the Service.processDataOut(APDU) method

If the command processing completes normally, the output data, assumed to be in the APDU buffer in the
Common Service Format (CSF) defined in BasicService, is sent using APDU.sendBytes and the
response status is generated by throwing an ISOException exception. If the command could not be
processed, null is returned. If any exception is thrown by a Service during the processing, that exception
is returned.

Parameters:
command - the APDU object containing the command to be processed

phase - the processing phase to perform first

Returns: an exception that occurred during the processing of the command, or null if the command
could not be processed

Throws:
ServiceException - with the following reason code:

• ServiceException.ILLEGAL_PARAM if the phase parameter is PROCESS_NONE or an
undefined value.

See Also: BasicService
 javacard.framework.service Dispatcher 145

Dispatcher javacard.framework.service

process(APDU)
process(APDU)

Declaration:
public void process(javacard.framework.APDU command)

throws ISOException

Description:
Manages the entire processing of the command in the APDU object input parameter. This method is called
to delegate the complete processing of the incoming APDU command to the configured services.

This method uses the dispatch(APDU, byte) method with PROCESS_INPUT_DATA as the input
phase parameter to sequence through the services registered for all three phases :
PROCESS_INPUT_DATA followed by PROCESS_COMMAND and lastly PROCESS_OUTPUT_DATA.

If the command processing completes normally, the output data is sent using APDU.sendBytes and the
response status is generated by throwing an ISOException exception or by simply returning (for status
= 0x9000). If an exception is thrown by any Service during the processing, ISO7816.SW_UNKNOWN
response status code is generated by throwing an ISOException. If the command could not be processed
ISO7816.SW_INS_NOT_SUPPORTED response status is generated by throwing an ISOException.

Note:

• If additional command processing is required following a call to this method, the caller should catch
and process exceptions thrown by this method.

Parameters:
command - the APDU object containing command to be processed

Throws:
javacard.framework.ISOException - with the response bytes per ISO 7816-4
146 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service RemoteService

Declaration
javacard.framework.service

RemoteService
Declaration
public interface RemoteService extends Service

All Superinterfaces: Service

All Known Implementing Classes: RMIService

Description
This interface defines the generic API for remote object access services, which allow remote processes to access
the services present on a Java Card technology-enabled smart card.

Inherited Member Summary

Methods inherited from interface Service

processCommand(APDU), processDataIn(APDU), processDataOut(APDU)
 javacard.framework.service RemoteService 147

RMIService javacard.framework.service

Declaration
javacard.framework.service

RMIService
Declaration
public class RMIService extends BasicService implements RemoteService

java.lang.Object
|
+--javacard.framework.service.BasicService

|
+--javacard.framework.service.RMIService

All Implemented Interfaces: RemoteService, Service

Description
An implementation of a service that is used to process Java Card platform RMI requests for remotely accessible
objects.

Member Summary

Fields
static byte DEFAULT_RMI_INVOKE_INSTRUCTION

The default INS value (0x38) used for the remote method invocation command
(INVOKE) in the Java Card platform RMI protocol.

Constructors
RMIService(java.rmi.Remote initialObject)

Creates a new RMIService and sets the specified remote object as the initial
reference for the applet.

Methods
 boolean processCommand(javacard.framework.APDU apdu)

Processes the command within the APDU object.
 void setInvokeInstructionByte(byte ins)

Defines the instruction byte to be used in place of
DEFAULT_RMI_INVOKE_INSTRUCTION in the Java Card platform RMI protocol
for the INVOKE commands used to access the RMIService for remote method
invocations.

Inherited Member Summary

Methods inherited from class BasicService
148 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service RMIService

DEFAULT_RMI_INVOKE_INSTRUCTION
Fields

DEFAULT_RMI_INVOKE_INSTRUCTION

Declaration:
public static final byte DEFAULT_RMI_INVOKE_INSTRUCTION

Description:
The default INS value (0x38) used for the remote method invocation command (INVOKE) in the Java Card
platform RMI protocol.

Constructors

RMIService(Remote)

Declaration:
public RMIService(java.rmi.Remote initialObject)

throws NullPointerException

Description:
Creates a new RMIService and sets the specified remote object as the initial reference for the applet. The
initial reference will be published to the client in response to the SELECT APDU command processed by
this object.

The RMIService instance may create session data to manage exported remote objects for the current
applet session in CLEAR_ON_DESELECT transient space.

Parameters:
initialObject - the remotely accessible initial object

Throws:
java.lang.NullPointerException - if the initialObject parameter is null

fail(APDU, short), getCLA(APDU), getINS(APDU), getOutputLength(APDU), getP1(APDU),
getP2(APDU), getStatusWord(APDU), isProcessed(APDU), processDataIn(APDU), process-
DataOut(APDU), receiveInData(APDU), selectingApplet(), setOutputLength(APDU, short),
setProcessed(APDU), setStatusWord(APDU, short), succeed(APDU), succeedWithStatus-
Word(APDU, short)

Methods inherited from class Object

equals(Object)

Methods inherited from interface Service

processDataIn(APDU), processDataOut(APDU)

Inherited Member Summary
 javacard.framework.service RMIService 149

RMIService javacard.framework.service

setInvokeInstructionByte(byte)
Methods

setInvokeInstructionByte(byte)

Declaration:
public void setInvokeInstructionByte(byte ins)

Description:
Defines the instruction byte to be used in place of DEFAULT_RMI_INVOKE_INSTRUCTION in the Java
Card platform RMI protocol for the INVOKE commands used to access the RMIService for remote
method invocations.

Note:

• The new instruction byte goes into effect next time this RMIService instance processes an applet
SELECT command. The Java Card platform RMI protocol until then is unchanged.

Parameters:
ins - the instruction byte

processCommand(APDU)

Declaration:
public boolean processCommand(javacard.framework.APDU apdu)

Description:
Processes the command within the APDU object. When invoked, the APDU object should either be in
STATE_INITIAL with the APDU buffer in the Init format or in STATE_FULL_INCOMING with the
APDU buffer in the Input Ready format defined in BasicService.

This method first checks if the command in the APDU object is a Java Card platform RMI access command.
The Java Card platform RMI access commands currently defined are: Applet SELECT and INVOKE. If it
is not a Java Card platform RMI access command, this method does nothing and returns false.

If the command is a Java Card platform RMI access command, this method processes the command and
generates the response to be returned to the terminal. For a detailed description of the APDU protocol used
in Java Card platform RMI access commands please see the Remote Method Invocation Service chapter of
Runtime Environment Specification for the Java Card Platform.

Java Card platform RMI access commands are processed as follows:

• An applet SELECT command results in a Java Card platform RMI information structure in FCI format
containing the initial reference object as the response to be returned to the terminal.

• An INVOKE command results in the following sequence -

1. The remote object is located. A remote object is accessible only if it was returned by this RMIService
instance and since that time some applet instance or the other from within the applet package has been
an active applet instance.

2. The method of the object is identified

3. Primitive input parameters are unmarshalled onto the stack. Array type input parameters are created
as global arrays(See Runtime Environment Specification for the Java Card Platform) and references to
these are pushed onto the stack.

4. An INVOKEVIRTUAL bytecode to the remote method is simulated

5. Upon return from the method, method return or exception information is marshalled from the stack as
150 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service RMIService

processCommand(APDU)
the response to be returned to the terminal

After normal completion, this method returns true and the APDU object is in STATE_OUTGOING and
the output response is in the APDU buffer in the Output Ready format defined in BasicService.

Specified By: processCommand in interface Service

Overrides: processCommand in class BasicService

Parameters:
apdu - the APDU object containing the command being processed.

Returns: true if the command has been processed, false otherwise

Throws:
ServiceException - with the following reason codes:

• ServiceException.CANNOT_ACCESS_IN_COMMAND if this is a Java Card platform RMI
access command and the APDU object is not in STATE_INITIAL or in STATE_FULL_INCOMING

• ServiceException.REMOTE_OBJECT_NOT_EXPORTED if the remote method returned a
remote object which has not been exported.

java.lang.SecurityException - if one of the following conditions is met:

• if this is a Java Card platform RMI INVOKE command and a firewall security violation occurred
while trying to simulate an INVOKEVIRTUAL bytecode on the remote object.

• if internal storage in CLEAR_ON_DESELECT transient space is accessed when the currently active
context is not the context of the currently selected applet.

• if this is a Java Card platform RMI INVOKE command and the invoked remote method returns an
object or throws an exception object which is not accessible in the context of the currently selected
applet.

See Also: CardRemoteObject
 javacard.framework.service RMIService 151

SecurityService javacard.framework.service

Declaration
javacard.framework.service

SecurityService
Declaration
public interface SecurityService extends Service

All Superinterfaces: Service

Description
This interface describes the functions of a generic security service. It extends the base Service interface and
defines methods to query the current security status. Note that this interface is generic and does not include
methods to initialize and change the security status of the service; initialization is assumed to be performed
through APDU commands that the service is able to process.

A security service implementation class should extend BasicService and implement this interface.

Member Summary

Fields
static short PRINCIPAL_APP_PROVIDER

The principal identifier for the application provider.
static short PRINCIPAL_CARD_ISSUER

The principal identifier for the card issuer.
static short PRINCIPAL_CARDHOLDER

The principal identifier for the cardholder.
static byte PROPERTY_INPUT_CONFIDENTIALITY

This security property provides input confidentiality through encryption of the
incoming command.

static byte PROPERTY_INPUT_INTEGRITY
This security property provides input integrity through MAC signature checking of the
incoming command.

static byte PROPERTY_OUTPUT_CONFIDENTIALITY
This security property provides output confidentiality through encryption of the
outgoing response.

static byte PROPERTY_OUTPUT_INTEGRITY
This security property provides output integrity through MAC signature generation for
the outgoing response.

Methods
 boolean isAuthenticated(short principal)

Checks whether or not the specified principal is currently authenticated.
 boolean isChannelSecure(byte properties)

Checks whether a secure channel is established between the card and the host for the
ongoing session that guarantees the indicated properties.

 boolean isCommandSecure(byte properties)
Checks whether a secure channel is in use between the card and the host for the
ongoing command that guarantees the indicated properties.
152 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service SecurityService

Inherited Member Summary
Fields

PROPERTY_INPUT_CONFIDENTIALITY

Declaration:
public static final byte PROPERTY_INPUT_CONFIDENTIALITY

Description:
This security property provides input confidentiality through encryption of the incoming command. Note
that this is a bit mask and security properties can be combined by simply adding them together.

PROPERTY_INPUT_INTEGRITY

Declaration:
public static final byte PROPERTY_INPUT_INTEGRITY

Description:
This security property provides input integrity through MAC signature checking of the incoming command.
Note that this is a bit mask and security properties can be combined by simply adding them together.

PROPERTY_OUTPUT_CONFIDENTIALITY

Declaration:
public static final byte PROPERTY_OUTPUT_CONFIDENTIALITY

Description:
This security property provides output confidentiality through encryption of the outgoing response. Note
that this is a bit mask and security properties can be combined by simply adding them together.

PROPERTY_OUTPUT_INTEGRITY

Declaration:
public static final byte PROPERTY_OUTPUT_INTEGRITY

Description:
This security property provides output integrity through MAC signature generation for the outgoing
response. Note that this is a bit mask and security properties can be combined by simply adding them
together.

PRINCIPAL_CARDHOLDER

Declaration:
public static final short PRINCIPAL_CARDHOLDER

Description:
The principal identifier for the cardholder.

Inherited Member Summary

Methods inherited from interface Service

processCommand(APDU), processDataIn(APDU), processDataOut(APDU)
 javacard.framework.service SecurityService 153

SecurityService javacard.framework.service

PRINCIPAL_CARD_ISSUER
PRINCIPAL_CARD_ISSUER

Declaration:
public static final short PRINCIPAL_CARD_ISSUER

Description:
The principal identifier for the card issuer.

PRINCIPAL_APP_PROVIDER

Declaration:
public static final short PRINCIPAL_APP_PROVIDER

Description:
The principal identifier for the application provider.

Methods

isAuthenticated(short)

Declaration:
public boolean isAuthenticated(short principal)

throws ServiceException

Description:
Checks whether or not the specified principal is currently authenticated. The validity timeframe (selection
or reset) and authentication method as well as the exact interpretation of the specified principal parameter
needs to be detailed by the implementation class. The only generic guarantee is that the authentication has
been performed in the current card session.

Parameters:
principal - an identifier of the principal that needs to be authenticated

Returns: true if the expected principal is authenticated

Throws:
ServiceException - with the following reason code:

• ServiceException.ILLEGAL_PARAM if the specified principal is unknown.

isChannelSecure(byte)

Declaration:
public boolean isChannelSecure(byte properties)

throws ServiceException

Description:
Checks whether a secure channel is established between the card and the host for the ongoing session that
guarantees the indicated properties.

Parameters:
properties - the required properties

Returns: true if the required properties are true, false otherwise

Throws:
ServiceException - with the following reason code:
154 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service SecurityService

isCommandSecure(byte)
• ServiceException.ILLEGAL_PARAM if the specified property is unknown.

isCommandSecure(byte)

Declaration:
public boolean isCommandSecure(byte properties)

throws ServiceException

Description:
Checks whether a secure channel is in use between the card and the host for the ongoing command that
guarantees the indicated properties. The result is only correct after pre-processing the command (for
instance during the processing of the command). For properties on incoming data, the result is guaranteed
to be correct; for outgoing data, the result reflects the expectations of the client software, with no other
guarantee.

Parameters:
properties - the required properties

Returns: true if the required properties are true, false othewise

Throws:
ServiceException - with the following reason code:

• ServiceException.ILLEGAL_PARAM if the specified property is unknown.
 javacard.framework.service SecurityService 155

Service javacard.framework.service

Declaration
javacard.framework.service

Service
Declaration
public interface Service

All Known Subinterfaces: RemoteService, SecurityService

All Known Implementing Classes: BasicService, RMIService

Description
This is the base interface for the service framework on the Java Card platform. A Service is an object that is
able to perform partial or complete processing on a set of incoming commands encapsulated in an APDU.

Services collaborate in pre-processing, command processing and post-processing of incoming APDU
commands. They share the same APDU object by using the communication framework and the Common
Service Format (CSF) defined in BasicService. An application is built by combining pre-built and newly
defined Services within a Dispatcher object.

See Also: BasicService

Methods

processDataIn(APDU)

Declaration:
public boolean processDataIn(javacard.framework.APDU apdu)

Description:
Pre-processes the input data for the command in the APDU object. When invoked, the APDU object should
either be in STATE_INITIAL with the APDU buffer in the Init format or in STATE_FULL_INCOMING
with the APDU buffer in the Input Ready format defined in BasicService.

The method must return true if no more pre-processing should be performed, and false otherwise. In
particular, it must return false if it has not performed any processing on the command.

Member Summary

Methods
 boolean processCommand(javacard.framework.APDU apdu)

Processes the command in the APDU object.
 boolean processDataIn(javacard.framework.APDU apdu)

Pre-processes the input data for the command in the APDU object.
 boolean processDataOut(javacard.framework.APDU apdu)

Post-processes the output data for the command in the APDU object.
156 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service Service

processCommand(APDU)
After normal completion, the APDU object is usually in STATE_FULL_INCOMING with the APDU buffer
in the Input Ready format defined in BasicService. However, in some cases if the Service processes the
command entirely, the APDU object may be in STATE_OUTGOING with the APDU buffer in the Output
Ready format defined in BasicService.

Parameters:
apdu - the APDU object containing the command being processed

Returns: true if input processing is finished, false otherwise

processCommand(APDU)

Declaration:
public boolean processCommand(javacard.framework.APDU apdu)

Description:
Processes the command in the APDU object. When invoked, the APDU object should normally be in
STATE_INITIAL with the APDU buffer in the Init format or in STATE_FULL_INCOMING with the
APDU buffer in the Input Ready format defined in BasicService. However, in some cases, if a pre-
processing service has processed the command entirely, the APDU object may be in STATE_OUTGOING
with the APDU buffer in the Output Ready format defined in BasicService.

The method must return true if no more command processing is required, and false otherwise. In
particular, it should return false if it has not performed any processing on the command.

After normal completion, the APDU object must be in STATE_OUTGOING and the output response must be
in the APDU buffer in the Output Ready format defined in BasicService.

Parameters:
apdu - the APDU object containing the command being processed

Returns: true if the command has been processed, false otherwise

processDataOut(APDU)

Declaration:
public boolean processDataOut(javacard.framework.APDU apdu)

Description:
Post-processes the output data for the command in the APDU object. When invoked, the APDU object
should be in STATE_OUTGOING with the APDU buffer in the Output Ready format defined in
BasicService.

The method should return true if no more post-processing is required, and false otherwise. In
particular, it should return false if it has not performed any processing on the command.

After normal completion, the APDU object should must be in STATE_OUTGOING and the output response
must be in the APDU buffer in the Output Ready format defined in BasicService.

Parameters:
apdu - the APDU object containing the command being processed

Returns: true if output processing is finished, false otherwise
 javacard.framework.service Service 157

ServiceException javacard.framework.service

Declaration
javacard.framework.service

ServiceException
Declaration
public class ServiceException extends javacard.framework.CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.framework.service.ServiceException

Description
ServiceException represents a service framework-related exception.

The service framework classes throw Java Card runtime environment-owned instances of
ServiceException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components. See Runtime Environment
Specification for the Java Card Platform, section 6.2.1 for details.

Member Summary

Fields
static short CANNOT_ACCESS_IN_COMMAND

This reason code is used to indicate that the command in the APDU object cannot be
accessed for input processing.

static short CANNOT_ACCESS_OUT_COMMAND
This reason code is used to indicate that the command in the APDU object cannot be
accessed for output processing.

static short COMMAND_DATA_TOO_LONG
This reason code is used to indicate that the incoming data for a command in the APDU
object does not fit in the APDU buffer.

static short COMMAND_IS_FINISHED
This reason code is used to indicate that the command in the APDU object has been
completely processed.

static short DISPATCH_TABLE_FULL
This reason code is used to indicate that a dispatch table is full.

static short ILLEGAL_PARAM
This reason code is used to indicate that an input parameter is not allowed.

static short REMOTE_OBJECT_NOT_EXPORTED
This reason code is used by RMIService to indicate that the remote method returned a
remote object which has not been exported.

Constructors
158 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service ServiceException

Inherited Member Summary
Fields

ILLEGAL_PARAM

Declaration:
public static final short ILLEGAL_PARAM

Description:
This reason code is used to indicate that an input parameter is not allowed.

DISPATCH_TABLE_FULL

Declaration:
public static final short DISPATCH_TABLE_FULL

Description:
This reason code is used to indicate that a dispatch table is full.

COMMAND_DATA_TOO_LONG

Declaration:
public static final short COMMAND_DATA_TOO_LONG

Description:
This reason code is used to indicate that the incoming data for a command in the APDU object does not fit in
the APDU buffer.

CANNOT_ACCESS_IN_COMMAND

Declaration:
public static final short CANNOT_ACCESS_IN_COMMAND

ServiceException(short reason)
Constructs a ServiceException.

Methods
static void throwIt(short reason)

Throws the Java Card runtime environment-owned instance of ServiceException
with the specified reason.

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)

Member Summary
 javacard.framework.service ServiceException 159

ServiceException javacard.framework.service

CANNOT_ACCESS_OUT_COMMAND
Description:
This reason code is used to indicate that the command in the APDU object cannot be accessed for input
processing.

CANNOT_ACCESS_OUT_COMMAND

Declaration:
public static final short CANNOT_ACCESS_OUT_COMMAND

Description:
This reason code is used to indicate that the command in the APDU object cannot be accessed for output
processing.

COMMAND_IS_FINISHED

Declaration:
public static final short COMMAND_IS_FINISHED

Description:
This reason code is used to indicate that the command in the APDU object has been completely processed.

REMOTE_OBJECT_NOT_EXPORTED

Declaration:
public static final short REMOTE_OBJECT_NOT_EXPORTED

Description:
This reason code is used by RMIService to indicate that the remote method returned a remote object which
has not been exported.

Constructors

ServiceException(short)

Declaration:
public ServiceException(short reason)

Description:
Constructs a ServiceException. To conserve on resources use throwIt() to use the Java Card
runtime environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

throws ServiceException
160 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.framework.service ServiceException

throwIt(short)
Description:
Throws the Java Card runtime environment-owned instance of ServiceException with the specified
reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Throws:
ServiceException - always
 javacard.framework.service ServiceException 161

ServiceException javacard.framework.service

throwIt(short)
162 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 7
Package

javacard.security
Description
Provides classes and interfaces that contain publicly-available functionality for implementing a security and
cryptography framework on the Java Card platform. Classes which contain security and cryptography
functionality which may be subject to export controls are contained in the optional package javacardx.
crypto.

Classes in the javacard.security package provide the definitions of algorithms that perform these
security and cryptography functions:

• Implementations for a variety of different cryptographic keys

• Factory for building keys (see KeyBuilder)

• Data hashing (see MessageDigest)

• Random data generation (see RandomData)

• Signing using cryptographic keys (see Signature)

• Session key exchanges (see KeyAgreement)

Class Summary

Interfaces

AESKey AESKey contains a 16/24/32 byte key for AES computations based on the Rijndael
algorithm.

DESKey DESKey contains an 8/16/24-byte key for single/2 key triple DES/3 key triple DES
operations.

DSAKey The DSAKey interface is the base interface for the DSA algorithm’s private and public
key implementations.

DSAPrivateKey The DSAPrivateKey interface is used to sign data using the DSA algorithm.

DSAPublicKey The DSAPublicKey interface is used to verify signatures on signed data using the
DSA algorithm.

ECKey The ECKey interface is the base interface for the EC algorithm’s private and public key
implementations.

ECPrivateKey The ECPrivateKey interface is used to generate signatures on data using the
ECDSA (Elliptic Curve Digital Signature Algorithm) and to generate shared secrets
using the ECDH (Elliptic Curve Diffie-Hellman) algorithm.

ECPublicKey The ECPublicKey interface is used to verify signatures on signed data using the
ECDSA algorithm and to generate shared secrets using the ECDH algorithm.

Key The Key interface is the base interface for all keys.
163

javacard.security

Class Summary
PrivateKey The PrivateKey interface is the base interface for private keys used in asymmetric
algorithms.

PublicKey The PublicKey interface is the base interface for public keys used in asymmetric
algorithms.

RSAPrivateCrtKey The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in
its Chinese Remainder Theorem form.

RSAPrivateKey The RSAPrivateKey class is used to sign data using the RSA algorithm in its
modulus/exponent form.

RSAPublicKey The RSAPublicKey is used to verify signatures on signed data using the RSA
algorithm.

SecretKey The SecretKey class is the base interface for keys used in symmetric algorithms
(DES, for example).

Classes

Checksum The Checksum class is the base class for CRC (cyclic redundancy check) checksum
algorithms.

KeyAgreement The KeyAgreement class is the base class for key agreement algorithms such as
Diffie-Hellman and EC Diffie-Hellman [IEEE P1363].

KeyBuilder The KeyBuilder class is a key object factory.

KeyPair This class is a container for a key pair (a public key and a private key).

MessageDigest The MessageDigest class is the base class for hashing algorithms.

RandomData The RandomData abstract class is the base class for random number generation.

Signature The Signature class is the base class for Signature algorithms.

Exceptions

CryptoException CryptoException represents a cryptography-related exception.

Class Summary
164 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security AESKey

Declaration
javacard.security

AESKey
Declaration
public interface AESKey extends SecretKey

All Superinterfaces: Key, SecretKey

Description
AESKey contains a 16/24/32 byte key for AES computations based on the Rijndael algorithm.

When the key data is set, the key is initialized and ready for use.

Since: Java Card 2.2

See Also: KeyBuilder, Signature, javacardx.crypto.Cipher, javacardx.crypto.
KeyEncryption

Methods

setKey(byte[], short)

Declaration:
public void setKey(byte[] keyData, short kOff)

throws CryptoException, NullPointerException,

ArrayIndexOutOfBoundsException

Member Summary

Methods
 byte getKey(byte[] keyData, short kOff)

Returns the Key data in plain text.
 void setKey(byte[] keyData, short kOff)

Sets the Key data.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
 javacard.security AESKey 165

AESKey javacard.security

getKey(byte[], short)
Description:
Sets the Key data. The plaintext length of input key data is 16/24/32 bytes. The data format is big-endian
and right-aligned (the least significant bit is the least significant bit of last byte). Input key data is copied
into the internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, keyData is decrypted using the
Cipher object.

Parameters:
keyData - byte array containing key initialization data

kOff - offset within keyData to start

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if input data decryption is required and fails.

java.lang.ArrayIndexOutOfBoundsException - if kOff is negative or the keyData
array is too short.

java.lang.NullPointerException - if the keyData parameter is null.

getKey(byte[], short)

Declaration:
public byte getKey(byte[] keyData, short kOff)

throws CryptoException

Description:
Returns the Key data in plain text. The length of output key data is 16/24/32 bytes. The data format is big-
endian and right-aligned (the least significant bit is the least significant bit of last byte).

Parameters:
keyData - byte array to return key data

kOff - offset within keyData to start

Returns: the byte length of the key data returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the key data has not been successfully initialized
since the time the initialized state of the key was set to false.

See Also: Key
166 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Checksum

Declaration
javacard.security

Checksum
Declaration
public abstract class Checksum

java.lang.Object
|
+--javacard.security.Checksum

Description
The Checksum class is the base class for CRC (cyclic redundancy check) checksum algorithms.
Implementations of Checksum algorithms must extend this class and implement all the abstract methods.

A tear or card reset event resets a Checksum object to the initial state (state upon construction).

Even if a transaction is in progress, update of intermediate result state in the implementation instance shall not
participate in the transaction.

Member Summary

Fields
static byte ALG_ISO3309_CRC16

ISO/IEC 3309 compliant 16 bit CRC algorithm.
static byte ALG_ISO3309_CRC32

ISO/IEC 3309 compliant 32 bit CRC algorithm.

Constructors
protected Checksum()

Protected Constructor

Methods
abstract short doFinal(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)
Generates a CRC checksum of all/last input data.

abstract byte getAlgorithm()
Gets the Checksum algorithm.

static Checksum getInstance(byte algorithm, boolean externalAccess)
Creates a Checksum object instance of the selected algorithm.

abstract void init(byte[] bArray, short bOff, short bLen)
Resets and initializes the Checksum object with the algorithm specific parameters.

abstract void update(byte[] inBuff, short inOffset, short inLength)
Accumulates a partial checksum of the input data.

Inherited Member Summary

Methods inherited from class Object
 javacard.security Checksum 167

Checksum javacard.security

ALG_ISO3309_CRC16
Fields

ALG_ISO3309_CRC16

Declaration:
public static final byte ALG_ISO3309_CRC16

Description:
ISO/IEC 3309 compliant 16 bit CRC algorithm. This algorithm uses the generator polynomial :
x^16+x^12+x^5+1. The default initial checksum value used by this algorithm is 0. This algorithm is also
compliant with the frame checking sequence as specified in section 4.2.5.2 of the ISO/IEC 13239
specification.

ALG_ISO3309_CRC32

Declaration:
public static final byte ALG_ISO3309_CRC32

Description:
ISO/IEC 3309 compliant 32 bit CRC algorithm. This algorithm uses the generator polynomial : X^32
+X^26 +X^23 +X^22 +X^16 +X^12 +X^11 +X^10 +X^8 +X^7 +X^5 +X^4 +X^2 +X +1. The default
initial checksum value used by this algorithm is 0. This algorithm is also compliant with the frame checking
sequence as specified in section 4.2.5.3 of the ISO/IEC 13239 specification.

Constructors

Checksum()

Declaration:
protected Checksum()

Description:
Protected Constructor

Methods

getInstance(byte, boolean)

Declaration:
public static final javacard.security.Checksum getInstance(byte algorithm, boolean

externalAccess)

throws CryptoException

Description:
Creates a Checksum object instance of the selected algorithm.

equals(Object)

Inherited Member Summary
168 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Checksum

init(byte[], short, short)
Parameters:
algorithm - the desired checksum algorithm. Valid codes listed in ALG_ .. constants above, for
example, ALG_ISO3309_CRC16

externalAccess - true indicates that the instance will be shared among multiple applet instances
and that the Checksum instance will also be accessed (via a Shareable. interface) when the owner
of the Checksum instance is not the currently selected applet. If true the implementation must not
allocate CLEAR_ON_DESELECT transient space for internal data.

Returns: the Checksum object instance of the requested algorithm.

Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm or shared access mode is
not supported.

init(byte[], short, short)

Declaration:
public abstract void init(byte[] bArray, short bOff, short bLen)

throws CryptoException

Description:
Resets and initializes the Checksum object with the algorithm specific parameters.

Note:

• The ALG_ISO3309_CRC16 algorithm expects 2 bytes of parameter information in bArray
representing the initial checksum value.

• The ALG_ISO3309_CRC32 algorithm expects 4 bytes of parameter information in bArray
representing the initial checksum value.

Parameters:
bArray - byte array containing algorithm specific initialization information

bOff - offset within bArray where the algorithm specific data begins

bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if a byte array parameter option is not supported by the
algorithm or if the bLen is an incorrect byte length for the algorithm specific data.

getAlgorithm()

Declaration:
public abstract byte getAlgorithm()

Description:
Gets the Checksum algorithm. Valid codes listed in ALG_ .. constants above, for example,
ALG_ISO3309_CRC16

Returns: the algorithm code defined above
 javacard.security Checksum 169

Checksum javacard.security

doFinal(byte[], short, short, byte[], short)
doFinal(byte[], short, short, byte[], short)

Declaration:
public abstract short doFinal(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)

Description:
Generates a CRC checksum of all/last input data. The CRC engine processes input data starting with the
byte at offset inOffset and continuing on until the byte at (inOffset+inLength-1) of the
inBuff array. Within each byte the processing proceeds from the least significant bit to the most.

Completes and returns the checksum computation. The Checksum object is reset to the initial state(state
upon construction) when this method completes.

Note:

• The ALG_ISO3309_CRC16 and ALG_ISO3309_CRC32 algorithms reset the initial checksum value to
0. The initial checksum value can be re-initialized using the init(byte[], short, short)
method.

The input and output buffer data may overlap.

Parameters:
inBuff - the input buffer of data to be checksummed

inOffset - the offset into the input buffer at which to begin checksum generation

inLength - the byte length to checksum

outBuff - the output buffer, may be the same as the input buffer

outOffset - the offset into the output buffer where the resulting checksum value begins

Returns: number of bytes of checksum output in outBuff

update(byte[], short, short)

Declaration:
public abstract void update(byte[] inBuff, short inOffset, short inLength)

Description:
Accumulates a partial checksum of the input data. The CRC engine processes input data starting with the
byte at offset inOffset and continuing on until the byte at (inOffset+inLength-1) of the
inBuff array. Within each byte the processing proceeds from the least significant bit to the most.

This method requires temporary storage of intermediate results. This may result in additional resource
consumption and/or slow performance. This method should only be used if all the input data required for
the checksum is not available in one byte array. The doFinal(byte[], short, short,
byte[], short) method is recommended whenever possible.

Note:

• If inLength is 0 this method does nothing.

Parameters:
inBuff - the input buffer of data to be checksummed

inOffset - the offset into the input buffer at which to begin checksum generation

inLength - the byte length to checksum

See Also: doFinal(byte[], short, short, byte[], short)
170 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security CryptoException

Declaration
javacard.security

CryptoException
Declaration
public class CryptoException extends javacard.framework.CardRuntimeException

java.lang.Object
|
+--java.lang.Throwable

|
+--java.lang.Exception

|
+--java.lang.RuntimeException

|
+--javacard.framework.CardRuntimeException

|
+--javacard.security.CryptoException

Description
CryptoException represents a cryptography-related exception.

The API classes throw Java Card runtime environment-owned instances of CryptoException.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these temporary
objects cannot be stored in class variables or instance variables or array components.

See Also: KeyBuilder, MessageDigest, Signature, RandomData, javacardx.crypto.
Cipher

Member Summary

Fields
static short ILLEGAL_USE

This reason code is used to indicate that the signature or cipher algorithm does not pad
the incoming message and the input message is not block aligned.

static short ILLEGAL_VALUE
This reason code is used to indicate that one or more input parameters is out of allowed
bounds.

static short INVALID_INIT
This reason code is used to indicate that the signature or cipher object has not been
correctly initialized for the requested operation.

static short NO_SUCH_ALGORITHM
This reason code is used to indicate that the requested algorithm or key type is not
supported.

static short UNINITIALIZED_KEY
This reason code is used to indicate that the key is uninitialized.

Constructors
CryptoException(short reason)

Constructs a CryptoException with the specified reason.

Methods
 javacard.security CryptoException 171

CryptoException javacard.security

Inherited Member Summary
Fields

ILLEGAL_VALUE

Declaration:
public static final short ILLEGAL_VALUE

Description:
This reason code is used to indicate that one or more input parameters is out of allowed bounds.

UNINITIALIZED_KEY

Declaration:
public static final short UNINITIALIZED_KEY

Description:
This reason code is used to indicate that the key is uninitialized.

NO_SUCH_ALGORITHM

Declaration:
public static final short NO_SUCH_ALGORITHM

Description:
This reason code is used to indicate that the requested algorithm or key type is not supported.

INVALID_INIT

Declaration:
public static final short INVALID_INIT

Description:
This reason code is used to indicate that the signature or cipher object has not been correctly initialized for
the requested operation.

static void throwIt(short reason)
Throws the Java Card runtime environment-owned instance of CryptoException
with the specified reason.

Inherited Member Summary

Methods inherited from interface CardRuntimeException

getReason(), setReason(short)

Methods inherited from class Object

equals(Object)

Member Summary
172 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security CryptoException

ILLEGAL_USE
ILLEGAL_USE

Declaration:
public static final short ILLEGAL_USE

Description:
This reason code is used to indicate that the signature or cipher algorithm does not pad the incoming
message and the input message is not block aligned.

Constructors

CryptoException(short)

Declaration:
public CryptoException(short reason)

Description:
Constructs a CryptoException with the specified reason. To conserve on resources use throwIt()
to use the Java Card runtime environment-owned instance of this class.

Parameters:
reason - the reason for the exception

Methods

throwIt(short)

Declaration:
public static void throwIt(short reason)

Description:
Throws the Java Card runtime environment-owned instance of CryptoException with the specified
reason.

Java Card runtime environment-owned instances of exception classes are temporary Java Card runtime
environment Entry Point Objects and can be accessed from any applet context. References to these
temporary objects cannot be stored in class variables or instance variables or array components. See
Runtime Environment Specification for the Java Card Platform, section 6.2.1 for details.

Parameters:
reason - the reason for the exception

Throws:
CryptoException - always
 javacard.security CryptoException 173

DESKey javacard.security

Declaration
javacard.security

DESKey
Declaration
public interface DESKey extends SecretKey

All Superinterfaces: Key, SecretKey

Description
DESKey contains an 8/16/24-byte key for single/2 key triple DES/3 key triple DES operations.

When the key data is set, the key is initialized and ready for use.

See Also: KeyBuilder, Signature, javacardx.crypto.Cipher, javacardx.crypto.
KeyEncryption

Methods

setKey(byte[], short)

Declaration:
public void setKey(byte[] keyData, short kOff)

throws CryptoException, NullPointerException,

ArrayIndexOutOfBoundsException

Description:
Sets the Key data. The plain text length of input key data is 8 bytes for DES, 16 bytes for 2-key triple DES
and 24 bytes for 3-key triple DES. The data format is big-endian and right-aligned (the least significant bit
is the least significant bit of last byte). Input key data is copied into the internal representation.

Member Summary

Methods
 byte getKey(byte[] keyData, short kOff)

Returns the Key data in plain text.
 void setKey(byte[] keyData, short kOff)

Sets the Key data.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
174 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security DESKey

getKey(byte[], short)
Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, keyData is decrypted using the
Cipher object.

Parameters:
keyData - byte array containing key initialization data

kOff - offset within keyData to start

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if input data decryption is required and fails.

java.lang.ArrayIndexOutOfBoundsException - if kOff is negative or the keyData
array is too short

java.lang.NullPointerException - if the keyData parameter is null

getKey(byte[], short)

Declaration:
public byte getKey(byte[] keyData, short kOff)

Description:
Returns the Key data in plain text. The length of output key data is 8 bytes for DES, 16 bytes for 2-key
triple DES and 24 bytes for 3-key triple DES. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
keyData - byte array to return key data

kOff - offset within keyData to start

Returns: the byte length of the key data returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the key data has not been successfully initialized
since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security DESKey 175

DSAKey javacard.security

Declaration
javacard.security

DSAKey
Declaration
public interface DSAKey

All Known Subinterfaces: DSAPrivateKey, DSAPublicKey

Description
The DSAKey interface is the base interface for the DSA algorithm’s private and public key implementations. A
DSA private key implementation must also implement the DSAPrivateKey interface methods. A DSA public
key implementation must also implement the DSAPublicKey interface methods.

When all four components of the key (X or Y,P,Q,G) are set, the key is initialized and ready for use.

See Also: DSAPublicKey, DSAPrivateKey, KeyBuilder, Signature, javacardx.crypto.
KeyEncryption

Methods

setP(byte[], short, short)

Declaration:
public void setP(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the prime parameter value of the key. The plain text data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input prime parameter data is copied into the
internal representation.

Member Summary

Methods
 short getG(byte[] buffer, short offset)

Returns the base parameter value of the key in plain text.
 short getP(byte[] buffer, short offset)

Returns the prime parameter value of the key in plain text.
 short getQ(byte[] buffer, short offset)

Returns the subprime parameter value of the key in plain text.
 void setG(byte[] buffer, short offset, short length)

Sets the base parameter value of the key.
 void setP(byte[] buffer, short offset, short length)

Sets the prime parameter value of the key.
 void setQ(byte[] buffer, short offset, short length)

Sets the subprime parameter value of the key.
176 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security DSAKey

setQ(byte[], short, short)
Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the prime parameter value is
decrypted using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the prime parameter value begins

length - the length of the prime parameter value

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

setQ(byte[], short, short)

Declaration:
public void setQ(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the subprime parameter value of the key. The plain text data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input subprime parameter data is copied into the
internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the subprime parameter value is
decrypted using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the subprime parameter value begins

length - the length of the subprime parameter value

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

setG(byte[], short, short)

Declaration:
public void setG(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the base parameter value of the key. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input base parameter data is copied into the internal
representation.

Note:
 javacard.security DSAKey 177

DSAKey javacard.security

getP(byte[], short)
• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the base parameter value is decrypted
using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the base parameter value begins

length - the length of the base parameter value

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

getP(byte[], short)

Declaration:
public short getP(byte[] buffer, short offset)

Description:
Returns the prime parameter value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the prime parameter value starts

Returns: the byte length of the prime parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the prime parameter has not been successfully
initialized since the time the initialized state of the key was set to false.

See Also: Key

getQ(byte[], short)

Declaration:
public short getQ(byte[] buffer, short offset)

Description:
Returns the subprime parameter value of the key in plain text. The data format is big-endian and right-
aligned (the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the subprime parameter value begins

Returns: the byte length of the subprime parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the subprime parameter has not been
successfully initialized since the time the initialized state of the key was set to false.
178 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security DSAKey

getG(byte[], short)
See Also: Key

getG(byte[], short)

Declaration:
public short getG(byte[] buffer, short offset)

Description:
Returns the base parameter value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the base parameter value begins

Returns: the byte length of the base parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the base parameter has not been successfully
initialized since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security DSAKey 179

DSAPrivateKey javacard.security

Declaration
javacard.security

DSAPrivateKey
Declaration
public interface DSAPrivateKey extends PrivateKey, DSAKey

All Superinterfaces: DSAKey, Key, PrivateKey

Description
The DSAPrivateKey interface is used to sign data using the DSA algorithm. An implementation of
DSAPrivateKey interface must also implement the DSAKey interface methods.

When all four components of the key (X,P,Q,G) are set, the key is initialized and ready for use.

See Also: DSAPublicKey, KeyBuilder, Signature, javacardx.crypto.KeyEncryption

Methods

setX(byte[], short, short)

Declaration:
public void setX(byte[] buffer, short offset, short length)

throws CryptoException

Member Summary

Methods
 short getX(byte[] buffer, short offset)

Returns the value of the key in plain text.
 void setX(byte[] buffer, short offset, short length)

Sets the value of the key.

Inherited Member Summary

Methods inherited from interface DSAKey

getG(byte[], short), getP(byte[], short), getQ(byte[], short), setG(byte[], short,
short), setP(byte[], short, short), setQ(byte[], short, short)

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
180 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security DSAPrivateKey

getX(byte[], short)
Description:
Sets the value of the key. When the base, prime and subprime parameters are initialized and the key value is
set, the key is ready for use. The plain text data format is big-endian and right-aligned (the least significant
bit is the least significant bit of last byte). Input key data is copied into the internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the modulus value begins

length - the length of the modulus

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with the
implementation or if input data decryption is required and fails.

getX(byte[], short)

Declaration:
public short getX(byte[] buffer, short offset)

Description:
Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the key value starts

Returns: the byte length of the key value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of the key has not been successfully
initialized since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security DSAPrivateKey 181

DSAPublicKey javacard.security

Declaration
javacard.security

DSAPublicKey
Declaration
public interface DSAPublicKey extends PublicKey, DSAKey

All Superinterfaces: DSAKey, Key, PublicKey

Description
The DSAPublicKey interface is used to verify signatures on signed data using the DSA algorithm. An
implementation of DSAPublicKey interface must also implement the DSAKey interface methods.

When all four components of the key (Y,P,Q,G) are set, the key is initialized and ready for use.

See Also: DSAPrivateKey, KeyBuilder, Signature, javacardx.crypto.KeyEncryption

Methods

setY(byte[], short, short)

Declaration:
public void setY(byte[] buffer, short offset, short length)

throws CryptoException

Member Summary

Methods
 short getY(byte[] buffer, short offset)

Returns the value of the key in plain text.
 void setY(byte[] buffer, short offset, short length)

Sets the value of the key.

Inherited Member Summary

Methods inherited from interface DSAKey

getG(byte[], short), getP(byte[], short), getQ(byte[], short), setG(byte[], short,
short), setP(byte[], short, short), setQ(byte[], short, short)

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
182 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security DSAPublicKey

getY(byte[], short)
Description:
Sets the value of the key. When the base, prime and subprime parameters are initialized and the key value is
set, the key is ready for use. The plain text data format is big-endian and right-aligned (the least significant
bit is the least significant bit of last byte). Input key data is copied into the internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the key value begins

length - the length of the key value

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input key data length is inconsistent with the
implementation or if input data decryption is required and fails.

getY(byte[], short)

Declaration:
public short getY(byte[] buffer, short offset)

Description:
Returns the value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the input buffer at which the key value starts

Returns: the byte length of the key value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of the key has not been successfully
initialized since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security DSAPublicKey 183

ECKey javacard.security

Declaration
javacard.security

ECKey
Declaration
public interface ECKey

All Known Subinterfaces: ECPrivateKey, ECPublicKey

Description
The ECKey interface is the base interface for the EC algorithm’s private and public key implementations. An
EC private key implementation must also implement the ECPrivateKey interface methods. An EC public
key implementation must also implement the ECPublicKey interface methods.

The equation of the curves for keys of type TYPE_EC_FP_PUBLIC or TYPE_EC_FP_PRIVATE is y^2 = x^3
+ A * x + B. The equation of the curves for keys of type TYPE_EC_F2M_PUBLIC or
TYPE_EC_F2M_PRIVATE is y^2 + x * y = x^3 + A * x^2 + B.

The notation used to describe parameters specific to the EC algorithm is based on the naming conventions
established in [IEEE P1363].

See Also: ECPublicKey, ECPrivateKey, KeyBuilder, Signature, javacardx.crypto.
KeyEncryption, KeyAgreement

Member Summary

Methods
 short getA(byte[] buffer, short offset)

Returns the first coefficient of the curve of the key.
 short getB(byte[] buffer, short offset)

Returns the second coefficient of the curve of the key.
 short getField(byte[] buffer, short offset)

Returns the field specification parameter value of the key.
 short getG(byte[] buffer, short offset)

Returns the fixed point of the curve.
 short getK()

Returns the cofactor of the order of the fixed point G of the curve.
 short getR(byte[] buffer, short offset)

Returns the order of the fixed point G of the curve.
 void setA(byte[] buffer, short offset, short length)

Sets the first coefficient of the curve of the key.
 void setB(byte[] buffer, short offset, short length)

Sets the second coefficient of the curve of the key.
 void setFieldF2M(short e)

Sets the field specification parameter value for keys of type TYPE_EC_F2M_PUBLIC
or TYPE_EC_F2M_PRIVATE in the case where the polynomial is a trinomial, of the
form x^n + x^e + 1 (where n is the bit length of the key).
184 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security ECKey

setFieldFP(byte[], short, short)
Methods

setFieldFP(byte[], short, short)

Declaration:
public void setFieldFP(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the field specification parameter value for keys of type TYPE_EC_FP_PRIVATE or
TYPE_EC_FP_PUBLIC. The specified value is the prime p corresponding to the field GF(p). The plain
text data format is big-endian and right-aligned (the least significant bit is the least significant bit of last
byte). Input parameter data is copied into the internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the parameter value begins

length - the byte length of the parameter value

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter data is inconsistent with the key
length or if input data decryption is required and fails.

• CryptoException.NO_SUCH_ALGORITHM if the key is neither of type
TYPE_EC_FP_PUBLIC nor TYPE_EC_FP_PRIVATE.

setFieldF2M(short)

Declaration:
public void setFieldF2M(short e)

throws CryptoException

 void setFieldF2M(short e1, short e2, short e3)
Sets the field specification parameter value for keys of type TYPE_EC_F2M_PUBLIC
or TYPE_EC_F2M_PRIVATE in the case where the polynomial is a pentanomial, of
the form x^n + x^e1 + x^e2 + x^e3 + 1 (where n is the bit length of the key).

 void setFieldFP(byte[] buffer, short offset, short length)
Sets the field specification parameter value for keys of type TYPE_EC_FP_PRIVATE
or TYPE_EC_FP_PUBLIC.

 void setG(byte[] buffer, short offset, short length)
Sets the fixed point of the curve.

 void setK(short K)
Sets the cofactor of the order of the fixed point G of the curve.

 void setR(byte[] buffer, short offset, short length)
Sets the order of the fixed point G of the curve.

Member Summary
 javacard.security ECKey 185

ECKey javacard.security

setFieldF2M(short, short, short)
Description:
Sets the field specification parameter value for keys of type TYPE_EC_F2M_PUBLIC or
TYPE_EC_F2M_PRIVATE in the case where the polynomial is a trinomial, of the form x^n + x^e + 1
(where n is the bit length of the key). It is required that n > e > 0.

Parameters:
e - the value of the intermediate exponent of the trinomial

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter e is not such that 0 < e < n.

• CryptoException.NO_SUCH_ALGORITHM if the key is neither of type
TYPE_EC_F2M_PUBLIC nor TYPE_EC_F2M_PRIVATE.

setFieldF2M(short, short, short)

Declaration:
public void setFieldF2M(short e1, short e2, short e3)

throws CryptoException

Description:
Sets the field specification parameter value for keys of type TYPE_EC_F2M_PUBLIC or
TYPE_EC_F2M_PRIVATE in the case where the polynomial is a pentanomial, of the form x^n + x^e1 +
x^e2 + x^e3 + 1 (where n is the bit length of the key). It is required for all ei where ei = {e1, e2, e3} that n
> ei > 0.

Parameters:
e1 - the value of the first of the intermediate exponents of the pentanomial

e2 - the value of the second of the intermediate exponent of the pentanomial

e3 - the value of the third of the intermediate exponents

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameters ei where ei = {e1, e2, e3} are
not such that for all ei, n > ei > 0.

• CryptoException.NO_SUCH_ALGORITHM if the key is neither of type
TYPE_EC_F2M_PUBLIC nor TYPE_EC_F2M_PRIVATE.

setA(byte[], short, short)

Declaration:
public void setA(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the first coefficient of the curve of the key. For keys of type TYPE_EC_FP_PRIVATE or
TYPE_EC_FP_PUBLIC, this is the value of A as an integer modulo the field specification parameter p,
that is, an integer in the range 0 to p-1. For keys of type TYPE_EC_F2M_PRIVATE or
TYPE_EC_F2M_PUBLIC, the bit representation of this value specifies a polynomial with binary
coefficients which represents the value of A in the field. The plain text data format is big-endian and right-
aligned (the least significant bit is the least significant bit of last byte). Input parameter data is copied into
the internal representation.
186 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security ECKey

setB(byte[], short, short)
Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the coefficient value begins

length - the byte length of the coefficient value

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter data is inconsistent with the key
length or if input data decryption is required and fails.

setB(byte[], short, short)

Declaration:
public void setB(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the second coefficient of the curve of the key. For keys of type TYPE_EC_FP_PRIVATE or
TYPE_EC_FP_PUBLIC, this is the value of B as an integer modulo the field specification parameter p,
that is, an integer in the range 0 to p-1. For keys of type TYPE_EC_F2M_PRIVATE or
TYPE_EC_F2M_PUBLIC, the bit representation of this value specifies a polynomial with binary
coefficients which represents the value of B in the field. The plain text data format is big-endian and right-
aligned (the least significant bit is the least significant bit of last byte). Input parameter data is copied into
the internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the coefficient value begins

length - the byte length of the coefficient value

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter data is inconsistent with the key
length or if input data decryption is required and fails.

setG(byte[], short, short)

Declaration:
public void setG(byte[] buffer, short offset, short length)

throws CryptoException
 javacard.security ECKey 187

ECKey javacard.security

setR(byte[], short, short)
Description:
Sets the fixed point of the curve. The point should be specified as an octet string as per ANSI X9.62. A
specific implementation need not support the compressed form, but must support the uncompressed form of
the point. The plain text data format is big-endian and right-aligned (the least significant bit is the least
significant bit of last byte). Input parameter data is copied into the internal representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the point specification begins

length - the byte length of the point specification

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter data format is incorrect, or if the
input parameter data is inconsistent with the key length, or if input data decryption is required and
fails.

setR(byte[], short, short)

Declaration:
public void setR(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the order of the fixed point G of the curve. The plain text data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte). Input parameter data is copied into the
internal representation.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the order begins

length - the byte length of the order

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter data is inconsistent with the key
length, or if input data decryption is required and fails.

• Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

setK(short)

Declaration:
public void setK(short K)
188 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security ECKey

getField(byte[], short)
Description:
Sets the cofactor of the order of the fixed point G of the curve. The cofactor need not be specified for the
key to be initialized. However, the KeyAgreement algorithm type ALG_EC_SVDP_DHC requires that
the cofactor, K, be initialized.

Parameters:
K - the value of the cofactor

getField(byte[], short)

Declaration:
public short getField(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the field specification parameter value of the key. For keys of type TYPE_EC_FP_PRIVATE or
TYPE_EC_FP_PUBLIC, this is the value of the prime p corresponding to the field GF(p). For keys of type
TYPE_EC_F2M_PRIVATE or TYPE_EC_F2M_PUBLIC, it is the value whose bit representation specifies
the polynomial with binary coefficients used to define the arithmetic operations in the field GF(2^n) The
plain text data format is big-endian and right-aligned (the least significant bit is the least significant bit of
last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the parameter value is to begin

Returns: the byte length of the parameter

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the field specification parameter value of the key
has not been successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getA(byte[], short)

Declaration:
public short getA(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the first coefficient of the curve of the key. For keys of type TYPE_EC_FP_PRIVATE or
TYPE_EC_FP_PUBLIC, this is the value of A as an integer modulo the field specification parameter p,
that is, an integer in the range 0 to p-1. For keys of type TYPE_EC_F2M_PRIVATE or
TYPE_EC_F2M_PUBLIC, the bit representation of this value specifies a polynomial with binary
coefficients which represents the value of A in the field. The plain text data format is big-endian and right-
aligned (the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the coefficient value is to begin

Returns: the byte length of the coefficient
 javacard.security ECKey 189

ECKey javacard.security

getB(byte[], short)
Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the coefficient of the curve of the key has not
been successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getB(byte[], short)

Declaration:
public short getB(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the second coefficient of the curve of the key. For keys of type TYPE_EC_FP_PRIVATE or
TYPE_EC_FP_PUBLIC, this is the value of B as an integer modulo the field specification parameter p,
that is, an integer in the range 0 to p-1. For keys of type TYPE_EC_F2M_PRIVATE or
TYPE_EC_F2M_PUBLIC, the bit representation of this value specifies a polynomial with binary
coefficients which represents the value of B in the field. The plain text data format is big-endian and right-
aligned (the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the coefficient value is to begin

Returns: the byte length of the coefficient

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the second coefficient of the curve of the key has
not been successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getG(byte[], short)

Declaration:
public short getG(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the fixed point of the curve. The point is represented as an octet string in compressed or
uncompressed forms as per ANSI X9.62. The plain text data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the point specification data is to begin

Returns: the byte length of the point specificiation

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the fixed point of the curve of the key has not
been successfully initialized since the time the initialized state of the key was set to false.
190 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security ECKey

getR(byte[], short)
See Also: Key

getR(byte[], short)

Declaration:
public short getR(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the order of the fixed point G of the curve. The plain text data format is big-endian and right-
aligned (the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the input buffer at which the order begins

Returns: the byte length of the order

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the order of the fixed point G of the curve of the
key has not been successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getK()

Declaration:
public short getK()

throws CryptoException

Description:
Returns the cofactor of the order of the fixed point G of the curve.

Returns: the value of the cofactor

Throws:
CryptoException - with the following reason codes:

• CryptoException.UNINITIALIZED_KEY if the cofactor of the order of the fixed point G of
the curve of the key has not been successfully initialized since the time the initialized state of the key
was set to false.

See Also: Key
 javacard.security ECKey 191

ECPrivateKey javacard.security

Declaration
javacard.security

ECPrivateKey
Declaration
public interface ECPrivateKey extends PrivateKey, ECKey

All Superinterfaces: ECKey, Key, PrivateKey

Description
The ECPrivateKey interface is used to generate signatures on data using the ECDSA (Elliptic Curve Digital
Signature Algorithm) and to generate shared secrets using the ECDH (Elliptic Curve Diffie-Hellman)
algorithm. An implementation of ECPrivateKey interface must also implement the ECKey interface
methods.

When all components of the key (S, A, B, G, R, Field) are set, the key is initialized and ready for use. In
addition, the KeyAgreement algorithm type ALG_EC_SVDP_DHC requires that the cofactor, K, be
initialized.

The notation used to describe parameters specific to the EC algorithm is based on the naming conventions
established in [IEEE P1363].

See Also: ECPublicKey, KeyBuilder, Signature, javacardx.crypto.KeyEncryption,
KeyAgreement

Member Summary

Methods
 short getS(byte[] buffer, short offset)

Returns the value of the secret key in plaintext form.
 void setS(byte[] buffer, short offset, short length)

Sets the value of the secret key.

Inherited Member Summary

Methods inherited from interface ECKey

getA(byte[], short), getB(byte[], short), getField(byte[], short), getG(byte[],
short), getK(), getR(byte[], short), setA(byte[], short, short), setB(byte[], short,
short), setFieldF2M(short, short, short), setFieldF2M(short, short, short), set-
FieldFP(byte[], short, short), setG(byte[], short, short), setK(short), setR(byte[],
short, short)

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
192 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security ECPrivateKey

setS(byte[], short, short)
Methods

setS(byte[], short, short)

Declaration:
public void setS(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the value of the secret key. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the secret value is to begin

length - the byte length of the secret value

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input key data is inconsistent with the key length or
if input data decryption is required and fails.

getS(byte[], short)

Declaration:
public short getS(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the value of the secret key in plaintext form. The data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the input buffer at which the secret value is to begin

Returns: the byte length of the secret value

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of the secret key has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security ECPrivateKey 193

ECPublicKey javacard.security

Declaration
javacard.security

ECPublicKey
Declaration
public interface ECPublicKey extends PublicKey, ECKey

All Superinterfaces: ECKey, Key, PublicKey

Description
The ECPublicKey interface is used to verify signatures on signed data using the ECDSA algorithm and to
generate shared secrets using the ECDH algorithm. An implementation of ECPublicKey interface must also
implement the ECKey interface methods.

When all components of the key (W, A, B, G, R, Field) are set, the key is initialized and ready for use.

The notation used to describe parameters specific to the EC algorithm is based on the naming conventions
established in [IEEE P1363].

See Also: ECPrivateKey, KeyBuilder, Signature, javacardx.crypto.KeyEncryption,
KeyAgreement

Member Summary

Methods
 short getW(byte[] buffer, short offset)

Returns the point of the curve comprising the public key in plain text form.
 void setW(byte[] buffer, short offset, short length)

Sets the point of the curve comprising the public key.

Inherited Member Summary

Methods inherited from interface ECKey

getA(byte[], short), getB(byte[], short), getField(byte[], short), getG(byte[],
short), getK(), getR(byte[], short), setA(byte[], short, short), setB(byte[], short,
short), setFieldF2M(short, short, short), setFieldF2M(short, short, short), set-
FieldFP(byte[], short, short), setG(byte[], short, short), setK(short), setR(byte[],
short, short)

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
194 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security ECPublicKey

setW(byte[], short, short)
Methods

setW(byte[], short, short)

Declaration:
public void setW(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the point of the curve comprising the public key. The point should be specified as an octet string as per
ANSI X9.62. A specific implementation need not support the compressed form, but must support the
uncompressed form of the point. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the key value is decrypted using the
Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the point specification begins

length - the byte length of the point specification

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data format is incorrect, or if the
input parameter data is inconsistent with the key length, or if input data decryption is required and
fails.

getW(byte[], short)

Declaration:
public short getW(byte[] buffer, short offset)

throws CryptoException

Description:
Returns the point of the curve comprising the public key in plain text form. The point is represented as an
octet string in compressed or uncompressed forms as per ANSI X9.62. The data format is big-endian and
right-aligned (the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the point specification data is to begin

Returns: the byte length of the point specificiation

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the point of the curve comprising the public key
has not been successfully initialized since the time the initialized state of the key was set to false.
 javacard.security ECPublicKey 195

ECPublicKey javacard.security

getW(byte[], short)
See Also: Key
196 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Key

Declaration
javacard.security

Key
Declaration
public interface Key

All Known Subinterfaces: AESKey, DESKey, DSAPrivateKey, DSAPublicKey, ECPrivateKey,
ECPublicKey, PrivateKey, PublicKey, RSAPrivateCrtKey, RSAPrivateKey,
RSAPublicKey, SecretKey

Description
The Key interface is the base interface for all keys.

A Key object sets its initialized state to true only when all the associated Key object parameters have been set at
least once since the time the initialized state was set to false.

A newly created Key object sets its initialized state to false. Invocation of the clearKey() method sets the
initialized state to false. A key with transient key data sets its initialized state to false on the associated clear
events.

See Also: KeyBuilder

Methods

isInitialized()

Declaration:
public boolean isInitialized()

Description:
Reports the initialized state of the key. Keys must be initialized before being used.

A Key object sets its initialized state to true only when all the associated Key object parameters have been
set at least once since the time the initialized state was set to false.

Member Summary

Methods
 void clearKey()

Clears the key and sets its initialized state to false.
 short getSize()

Returns the key size in number of bits.
 byte getType()

Returns the key interface type.
 boolean isInitialized()

Reports the initialized state of the key.
 javacard.security Key 197

Key javacard.security

clearKey()
A newly created Key object sets its initialized state to false. Invocation of the clearKey() method sets
the initialized state to false. A key with transient key data sets its initialized state to false on the associated
clear events.

Returns: true if the key has been initialized

clearKey()

Declaration:
public void clearKey()

Description:
Clears the key and sets its initialized state to false.

getType()

Declaration:
public byte getType()

Description:
Returns the key interface type.

Returns: the key interface type. Valid codes listed in TYPE.. constants See KeyBuilder.
TYPE_DES_TRANSIENT_RESET

See Also: KeyBuilder

getSize()

Declaration:
public short getSize()

Description:
Returns the key size in number of bits.

Returns: the key size in number of bits
198 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyAgreement

Declaration
javacard.security

KeyAgreement
Declaration
public abstract class KeyAgreement

java.lang.Object
|
+--javacard.security.KeyAgreement

Description
The KeyAgreement class is the base class for key agreement algorithms such as Diffie-Hellman and EC
Diffie-Hellman [IEEE P1363]. Implementations of KeyAgreement algorithms must extend this class and
implement all the abstract methods. A tear or card reset event resets an initialized KeyAgreement object to
the state it was in when previously initialized via a call to init().

Member Summary

Fields
static byte ALG_EC_SVDP_DH

Elliptic curve secret value derivation primitive, Diffie-Hellman version, as per [IEEE
P1363].

static byte ALG_EC_SVDP_DHC
Elliptic curve secret value derivation primitive, Diffie-Hellman version, with cofactor
multiplication, as per [IEEE P1363].

Constructors
protected KeyAgreement()

Protected constructor.

Methods
abstract short generateSecret(byte[] publicData, short publicOffset, short

publicLength, byte[] secret, short secretOffset)
Generates the secret data as per the requested algorithm using the PrivateKey
specified during initialization and the public key data provided.

abstract byte getAlgorithm()
Gets the KeyAgreement algorithm.

static KeyAgreement getInstance(byte algorithm, boolean externalAccess)
Creates a KeyAgreement object instance of the selected algorithm.

abstract void init(PrivateKey privKey)
Initializes the object with the given private key.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.security KeyAgreement 199

KeyAgreement javacard.security

ALG_EC_SVDP_DH
Fields

ALG_EC_SVDP_DH

Declaration:
public static final byte ALG_EC_SVDP_DH

Description:
Elliptic curve secret value derivation primitive, Diffie-Hellman version, as per [IEEE P1363].

ALG_EC_SVDP_DHC

Declaration:
public static final byte ALG_EC_SVDP_DHC

Description:
Elliptic curve secret value derivation primitive, Diffie-Hellman version, with cofactor multiplication, as per
[IEEE P1363]. (output value is to be equal to that from ALG_EC_SVDP_DH)

Constructors

KeyAgreement()

Declaration:
protected KeyAgreement()

Description:
Protected constructor.

Methods

getInstance(byte, boolean)

Declaration:
public static final javacard.security.KeyAgreement getInstance(byte algorithm, boolean

externalAccess)

throws CryptoException

Description:
Creates a KeyAgreement object instance of the selected algorithm.

Parameters:
algorithm - the desired key agreement algorithm Valid codes listed in ALG_ .. constants above, for
example, ALG_EC_SVDP_DH

externalAccess - if true indicates that the instance will be shared among multiple applet
instances and that the KeyAgreement instance will also be accessed (via a Shareable interface)
when the owner of the KeyAgreement instance is not the currently selected applet. If true the
implementation must not allocate CLEAR_ON_DESELECT transient space for internal data.

Returns: the KeyAgreement object instance of the requested algorithm
200 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyAgreement

init(PrivateKey)
Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm or shared access mode is
not supported.

init(PrivateKey)

Declaration:
public abstract void init(javacard.security.PrivateKey privKey)

throws CryptoException

Description:
Initializes the object with the given private key.

Parameters:
privKey - the private key

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input key type is inconsistent with the
KeyAgreement algorithm, for example, if the KeyAgreement algorithm is ALG_EC_SVDP_DH
and the key type is TYPE_RSA_PRIVATE, or if privKey is inconsistent with the implementation.

• CryptoException.UNINITIALIZED_KEY if privKey is uninitialized, or if the
KeyAgreement algorithm is set to ALG_EC_SVDP_DHC and the cofactor, K, has not been
successfully initialized since the time the initialized state of the key was set to false.

getAlgorithm()

Declaration:
public abstract byte getAlgorithm()

Description:
Gets the KeyAgreement algorithm.

Returns: the algorithm code defined above

generateSecret(byte[], short, short, byte[], short)

Declaration:
public abstract short generateSecret(byte[] publicData, short publicOffset, short

publicLength, byte[] secret, short secretOffset)

throws CryptoException

Description:
Generates the secret data as per the requested algorithm using the PrivateKey specified during
initialization and the public key data provided. Note that in the case of the algorithms ALG_EC_SVDP_DH
and ALG_EC_SVDP_DHC the public key data provided should be the public elliptic curve point of the
second party in the protocol, specified as per ANSI X9.62. A specific implementation need not support the
compressed form, but must support the uncompressed form of the point.

Parameters:
publicData - buffer holding the public data of the second party

publicOffset - offset into the publicData buffer at which the data begins

publicLength - byte length of the public data
 javacard.security KeyAgreement 201

KeyAgreement javacard.security

generateSecret(byte[], short, short, byte[], short)
secret - buffer to hold the secret output

secretOffset - offset into the secret array at which to start writing the secret

Returns: byte length of the secret

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the publicData data format is incorrect, or if the
publicData data is inconsistent with the PrivateKey specified during initialization.

• CryptoException.INVALID_INIT if this KeyAgreement object is not initialized.
202 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyBuilder

Declaration
javacard.security

KeyBuilder
Declaration
public class KeyBuilder

java.lang.Object
|
+--javacard.security.KeyBuilder

Description
The KeyBuilder class is a key object factory.

Member Summary

Fields
static short LENGTH_AES_128

AES Key Length LENGTH_AES_128 = 128.
static short LENGTH_AES_192

AES Key Length LENGTH_AES_192 = 192.
static short LENGTH_AES_256

AES Key Length LENGTH_AES_256 = 256.
static short LENGTH_DES

DES Key Length LENGTH_DES = 64.
static short LENGTH_DES3_2KEY

DES Key Length LENGTH_DES3_2KEY = 128.
static short LENGTH_DES3_3KEY

DES Key Length LENGTH_DES3_3KEY = 192.
static short LENGTH_DSA_1024

DSA Key Length LENGTH_DSA_1024 = 1024.
static short LENGTH_DSA_512

DSA Key Length LENGTH_DSA_512 = 512.
static short LENGTH_DSA_768

DSA Key Length LENGTH_DSA_768 = 768.
static short LENGTH_EC_F2M_113

EC Key Length LENGTH_EC_F2M_113 = 113.
static short LENGTH_EC_F2M_131

EC Key Length LENGTH_EC_F2M_131 = 131.
static short LENGTH_EC_F2M_163

EC Key Length LENGTH_EC_F2M_163 = 163.
static short LENGTH_EC_F2M_193

EC Key Length LENGTH_EC_F2M_193 = 193.
static short LENGTH_EC_FP_112

EC Key Length LENGTH_EC_FP_112 = 112.
static short LENGTH_EC_FP_128

EC Key Length LENGTH_EC_FP_128 = 128.
static short LENGTH_EC_FP_160

EC Key Length LENGTH_EC_FP_160 = 160.
static short LENGTH_EC_FP_192

EC Key Length LENGTH_EC_FP_192 = 192.
 javacard.security KeyBuilder 203

KeyBuilder javacard.security

Member Summary
static short LENGTH_RSA_1024
RSA Key Length LENGTH_RSA_1024 = 1024.

static short LENGTH_RSA_1280
RSA Key Length LENGTH_RSA_1280 = 1280.

static short LENGTH_RSA_1536
RSA Key Length LENGTH_RSA_1536 = 1536.

static short LENGTH_RSA_1984
RSA Key Length LENGTH_RSA_1984 = 1984.

static short LENGTH_RSA_2048
RSA Key Length LENGTH_RSA_2048 = 2048.

static short LENGTH_RSA_512
RSA Key Length LENGTH_RSA_512 = 512.

static short LENGTH_RSA_736
RSA Key Length LENGTH_RSA_736 = 736.

static short LENGTH_RSA_768
RSA Key Length LENGTH_RSA_768 = 768.

static short LENGTH_RSA_896
RSA Key Length LENGTH_RSA_896 = 896.

static byte TYPE_AES
Key object which implements interface type AESKey with persistent key data.

static byte TYPE_AES_TRANSIENT_DESELECT
Key object which implements interface type AESKeywith CLEAR_ON_DESELECT
transient key data.

static byte TYPE_AES_TRANSIENT_RESET
Key object which implements interface type AESKey with CLEAR_ON_RESET
transient key data.

static byte TYPE_DES
Key object which implements interface type DESKey with persistent key data.

static byte TYPE_DES_TRANSIENT_DESELECT
Key object which implements interface type DESKeywith CLEAR_ON_DESELECT
transient key data.

static byte TYPE_DES_TRANSIENT_RESET
Key object which implements interface type DESKey with CLEAR_ON_RESET
transient key data.

static byte TYPE_DSA_PRIVATE
Key object which implements the interface type DSAPrivateKey for the DSA
algorithm.

static byte TYPE_DSA_PUBLIC
Key object which implements the interface type DSAPublicKey for the DSA
algorithm.

static byte TYPE_EC_F2M_PRIVATE
Key object which implements the interface type ECPrivateKey for EC operations
over fields of characteristic 2 with polynomial basis.

static byte TYPE_EC_F2M_PUBLIC
Key object which implements the interface type ECPublicKey for EC operations
over fields of characteristic 2 with polynomial basis.

static byte TYPE_EC_FP_PRIVATE
Key object which implements the interface type ECPrivateKey for EC operations
over large prime fields.

static byte TYPE_EC_FP_PUBLIC
Key object which implements the interface type ECPublicKey for EC operations
over large prime fields.

static byte TYPE_RSA_CRT_PRIVATE
Key object which implements interface type RSAPrivateCrtKey which uses
Chinese Remainder Theorem.

Member Summary
204 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyBuilder

Inherited Member Summary
Fields

TYPE_DES_TRANSIENT_RESET

Declaration:
public static final byte TYPE_DES_TRANSIENT_RESET

Description:
Key object which implements interface type DESKey with CLEAR_ON_RESET transient key data.

This Key object implicitly performs a clearKey() on power on or card reset.

TYPE_DES_TRANSIENT_DESELECT

Declaration:
public static final byte TYPE_DES_TRANSIENT_DESELECT

Description:
Key object which implements interface type DESKey with CLEAR_ON_DESELECT transient key data.

This Key object implicitly performs a clearKey() on power on, card reset and applet deselection.

TYPE_DES

Declaration:
public static final byte TYPE_DES

Description:
Key object which implements interface type DESKey with persistent key data.

static byte TYPE_RSA_PRIVATE
Key object which implements interface type RSAPrivateKey which uses modulus/
exponent form.

static byte TYPE_RSA_PUBLIC
Key object which implements interface type RSAPublicKey.

Methods
static Key buildKey(byte keyType, short keyLength, boolean keyEncryp-

tion)
Creates uninitialized cryptographic keys for signature and cipher algorithms.

Inherited Member Summary

Methods inherited from class Object

equals(Object)

Member Summary
 javacard.security KeyBuilder 205

KeyBuilder javacard.security

TYPE_RSA_PUBLIC
TYPE_RSA_PUBLIC

Declaration:
public static final byte TYPE_RSA_PUBLIC

Description:
Key object which implements interface type RSAPublicKey.

TYPE_RSA_PRIVATE

Declaration:
public static final byte TYPE_RSA_PRIVATE

Description:
Key object which implements interface type RSAPrivateKey which uses modulus/exponent form.

TYPE_RSA_CRT_PRIVATE

Declaration:
public static final byte TYPE_RSA_CRT_PRIVATE

Description:
Key object which implements interface type RSAPrivateCrtKey which uses Chinese Remainder
Theorem.

TYPE_DSA_PUBLIC

Declaration:
public static final byte TYPE_DSA_PUBLIC

Description:
Key object which implements the interface type DSAPublicKey for the DSA algorithm.

TYPE_DSA_PRIVATE

Declaration:
public static final byte TYPE_DSA_PRIVATE

Description:
Key object which implements the interface type DSAPrivateKey for the DSA algorithm.

TYPE_EC_F2M_PUBLIC

Declaration:
public static final byte TYPE_EC_F2M_PUBLIC

Description:
Key object which implements the interface type ECPublicKey for EC operations over fields of
characteristic 2 with polynomial basis.

TYPE_EC_F2M_PRIVATE

Declaration:
public static final byte TYPE_EC_F2M_PRIVATE

Description:
Key object which implements the interface type ECPrivateKey for EC operations over fields of
characteristic 2 with polynomial basis.
206 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyBuilder

TYPE_EC_FP_PUBLIC
TYPE_EC_FP_PUBLIC

Declaration:
public static final byte TYPE_EC_FP_PUBLIC

Description:
Key object which implements the interface type ECPublicKey for EC operations over large prime fields.

TYPE_EC_FP_PRIVATE

Declaration:
public static final byte TYPE_EC_FP_PRIVATE

Description:
Key object which implements the interface type ECPrivateKey for EC operations over large prime
fields.

TYPE_AES_TRANSIENT_RESET

Declaration:
public static final byte TYPE_AES_TRANSIENT_RESET

Description:
Key object which implements interface type AESKey with CLEAR_ON_RESET transient key data.

This Key object implicitly performs a clearKey() on power on or card reset.

TYPE_AES_TRANSIENT_DESELECT

Declaration:
public static final byte TYPE_AES_TRANSIENT_DESELECT

Description:
Key object which implements interface type AESKey with CLEAR_ON_DESELECT transient key data.

This Key object implicitly performs a clearKey() on power on, card reset and applet deselection.

TYPE_AES

Declaration:
public static final byte TYPE_AES

Description:
Key object which implements interface type AESKey with persistent key data.

LENGTH_DES

Declaration:
public static final short LENGTH_DES

Description:
DES Key Length LENGTH_DES = 64.

LENGTH_DES3_2KEY

Declaration:
public static final short LENGTH_DES3_2KEY
 javacard.security KeyBuilder 207

KeyBuilder javacard.security

LENGTH_DES3_3KEY
Description:
DES Key Length LENGTH_DES3_2KEY = 128.

LENGTH_DES3_3KEY

Declaration:
public static final short LENGTH_DES3_3KEY

Description:
DES Key Length LENGTH_DES3_3KEY = 192.

LENGTH_RSA_512

Declaration:
public static final short LENGTH_RSA_512

Description:
RSA Key Length LENGTH_RSA_512 = 512.

LENGTH_RSA_736

Declaration:
public static final short LENGTH_RSA_736

Description:
RSA Key Length LENGTH_RSA_736 = 736.

LENGTH_RSA_768

Declaration:
public static final short LENGTH_RSA_768

Description:
RSA Key Length LENGTH_RSA_768 = 768.

LENGTH_RSA_896

Declaration:
public static final short LENGTH_RSA_896

Description:
RSA Key Length LENGTH_RSA_896 = 896.

LENGTH_RSA_1024

Declaration:
public static final short LENGTH_RSA_1024

Description:
RSA Key Length LENGTH_RSA_1024 = 1024.

LENGTH_RSA_1280

Declaration:
public static final short LENGTH_RSA_1280

Description:
RSA Key Length LENGTH_RSA_1280 = 1280.
208 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyBuilder

LENGTH_RSA_1536
LENGTH_RSA_1536

Declaration:
public static final short LENGTH_RSA_1536

Description:
RSA Key Length LENGTH_RSA_1536 = 1536.

LENGTH_RSA_1984

Declaration:
public static final short LENGTH_RSA_1984

Description:
RSA Key Length LENGTH_RSA_1984 = 1984.

LENGTH_RSA_2048

Declaration:
public static final short LENGTH_RSA_2048

Description:
RSA Key Length LENGTH_RSA_2048 = 2048.

LENGTH_DSA_512

Declaration:
public static final short LENGTH_DSA_512

Description:
DSA Key Length LENGTH_DSA_512 = 512.

LENGTH_DSA_768

Declaration:
public static final short LENGTH_DSA_768

Description:
DSA Key Length LENGTH_DSA_768 = 768.

LENGTH_DSA_1024

Declaration:
public static final short LENGTH_DSA_1024

Description:
DSA Key Length LENGTH_DSA_1024 = 1024.

LENGTH_EC_FP_112

Declaration:
public static final short LENGTH_EC_FP_112

Description:
EC Key Length LENGTH_EC_FP_112 = 112.
 javacard.security KeyBuilder 209

KeyBuilder javacard.security

LENGTH_EC_F2M_113
LENGTH_EC_F2M_113

Declaration:
public static final short LENGTH_EC_F2M_113

Description:
EC Key Length LENGTH_EC_F2M_113 = 113.

LENGTH_EC_FP_128

Declaration:
public static final short LENGTH_EC_FP_128

Description:
EC Key Length LENGTH_EC_FP_128 = 128.

LENGTH_EC_F2M_131

Declaration:
public static final short LENGTH_EC_F2M_131

Description:
EC Key Length LENGTH_EC_F2M_131 = 131.

LENGTH_EC_FP_160

Declaration:
public static final short LENGTH_EC_FP_160

Description:
EC Key Length LENGTH_EC_FP_160 = 160.

LENGTH_EC_F2M_163

Declaration:
public static final short LENGTH_EC_F2M_163

Description:
EC Key Length LENGTH_EC_F2M_163 = 163.

LENGTH_EC_FP_192

Declaration:
public static final short LENGTH_EC_FP_192

Description:
EC Key Length LENGTH_EC_FP_192 = 192.

LENGTH_EC_F2M_193

Declaration:
public static final short LENGTH_EC_F2M_193

Description:
EC Key Length LENGTH_EC_F2M_193 = 193.
210 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyBuilder

LENGTH_AES_128
LENGTH_AES_128

Declaration:
public static final short LENGTH_AES_128

Description:
AES Key Length LENGTH_AES_128 = 128.

LENGTH_AES_192

Declaration:
public static final short LENGTH_AES_192

Description:
AES Key Length LENGTH_AES_192 = 192.

LENGTH_AES_256

Declaration:
public static final short LENGTH_AES_256

Description:
AES Key Length LENGTH_AES_256 = 256.

Methods

buildKey(byte, short, boolean)

Declaration:
public static javacard.security.Key buildKey(byte keyType, short keyLength, boolean

keyEncryption)

throws CryptoException

Description:
Creates uninitialized cryptographic keys for signature and cipher algorithms. Only instances created by this
method may be the key objects used to initialize instances of Signature, Cipher and KeyPair. Note
that the object returned must be cast to their appropriate key type interface.

Parameters:
keyType - the type of key to be generated. Valid codes listed in TYPE.. constants. See
TYPE_DES_TRANSIENT_RESET.

keyLength - the key size in bits. The valid key bit lengths are key type dependent. Some common
key lengths are listed above above in the LENGTH_.. constants. See LENGTH_DES.

keyEncryption - if true this boolean requests a key implementation which implements the
javacardx.crypto.KeyEncryption interface. The key implementation returned may
implement the javacardx.crypto.KeyEncryption interface even when this parameter is
false.

Returns: the key object instance of the requested key type, length and encrypted access

Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm associated with the
specified type, size of key and key encryption interface is not supported.
 javacard.security KeyBuilder 211

KeyPair javacard.security

Declaration
javacard.security

KeyPair
Declaration
public final class KeyPair

java.lang.Object
|
+--javacard.security.KeyPair

Description
This class is a container for a key pair (a public key and a private key). It does not enforce any security, and,
when initialized, should be treated like a PrivateKey.

In addition, this class features a key generation method.

See Also: PublicKey, PrivateKey

Member Summary

Fields
static byte ALG_DSA

KeyPair object containing a DSA key pair.
static byte ALG_EC_F2M

KeyPair object containing an EC key pair for EC operations over fields of
characteristic 2 with polynomial basis.

static byte ALG_EC_FP
KeyPair object containing an EC key pair for EC operations over large prime fields

static byte ALG_RSA
KeyPair object containing a RSA key pair.

static byte ALG_RSA_CRT
KeyPair object containing a RSA key pair with private key in its Chinese Remainder
Theorem form.

Constructors
KeyPair(byte algorithm, short keyLength)

Constructs a KeyPair instance for the specified algorithm and keylength; the
encapsulated keys are uninitialized.

KeyPair(PublicKey publicKey, PrivateKey privateKey)
Constructs a new KeyPair object containing the specified public key and private key.

Methods
 void genKeyPair()

(Re)Initializes the key objects encapsulated in this KeyPair instance with new key
values.

 PrivateKey getPrivate()
Returns a reference to the private key component of this KeyPair object.

 PublicKey getPublic()
Returns a reference to the public key component of this KeyPair object.
212 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyPair

Inherited Member Summary
Fields

ALG_RSA

Declaration:
public static final byte ALG_RSA

Description:
KeyPair object containing a RSA key pair.

ALG_RSA_CRT

Declaration:
public static final byte ALG_RSA_CRT

Description:
KeyPair object containing a RSA key pair with private key in its Chinese Remainder Theorem form.

ALG_DSA

Declaration:
public static final byte ALG_DSA

Description:
KeyPair object containing a DSA key pair.

ALG_EC_F2M

Declaration:
public static final byte ALG_EC_F2M

Description:
KeyPair object containing an EC key pair for EC operations over fields of characteristic 2 with
polynomial basis.

ALG_EC_FP

Declaration:
public static final byte ALG_EC_FP

Description:
KeyPair object containing an EC key pair for EC operations over large prime fields

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.security KeyPair 213

KeyPair javacard.security

KeyPair(byte, short)
Constructors

KeyPair(byte, short)

Declaration:
public KeyPair(byte algorithm, short keyLength)

throws CryptoException

Description:
Constructs a KeyPair instance for the specified algorithm and keylength; the encapsulated keys are
uninitialized. To initialize the KeyPair instance use the genKeyPair() method.

The encapsulated key objects are of the specified keyLength size and implement the appropriate Key
interface associated with the specified algorithm (example - RSAPublicKey interface for the public key
and RSAPrivateKey interface for the private key within an ALG_RSA key pair).

Notes:

• The key objects encapsulated in the generated KeyPair object need not support the
KeyEncryption interface.

Parameters:
algorithm - the type of algorithm whose key pair needs to be generated. Valid codes listed in
ALG_.. constants above. See ALG_RSA

keyLength - the key size in bits. The valid key bit lengths are key type dependent. See the
KeyBuilder class.

Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm associated with the
specified type, size of key is not supported.

See Also: KeyBuilder, Signature, javacardx.crypto.Cipher, javacardx.crypto.
KeyEncryption

KeyPair(PublicKey, PrivateKey)

Declaration:
public KeyPair(javacard.security.PublicKey publicKey, javacard.security.PrivateKey

privateKey)

throws CryptoException

Description:
Constructs a new KeyPair object containing the specified public key and private key.

Note that this constructor only stores references to the public and private key components in the generated
KeyPair object. It does not throw an exception if the key parameter objects are uninitialized.

Parameters:
publicKey - the public key.

privateKey - the private key.

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the input parameter key objects are inconsistent with
214 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security KeyPair

genKeyPair()
each other - i.e mismatched algorithm, size etc.

• CryptoException.NO_SUCH_ALGORITHM if the algorithm associated with the specified type,
size of key is not supported.

Methods

genKeyPair()

Declaration:
public final void genKeyPair()

throws CryptoException

Description:
(Re)Initializes the key objects encapsulated in this KeyPair instance with new key values. The initialized
public and private key objects encapsulated in this instance will then be suitable for use with the
Signature, Cipher and KeyAgreement objects. An internal secure random number generator is
used during new key pair generation.

Notes:

• For the RSA algorithm, if the exponent value in the public key object is pre-initialized, it will be
retained. Otherwise, a default value of 65537 will be used.

• For the DSA algorithm, if the p, q and g parameters of the public key object are pre-initialized, they will
be retained. Otherwise, default precomputed parameter sets will be used. The required default
precomputed values are listed in Appendix B of Java Cryptography Architecture API Specification &
Reference document.

• For the EC case, if the Field, A, B, G and R parameters of the key pair are pre-initialized, then they will
be retained. Otherwise default pre-specified values MAY be used (e.g. WAP predefined curves), since
computation of random generic EC keys is infeasible on the smart card platform.

• If the time taken to generate the key values is excessive, the implementation may automatically request
additional APDU processing time from the CAD.

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the exponent value parameter in RSA or the p, q, g
parameter set in DSA or the Field, A, B, G and R parameter set in EC is invalid.

See Also: javacard.framework.APDU, Signature, javacardx.crypto.Cipher,
RSAPublicKey, ECKey, DSAKey

getPublic()

Declaration:
public javacard.security.PublicKey getPublic()

Description:
Returns a reference to the public key component of this KeyPair object.

Returns: a reference to the public key.
 javacard.security KeyPair 215

KeyPair javacard.security

getPrivate()
getPrivate()

Declaration:
public javacard.security.PrivateKey getPrivate()

Description:
Returns a reference to the private key component of this KeyPair object.

Returns: a reference to the private key.
216 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security MessageDigest

Declaration
javacard.security

MessageDigest
Declaration
public abstract class MessageDigest

java.lang.Object
|
+--javacard.security.MessageDigest

Description
The MessageDigest class is the base class for hashing algorithms. Implementations of MessageDigest
algorithms must extend this class and implement all the abstract methods.

A tear or card reset event resets a MessageDigest object to the initial state (state upon construction).

Even if a transaction is in progress, update of intermediate result state in the implementation instance shall not
participate in the transaction.

Member Summary

Fields
static byte ALG_MD5

Message Digest algorithm MD5.
static byte ALG_RIPEMD160

Message Digest algorithm RIPE MD-160.
static byte ALG_SHA

Message Digest algorithm SHA.

Constructors
protected MessageDigest()

Protected Constructor

Methods
abstract short doFinal(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)
Generates a hash of all/last input data.

abstract byte getAlgorithm()
Gets the Message digest algorithm.

static MessageDigest getInstance(byte algorithm, boolean externalAccess)
Creates a MessageDigest object instance of the selected algorithm.

abstract byte getLength()
Returns the byte length of the hash.

abstract void reset()
Resets the MessageDigest object to the initial state for further use.

abstract void update(byte[] inBuff, short inOffset, short inLength)
Accumulates a hash of the input data.
 javacard.security MessageDigest 217

MessageDigest javacard.security

Inherited Member Summary
Fields

ALG_SHA

Declaration:
public static final byte ALG_SHA

Description:
Message Digest algorithm SHA.

ALG_MD5

Declaration:
public static final byte ALG_MD5

Description:
Message Digest algorithm MD5.

ALG_RIPEMD160

Declaration:
public static final byte ALG_RIPEMD160

Description:
Message Digest algorithm RIPE MD-160.

Constructors

MessageDigest()

Declaration:
protected MessageDigest()

Description:
Protected Constructor

Methods

getInstance(byte, boolean)

Declaration:
public static final javacard.security.MessageDigest getInstance(byte algorithm, boolean

externalAccess)

throws CryptoException

Inherited Member Summary

Methods inherited from class Object

equals(Object)
218 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security MessageDigest

getAlgorithm()
Description:
Creates a MessageDigest object instance of the selected algorithm.

Parameters:
algorithm - the desired message digest algorithm. Valid codes listed in ALG_ .. constants above, for
example, ALG_SHA.

externalAccess - true indicates that the instance will be shared among multiple applet instances
and that the MessageDigest instance will also be accessed (via a Shareable. interface) when the
owner of the MessageDigest instance is not the currently selected applet. If true the
implementation must not allocate CLEAR_ON_DESELECT transient space for internal data.

Returns: the MessageDigest object instance of the requested algorithm

Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm or shared access mode is
not supported.

getAlgorithm()

Declaration:
public abstract byte getAlgorithm()

Description:
Gets the Message digest algorithm.

Returns: the algorithm code defined above

getLength()

Declaration:
public abstract byte getLength()

Description:
Returns the byte length of the hash.

Returns: hash length

doFinal(byte[], short, short, byte[], short)

Declaration:
public abstract short doFinal(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)

Description:
Generates a hash of all/last input data. Completes and returns the hash computation after performing final
operations such as padding. The MessageDigest object is reset to the initial state after this call is made.

The input and output buffer data may overlap.

Parameters:
inBuff - the input buffer of data to be hashed

inOffset - the offset into the input buffer at which to begin hash generation

inLength - the byte length to hash

outBuff - the output buffer, may be the same as the input buffer
 javacard.security MessageDigest 219

MessageDigest javacard.security

update(byte[], short, short)
outOffset - the offset into the output buffer where the resulting hash value begins

Returns: number of bytes of hash output in outBuff

update(byte[], short, short)

Declaration:
public abstract void update(byte[] inBuff, short inOffset, short inLength)

Description:
Accumulates a hash of the input data. This method requires temporary storage of intermediate results. In
addition, if the input data length is not block aligned (multiple of block size) then additional internal storage
may be allocated at this time to store a partial input data block. This may result in additional resource
consumption and/or slow performance. This method should only be used if all the input data required for
the hash is not available in one byte array. If all of the input data required for the hash is located in a single
byte array, use of the doFinal() method is recommended. The doFinal() method must be called to
complete processing of input data accumulated by one or more calls to the update() method.

Note:

• If inLength is 0 this method does nothing.

Parameters:
inBuff - the input buffer of data to be hashed

inOffset - the offset into the input buffer at which to begin hash generation

inLength - the byte length to hash

See Also: doFinal(byte[], short, short, byte[], short)

reset()

Declaration:
public abstract void reset()

Description:
Resets the MessageDigest object to the initial state for further use.
220 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security PrivateKey

Declaration
javacard.security

PrivateKey
Declaration
public interface PrivateKey extends Key

All Superinterfaces: Key

All Known Subinterfaces: DSAPrivateKey, ECPrivateKey, RSAPrivateCrtKey,
RSAPrivateKey

Description
The PrivateKey interface is the base interface for private keys used in asymmetric algorithms.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
 javacard.security PrivateKey 221

PublicKey javacard.security

Declaration
javacard.security

PublicKey
Declaration
public interface PublicKey extends Key

All Superinterfaces: Key

All Known Subinterfaces: DSAPublicKey, ECPublicKey, RSAPublicKey

Description
The PublicKey interface is the base interface for public keys used in asymmetric algorithms.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
222 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RandomData

Declaration
javacard.security

RandomData
Declaration
public abstract class RandomData

java.lang.Object
|
+--javacard.security.RandomData

Description
The RandomData abstract class is the base class for random number generation. Implementations of
RandomData algorithms must extend this class and implement all the abstract methods.

Member Summary

Fields
static byte ALG_PSEUDO_RANDOM

Utility pseudo-random number generation algorithms.
static byte ALG_SECURE_RANDOM

Cryptographically secure random number generation algorithms.

Constructors
protected RandomData()

Protected constructor for subclassing.

Methods
abstract void generateData(byte[] buffer, short offset, short length)

Generates random data.
static RandomData getInstance(byte algorithm)

Creates a RandomData instance of the selected algorithm.
abstract void setSeed(byte[] buffer, short offset, short length)

Seeds the random data generator.

Inherited Member Summary

Methods inherited from class Object

equals(Object)
 javacard.security RandomData 223

RandomData javacard.security

ALG_PSEUDO_RANDOM
Fields

ALG_PSEUDO_RANDOM

Declaration:
public static final byte ALG_PSEUDO_RANDOM

Description:
Utility pseudo-random number generation algorithms. The random number sequence generated by this
algorithm need not be the same even if seeded with the same seed data.

Even if a transaction is in progress, the update of the internal state shall not participate in the transaction.

ALG_SECURE_RANDOM

Declaration:
public static final byte ALG_SECURE_RANDOM

Description:
Cryptographically secure random number generation algorithms.

Constructors

RandomData()

Declaration:
protected RandomData()

Description:
Protected constructor for subclassing.

Methods

getInstance(byte)

Declaration:
public static final javacard.security.RandomData getInstance(byte algorithm)

throws CryptoException

Description:
Creates a RandomData instance of the selected algorithm. The pseudo random RandomData instance’s
seed is initialized to a internal default value.

Parameters:
algorithm - the desired random number algorithm. Valid codes listed in ALG_ .. constants above.
See ALG_PSEUDO_RANDOM.

Returns: the RandomData object instance of the requested algorithm

Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not supported.
224 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RandomData

generateData(byte[], short, short)
generateData(byte[], short, short)

Declaration:
public abstract void generateData(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Generates random data.

Parameters:
buffer - the output buffer

offset - the offset into the output buffer

length - the length of random data to generate

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if the length parameter is zero.

setSeed(byte[], short, short)

Declaration:
public abstract void setSeed(byte[] buffer, short offset, short length)

Description:
Seeds the random data generator.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer

length - the length of the seed data
 javacard.security RandomData 225

RSAPrivateCrtKey javacard.security

Declaration
javacard.security

RSAPrivateCrtKey
Declaration
public interface RSAPrivateCrtKey extends PrivateKey

All Superinterfaces: Key, PrivateKey

Description
The RSAPrivateCrtKey interface is used to sign data using the RSA algorithm in its Chinese Remainder
Theorem form. It may also be used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

Let S = md mod n, where m is the data to be signed, d is the private key exponent, and n is private key modulus
composed of two prime numbers p and q. The following names are used in the initializer methods in this
interface:

• P, the prime factor p

• Q, the prime factor q

• PQ = q-1 mod p

• DP1 = d mod (p - 1)

• DQ1 = d mod (q - 1)

When all five components (P,Q,PQ,DP1,DQ1) of the key are set, the key is initialized and ready for use.

See Also: RSAPrivateKey, RSAPublicKey, KeyBuilder, Signature, javacardx.crypto.
Cipher, javacardx.crypto.KeyEncryption

Member Summary

Methods
 short getDP1(byte[] buffer, short offset)

Returns the value of the DP1 parameter in plain text.
 short getDQ1(byte[] buffer, short offset)

Returns the value of the DQ1 parameter in plain text.
 short getP(byte[] buffer, short offset)

Returns the value of the P parameter in plain text.
 short getPQ(byte[] buffer, short offset)

Returns the value of the PQ parameter in plain text.
 short getQ(byte[] buffer, short offset)

Returns the value of the Q parameter in plain text.
 void setDP1(byte[] buffer, short offset, short length)

Sets the value of the DP1 parameter.
 void setDQ1(byte[] buffer, short offset, short length)

Sets the value of the DQ1 parameter.
 void setP(byte[] buffer, short offset, short length)

Sets the value of the P parameter.
226 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RSAPrivateCrtKey

Inherited Member Summary
Methods

setP(byte[], short, short)

Declaration:
public void setP(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the value of the P parameter. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input P parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the P parameter value is decrypted
using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the parameter value begins

length - the length of the parameter

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

setQ(byte[], short, short)

Declaration:
public void setQ(byte[] buffer, short offset, short length)

throws CryptoException

 void setPQ(byte[] buffer, short offset, short length)
Sets the value of the PQ parameter.

 void setQ(byte[] buffer, short offset, short length)
Sets the value of the Q parameter.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()

Member Summary
 javacard.security RSAPrivateCrtKey 227

RSAPrivateCrtKey javacard.security

setDP1(byte[], short, short)
Description:
Sets the value of the Q parameter. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input Q parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the Q parameter value is decrypted
using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the parameter value begins

length - the length of the parameter

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

setDP1(byte[], short, short)

Declaration:
public void setDP1(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the value of the DP1 parameter. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input DP1 parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the DP1 parameter value is decrypted
using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the parameter value begins

length - the length of the parameter

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

setDQ1(byte[], short, short)

Declaration:
public void setDQ1(byte[] buffer, short offset, short length)

throws CryptoException
228 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RSAPrivateCrtKey

setPQ(byte[], short, short)
Description:
Sets the value of the DQ1 parameter. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input DQ1 parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the DQ1 parameter value is decrypted
using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the parameter value begins

length - the length of the parameter

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

setPQ(byte[], short, short)

Declaration:
public void setPQ(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the value of the PQ parameter. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input PQ parameter data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the PQ parameter value is decrypted
using the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the parameter value begins

length - the length of the parameter

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input parameter data length is inconsistent with the
implementation or if input data decryption is required and fails.

getP(byte[], short)

Declaration:
public short getP(byte[] buffer, short offset)
 javacard.security RSAPrivateCrtKey 229

RSAPrivateCrtKey javacard.security

getQ(byte[], short)
Description:
Returns the value of the P parameter in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the parameter value begins

Returns: the byte length of the P parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of P parameter has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getQ(byte[], short)

Declaration:
public short getQ(byte[] buffer, short offset)

Description:
Returns the value of the Q parameter in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the parameter value begins

Returns: the byte length of the Q parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of Q parameter has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getDP1(byte[], short)

Declaration:
public short getDP1(byte[] buffer, short offset)

Description:
Returns the value of the DP1 parameter in plain text. The data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the parameter value begins

Returns: the byte length of the DP1 parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of DP1 parameter has not been
230 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RSAPrivateCrtKey

getDQ1(byte[], short)
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getDQ1(byte[], short)

Declaration:
public short getDQ1(byte[] buffer, short offset)

Description:
Returns the value of the DQ1 parameter in plain text. The data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the parameter value begins

Returns: the byte length of the DQ1 parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of DQ1 parameter has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getPQ(byte[], short)

Declaration:
public short getPQ(byte[] buffer, short offset)

Description:
Returns the value of the PQ parameter in plain text. The data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the parameter value begins

Returns: the byte length of the PQ parameter value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the value of PQ parameter has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security RSAPrivateCrtKey 231

RSAPrivateKey javacard.security

Declaration
javacard.security

RSAPrivateKey
Declaration
public interface RSAPrivateKey extends PrivateKey

All Superinterfaces: Key, PrivateKey

Description
The RSAPrivateKey class is used to sign data using the RSA algorithm in its modulus/exponent form. It
may also be used by the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also: RSAPublicKey, RSAPrivateCrtKey, KeyBuilder, Signature, javacardx.
crypto.Cipher, javacardx.crypto.KeyEncryption

Methods

setModulus(byte[], short, short)

Declaration:
public void setModulus(byte[] buffer, short offset, short length)

throws CryptoException

Member Summary

Methods
 short getExponent(byte[] buffer, short offset)

Returns the private exponent value of the key in plain text.
 short getModulus(byte[] buffer, short offset)

Returns the modulus value of the key in plain text.
 void setExponent(byte[] buffer, short offset, short length)

Sets the private exponent value of the key.
 void setModulus(byte[] buffer, short offset, short length)

Sets the modulus value of the key.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
232 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RSAPrivateKey

setExponent(byte[], short, short)
Description:
Sets the modulus value of the key. The plain text data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the modulus value is decrypted using
the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the modulus value begins

length - the length of the modulus

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent with the
implementation or if input data decryption is required and fails.

setExponent(byte[], short, short)

Declaration:
public void setExponent(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the private exponent value of the key. The plain text data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input exponent data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the exponent value is decrypted using
the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the exponent value begins

length - the length of the exponent

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent with the
implementation or if input data decryption is required and fails.

getModulus(byte[], short)

Declaration:
public short getModulus(byte[] buffer, short offset)
 javacard.security RSAPrivateKey 233

RSAPrivateKey javacard.security

getExponent(byte[], short)
Description:
Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the modulus value starts

Returns: the byte length of the modulus value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the modulus value of the key has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getExponent(byte[], short)

Declaration:
public short getExponent(byte[] buffer, short offset)

Description:
Returns the private exponent value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the exponent value begins

Returns: the byte length of the private exponent value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the private exponent value of the key has not
been successfully initialized since the time the initialized state of the key was set to false.

See Also: Key
234 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RSAPublicKey

Declaration
javacard.security

RSAPublicKey
Declaration
public interface RSAPublicKey extends PublicKey

All Superinterfaces: Key, PublicKey

Description
The RSAPublicKey is used to verify signatures on signed data using the RSA algorithm. It may also used by
the javacardx.crypto.Cipher class to encrypt/decrypt messages.

When both the modulus and exponent of the key are set, the key is initialized and ready for use.

See Also: RSAPrivateKey, RSAPrivateCrtKey, KeyBuilder, Signature, javacardx.
crypto.Cipher, javacardx.crypto.KeyEncryption

Methods

setModulus(byte[], short, short)

Declaration:
public void setModulus(byte[] buffer, short offset, short length)

throws CryptoException

Member Summary

Methods
 short getExponent(byte[] buffer, short offset)

Returns the public exponent value of the key in plain text.
 short getModulus(byte[] buffer, short offset)

Returns the modulus value of the key in plain text.
 void setExponent(byte[] buffer, short offset, short length)

Sets the public exponent value of the key.
 void setModulus(byte[] buffer, short offset, short length)

Sets the modulus value of the key.

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
 javacard.security RSAPublicKey 235

RSAPublicKey javacard.security

setExponent(byte[], short, short)
Description:
Sets the modulus value of the key. The plaintext data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte). Input modulus data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the modulus value is decrypted using
the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the modulus value begins

length - the byte length of the modulus

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input modulus data length is inconsistent with the
implementation or if input data decryption is required and fails.

setExponent(byte[], short, short)

Declaration:
public void setExponent(byte[] buffer, short offset, short length)

throws CryptoException

Description:
Sets the public exponent value of the key. The plaintext data format is big-endian and right-aligned (the
least significant bit is the least significant bit of last byte). Input exponent data is copied into the internal
representation.

Note:

• If the key object implements the javacardx.crypto.KeyEncryption interface and the
Cipher object specified via setKeyCipher() is not null, the exponent value is decrypted using
the Cipher object.

Parameters:
buffer - the input buffer

offset - the offset into the input buffer at which the exponent value begins

length - the byte length of the exponent

Throws:
CryptoException - with the following reason code:

• CryptoException.ILLEGAL_VALUE if the input exponent data length is inconsistent with the
implementation or if input data decryption is required and fails.

getModulus(byte[], short)

Declaration:
public short getModulus(byte[] buffer, short offset)
236 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security RSAPublicKey

getExponent(byte[], short)
Description:
Returns the modulus value of the key in plain text. The data format is big-endian and right-aligned (the least
significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the input buffer at which the modulus value starts

Returns: the byte length of the modulus value returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the modulus value of the key has not been
successfully initialized since the time the initialized state of the key was set to false.

See Also: Key

getExponent(byte[], short)

Declaration:
public short getExponent(byte[] buffer, short offset)

Description:
Returns the public exponent value of the key in plain text. The data format is big-endian and right-aligned
(the least significant bit is the least significant bit of last byte).

Parameters:
buffer - the output buffer

offset - the offset into the output buffer at which the exponent value begins

Returns: the byte length of the public exponent returned

Throws:
CryptoException - with the following reason code:

• CryptoException.UNINITIALIZED_KEY if the public exponent value of the key has not
been successfully initialized since the time the initialized state of the key was set to false.

See Also: Key
 javacard.security RSAPublicKey 237

SecretKey javacard.security

Declaration
javacard.security

SecretKey
Declaration
public interface SecretKey extends Key

All Superinterfaces: Key

All Known Subinterfaces: AESKey, DESKey

Description
The SecretKey class is the base interface for keys used in symmetric algorithms (DES, for example).

Inherited Member Summary

Methods inherited from interface Key

clearKey(), getSize(), getType(), isInitialized()
238 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

Declaration
javacard.security

Signature
Declaration
public abstract class Signature

java.lang.Object
|
+--javacard.security.Signature

Description
The Signature class is the base class for Signature algorithms. Implementations of Signature algorithms
must extend this class and implement all the abstract methods.

The term “pad” is used in the public key signature algorithms below to refer to all the operations specified in the
referenced scheme to transform the message digest into the encryption block size.

A tear or card reset event resets an initialized Signature object to the state it was in when previously
initialized via a call to init(). For algorithms which support keys with transient key data sets, such as DES,
triple DES and AES, the Signature object key becomes uninitialized on clear events associated with the Key
object used to initialize the Signature object.

Even if a transaction is in progress, update of intermediate result state in the implementation instance shall not
participate in the transaction.

Note:

• On a tear or card reset event, the AES, DES and triple DES algorithms in CBC mode reset the initial
vector(IV) to 0. The initial vector(IV) can be re-initialized using the init(Key, byte, byte[],
short, short) method.

Member Summary

Fields
static byte ALG_AES_MAC_128_NOPAD

Signature algorithm ALG_AES_MAC_128_NOPAD generates a 16-byte MAC using
AES with blocksize 128 in CBC mode and does not pad input data.

static byte ALG_DES_MAC4_ISO9797_1_M2_ALG3
Signature algorithm ALG_DES_MAC4_ISO9797_1_M2_ALG3 generates a 4-byte
MAC using a 2-key DES3 key according to ISO9797-1 MAC algorithm 3 with method
2 (also EMV’96, EMV’2000), where input data is padded using method 2 and the data
is processed as described in MAC Algorithm 3 of the ISO 9797-1 specification.

static byte ALG_DES_MAC4_ISO9797_M1
Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4-byte MAC (most
significant 4 bytes of encrypted block) using DES in CBC mode or triple DES in outer
CBC mode.

static byte ALG_DES_MAC4_ISO9797_M2
Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4-byte MAC (most
significant 4 bytes of encrypted block) using DES in CBC mode or triple DES in outer
CBC mode.
 javacard.security Signature 239

Signature javacard.security

Member Summary
static byte ALG_DES_MAC4_NOPAD
Signature algorithm ALG_DES_MAC4_NOPAD generates a 4-byte MAC (most
significant 4 bytes of encrypted block) using DES in CBC mode or triple DES in outer
CBC mode.

static byte ALG_DES_MAC4_PKCS5
Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4-byte MAC (most
significant 4 bytes of encrypted block) using DES in CBC mode or triple DES in outer
CBC mode.

static byte ALG_DES_MAC8_ISO9797_1_M2_ALG3
Signature algorithm ALG_DES_MAC8_ISO9797_1_M2_ALG3 generates an 8-byte
MAC using a 2-key DES3 key according to ISO9797-1 MAC algorithm 3 with method
2 (also EMV’96, EMV’2000), where input data is padded using method 2 and the data
is processed as described in MAC Algorithm 3 of the ISO 9797-1 specification.

static byte ALG_DES_MAC8_ISO9797_M1
Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates an 8-byte MAC
using DES in CBC mode or triple DES in outer CBC mode.

static byte ALG_DES_MAC8_ISO9797_M2
Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates an 8-byte MAC
using DES in CBC mode or triple DES in outer CBC mode.

static byte ALG_DES_MAC8_NOPAD
Signature algorithm ALG_DES_MAC_8_NOPAD generates an 8-byte MAC using DES
in CBC mode or triple DES in outer CBC mode.

static byte ALG_DES_MAC8_PKCS5
Signature algorithm ALG_DES_MAC8_PKCS5 generates an 8-byte MAC using DES
in CBC mode or triple DES in outer CBC mode.

static byte ALG_DSA_SHA
Signature algorithm ALG_DSA_SHA generates a 20-byte SHA digest and signs/
verifies the digests using DSA.

static byte ALG_ECDSA_SHA
Signature algorithm ALG_ECDSA_SHA generates a 20-byte SHA digest and signs/
verifies the digest using ECDSA.

static byte ALG_RSA_MD5_PKCS1
Signature algorithm ALG_RSA_MD5_PKCS1 generates a 16-byte MD5 digest, pads
the digest according to the PKCS#1 (v1.5) scheme, and encrypts it using RSA.

static byte ALG_RSA_MD5_PKCS1_PSS
Signature algorithm ALG_RSA_MD5_PKCS1_PSS generates a 16-byte MD5 digest,
pads it according to the PKCS#1-PSS scheme (IEEE 1363-2000), and encrypts it using
RSA.

static byte ALG_RSA_MD5_RFC2409
Signature algorithm ALG_RSA_MD5_RFC2409 generates a 16-byte MD5 digest,
pads the digest according to the RFC2409 scheme, and encrypts it using RSA.

static byte ALG_RSA_RIPEMD160_ISO9796
Signature algorithm ALG_RSA_RIPEMD160_ISO9796 generates a 20-byte RIPE
MD-160 digest, pads the digest according to the ISO 9796 scheme, and encrypts it
using RSA.

static byte ALG_RSA_RIPEMD160_PKCS1
Signature algorithm ALG_RSA_RIPEMD160_PKCS1 generates a 20-byte RIPE MD-
160 digest, pads the digest according to the PKCS#1 (v1.5) scheme, and encrypts it
using RSA.

static byte ALG_RSA_RIPEMD160_PKCS1_PSS
Signature algorithm ALG_RSA_RIPEMD160_PKCS1_PSS generates a 20-byte
RIPE MD-160 digest, pads it according to the PKCS#1-PSS scheme (IEEE 1363-
2000), and encrypts it using RSA.

Member Summary
240 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

Inherited Member Summary
static byte ALG_RSA_SHA_ISO9796
Signature algorithm ALG_RSA_SHA_ISO9796 generates a 20-byte SHA digest,
pads the digest according to the ISO 9796-2 scheme as specified in EMV ’96 and
EMV 2000, and encrypts it using RSA.

static byte ALG_RSA_SHA_PKCS1
Signature algorithm ALG_RSA_SHA_PKCS1 generates a 20-byte SHA digest, pads
the digest according to the PKCS#1 (v1.5) scheme, and encrypts it using RSA.

static byte ALG_RSA_SHA_PKCS1_PSS
Signature algorithm ALG_RSA_SHA_PKCS1_PSS generates a 20-byte SHA-1
digest, pads it according to the PKCS#1-PSS scheme (IEEE 1363-2000), and encrypts
it using RSA.

static byte ALG_RSA_SHA_RFC2409
Signature algorithm ALG_RSA_SHA_RFC2409 generates a 20-byte SHA digest,
pads the digest according to the RFC2409 scheme, and encrypts it using RSA.

static byte MODE_SIGN
Used in init() methods to indicate signature sign mode.

static byte MODE_VERIFY
Used in init() methods to indicate signature verify mode.

Constructors
protected Signature()

Protected Constructor

Methods
abstract byte getAlgorithm()

Gets the Signature algorithm.
static Signature getInstance(byte algorithm, boolean externalAccess)

Creates a Signature object instance of the selected algorithm.
abstract short getLength()

Returns the byte length of the signature data.
abstract void init(Key theKey, byte theMode)

Initializes the Signature object with the appropriate Key.
abstract void init(Key theKey, byte theMode, byte[] bArray, short bOff,

short bLen)
Initializes the Signature object with the appropriate Key and algorithm specific
parameters.

abstract short sign(byte[] inBuff, short inOffset, short inLength, byte[]
sigBuff, short sigOffset)

Generates the signature of all/last input data.
abstract void update(byte[] inBuff, short inOffset, short inLength)

Accumulates a signature of the input data.
abstract boolean verify(byte[] inBuff, short inOffset, short inLength, byte[]

sigBuff, short sigOffset, short sigLength)
Verifies the signature of all/last input data against the passed in signature.

Inherited Member Summary

Methods inherited from class Object

equals(Object)

Member Summary
 javacard.security Signature 241

Signature javacard.security

ALG_DES_MAC4_NOPAD
Fields

ALG_DES_MAC4_NOPAD

Declaration:
public static final byte ALG_DES_MAC4_NOPAD

Description:
Signature algorithm ALG_DES_MAC4_NOPAD generates a 4-byte MAC (most significant 4 bytes of
encrypted block) using DES in CBC mode or triple DES in outer CBC mode. This algorithm does not pad
input data. If the input data is not (8 byte) block aligned it throws CryptoException with the reason
code ILLEGAL_USE.

ALG_DES_MAC8_NOPAD

Declaration:
public static final byte ALG_DES_MAC8_NOPAD

Description:
Signature algorithm ALG_DES_MAC_8_NOPAD generates an 8-byte MAC using DES in CBC mode or
triple DES in outer CBC mode. This algorithm does not pad input data. If the input data is not (8 byte)
block aligned it throws CryptoException with the reason code ILLEGAL_USE.

Note:

• This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_ISO9797_M1

Declaration:
public static final byte ALG_DES_MAC4_ISO9797_M1

Description:
Signature algorithm ALG_DES_MAC4_ISO9797_M1 generates a 4-byte MAC (most significant 4 bytes
of encrypted block) using DES in CBC mode or triple DES in outer CBC mode. Input data is padded
according to the ISO 9797 method 1 scheme.

ALG_DES_MAC8_ISO9797_M1

Declaration:
public static final byte ALG_DES_MAC8_ISO9797_M1

Description:
Signature algorithm ALG_DES_MAC8_ISO9797_M1 generates an 8-byte MAC using DES in CBC mode
or triple DES in outer CBC mode. Input data is padded according to the ISO 9797 method 1 scheme.

Note:

• This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_ISO9797_M2

Declaration:
public static final byte ALG_DES_MAC4_ISO9797_M2
242 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

ALG_DES_MAC8_ISO9797_M2
Description:
Signature algorithm ALG_DES_MAC4_ISO9797_M2 generates a 4-byte MAC (most significant 4 bytes
of encrypted block) using DES in CBC mode or triple DES in outer CBC mode. Input data is padded
according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_MAC8_ISO9797_M2

Declaration:
public static final byte ALG_DES_MAC8_ISO9797_M2

Description:
Signature algorithm ALG_DES_MAC8_ISO9797_M2 generates an 8-byte MAC using DES in CBC mode
or triple DES in outer CBC mode. Input data is padded according to the ISO 9797 method 2 (ISO 7816-4,
EMV’96) scheme.

Note:

• This algorithm must not be implemented if export restrictions apply.

ALG_DES_MAC4_PKCS5

Declaration:
public static final byte ALG_DES_MAC4_PKCS5

Description:
Signature algorithm ALG_DES_MAC4_PKCS5 generates a 4-byte MAC (most significant 4 bytes of
encrypted block) using DES in CBC mode or triple DES in outer CBC mode. Input data is padded
according to the PKCS#5 scheme.

ALG_DES_MAC8_PKCS5

Declaration:
public static final byte ALG_DES_MAC8_PKCS5

Description:
Signature algorithm ALG_DES_MAC8_PKCS5 generates an 8-byte MAC using DES in CBC mode or
triple DES in outer CBC mode. Input data is padded according to the PKCS#5 scheme.

Note:

• This algorithm must not be implemented if export restrictions apply.

ALG_RSA_SHA_ISO9796

Declaration:
public static final byte ALG_RSA_SHA_ISO9796

Description:
Signature algorithm ALG_RSA_SHA_ISO9796 generates a 20-byte SHA digest, pads the digest
according to the ISO 9796-2 scheme as specified in EMV ’96 and EMV 2000, and encrypts it using RSA.

Note:

• The verify method does not support the message recovery semantics of this algorithm.

ALG_RSA_SHA_PKCS1

Declaration:
public static final byte ALG_RSA_SHA_PKCS1
 javacard.security Signature 243

Signature javacard.security

ALG_RSA_MD5_PKCS1
Description:
Signature algorithm ALG_RSA_SHA_PKCS1 generates a 20-byte SHA digest, pads the digest according to
the PKCS#1 (v1.5) scheme, and encrypts it using RSA.

Note:

• The encryption block(EB) during signing is built as follows:
EB = 00 || 01 || PS || 00 || T
:: where T is the DER encoding of :
digestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier of SHA-1,
digest OCTET STRING
}
:: PS is an octet string of length k-3-||T|| with value FF. The length of PS must be at least 8 octets.
:: k is the RSA modulus size.
DER encoded SHA-1 AlgorithmIdentifier = 30 21 30 09 06 05 2B 0E 03 02 1A 05 00 04 14.

ALG_RSA_MD5_PKCS1

Declaration:
public static final byte ALG_RSA_MD5_PKCS1

Description:
Signature algorithm ALG_RSA_MD5_PKCS1 generates a 16-byte MD5 digest, pads the digest according to
the PKCS#1 (v1.5) scheme, and encrypts it using RSA.

Note:

• The encryption block(EB) during signing is built as follows:
< EB = 00 || 01 || PS || 00 || T
:: where T is the DER encoding of :
digestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier of MD5,
digest OCTET STRING
}
:: PS is an octet string of length k-3-||T|| with value FF. The length of PS must be at least 8 octets.
:: k is the RSA modulus size.
DER encoded MD5 AlgorithmIdentifier = 30 20 30 0C 06 08 2A 86 48 86 F7 0D 02 05 05 00 04 10.

ALG_RSA_RIPEMD160_ISO9796

Declaration:
public static final byte ALG_RSA_RIPEMD160_ISO9796

Description:
Signature algorithm ALG_RSA_RIPEMD160_ISO9796 generates a 20-byte RIPE MD-160 digest, pads
the digest according to the ISO 9796 scheme, and encrypts it using RSA.

ALG_RSA_RIPEMD160_PKCS1

Declaration:
public static final byte ALG_RSA_RIPEMD160_PKCS1
244 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

ALG_DSA_SHA
Description:
Signature algorithm ALG_RSA_RIPEMD160_PKCS1 generates a 20-byte RIPE MD-160 digest, pads the
digest according to the PKCS#1 (v1.5) scheme, and encrypts it using RSA.

Note:

• The encryption block(EB) during signing is built as follows:
< EB = 00 || 01 || PS || 00 || T
:: where T is the DER encoding of :
digestInfo ::= SEQUENCE {
digestAlgorithm AlgorithmIdentifier of RIPEMD160,
digest OCTET STRING
}
:: PS is an octet string of length k-3-||T|| with value FF. The length of PS must be at least 8 octets.
:: k is the RSA modulus size.

ALG_DSA_SHA

Declaration:
public static final byte ALG_DSA_SHA

Description:
Signature algorithm ALG_DSA_SHA generates a 20-byte SHA digest and signs/verifies the digests using
DSA. The signature is encoded as an ASN.1 sequence of two INTEGER values, r and s, in that order:
SEQUENCE ::= { r INTEGER, s INTEGER }

ALG_RSA_SHA_RFC2409

Declaration:
public static final byte ALG_RSA_SHA_RFC2409

Description:
Signature algorithm ALG_RSA_SHA_RFC2409 generates a 20-byte SHA digest, pads the digest
according to the RFC2409 scheme, and encrypts it using RSA.

ALG_RSA_MD5_RFC2409

Declaration:
public static final byte ALG_RSA_MD5_RFC2409

Description:
Signature algorithm ALG_RSA_MD5_RFC2409 generates a 16-byte MD5 digest, pads the digest
according to the RFC2409 scheme, and encrypts it using RSA.

ALG_ECDSA_SHA

Declaration:
public static final byte ALG_ECDSA_SHA

Description:
Signature algorithm ALG_ECDSA_SHA generates a 20-byte SHA digest and signs/verifies the digest using
ECDSA. The signature is encoded as an ASN.1 sequence of two INTEGER values, r and s, in that order:
SEQUENCE ::= { r INTEGER, s INTEGER }
 javacard.security Signature 245

Signature javacard.security

ALG_AES_MAC_128_NOPAD
ALG_AES_MAC_128_NOPAD

Declaration:
public static final byte ALG_AES_MAC_128_NOPAD

Description:
Signature algorithm ALG_AES_MAC_128_NOPAD generates a 16-byte MAC using AES with blocksize
128 in CBC mode and does not pad input data. If the input data is not (16-byte) block aligned it throws
CryptoException with the reason code ILLEGAL_USE.

ALG_DES_MAC4_ISO9797_1_M2_ALG3

Declaration:
public static final byte ALG_DES_MAC4_ISO9797_1_M2_ALG3

Description:
Signature algorithm ALG_DES_MAC4_ISO9797_1_M2_ALG3 generates a 4-byte MAC using a 2-key
DES3 key according to ISO9797-1 MAC algorithm 3 with method 2 (also EMV’96, EMV’2000), where
input data is padded using method 2 and the data is processed as described in MAC Algorithm 3 of the ISO
9797-1 specification. The left key block of the triple DES key is used as a single DES key(K) and the right
key block of the triple DES key is used as a single DES Key (K’) during MAC processing. The final result
is truncated to 4 bytes as described in ISO9797-1.

ALG_DES_MAC8_ISO9797_1_M2_ALG3

Declaration:
public static final byte ALG_DES_MAC8_ISO9797_1_M2_ALG3

Description:
Signature algorithm ALG_DES_MAC8_ISO9797_1_M2_ALG3 generates an 8-byte MAC using a 2-key
DES3 key according to ISO9797-1 MAC algorithm 3 with method 2 (also EMV’96, EMV’2000), where
input data is padded using method 2 and the data is processed as described in MAC Algorithm 3 of the ISO
9797-1 specification. The left key block of the triple DES key is used as a single DES key(K) and the right
key block of the triple DES key is used as a single DES Key (K’) during MAC processing. The final result
is truncated to 8 bytes as described in ISO9797-1.

ALG_RSA_SHA_PKCS1_PSS

Declaration:
public static final byte ALG_RSA_SHA_PKCS1_PSS

Description:
Signature algorithm ALG_RSA_SHA_PKCS1_PSS generates a 20-byte SHA-1 digest, pads it according to
the PKCS#1-PSS scheme (IEEE 1363-2000), and encrypts it using RSA.

ALG_RSA_MD5_PKCS1_PSS

Declaration:
public static final byte ALG_RSA_MD5_PKCS1_PSS

Description:
Signature algorithm ALG_RSA_MD5_PKCS1_PSS generates a 16-byte MD5 digest, pads it according to
the PKCS#1-PSS scheme (IEEE 1363-2000), and encrypts it using RSA.
246 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

ALG_RSA_RIPEMD160_PKCS1_PSS
ALG_RSA_RIPEMD160_PKCS1_PSS

Declaration:
public static final byte ALG_RSA_RIPEMD160_PKCS1_PSS

Description:
Signature algorithm ALG_RSA_RIPEMD160_PKCS1_PSS generates a 20-byte RIPE MD-160 digest,
pads it according to the PKCS#1-PSS scheme (IEEE 1363-2000), and encrypts it using RSA.

MODE_SIGN

Declaration:
public static final byte MODE_SIGN

Description:
Used in init() methods to indicate signature sign mode.

MODE_VERIFY

Declaration:
public static final byte MODE_VERIFY

Description:
Used in init() methods to indicate signature verify mode.

Constructors

Signature()

Declaration:
protected Signature()

Description:
Protected Constructor

Methods

getInstance(byte, boolean)

Declaration:
public static final javacard.security.Signature getInstance(byte algorithm, boolean

externalAccess)

throws CryptoException

Description:
Creates a Signature object instance of the selected algorithm.

Parameters:
algorithm - the desired Signature algorithm. Valid codes listed in ALG_ .. constants above e.g.
ALG_DES_MAC4_NOPAD

externalAccess - true indicates that the instance will be shared among multiple applet instances
and that the Signature instance will also be accessed (via a Shareable interface) when the owner
 javacard.security Signature 247

Signature javacard.security

init(Key, byte)
of the Signature instance is not the currently selected applet. If true the implementation must not
allocate CLEAR_ON_DESELECT transient space for internal data.

Returns: the Signature object instance of the requested algorithm

Throws:
CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm or shared access mode is
not supported.

init(Key, byte)

Declaration:
public abstract void init(javacard.security.Key theKey, byte theMode)

throws CryptoException

Description:
Initializes the Signature object with the appropriate Key. This method should be used for algorithms
which do not need initialization parameters or use default parameter values.

init() must be used to update the Signature object with a new key. If the Key object is modified after
invoking the init() method, the behavior of the update(), sign(), and verify() methods is
unspecified.

Note:

• AES, DES, and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for signing or verifying

theMode - one of MODE_SIGN or MODE_VERIFY

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if the Key
is inconsistent with theMode or with the Signature implementation.

• CryptoException.UNINITIALIZED_KEY if theKey instance is uninitialized.

init(Key, byte, byte[], short, short)

Declaration:
public abstract void init(javacard.security.Key theKey, byte theMode, byte[] bArray,

short bOff, short bLen)

throws CryptoException

Description:
Initializes the Signature object with the appropriate Key and algorithm specific parameters.

init() must be used to update the Signature object with a new key. If the Key object is modified after
invoking the init() method, the behavior of the update(), sign(), and verify() methods is
unspecified.

Note:

• DES and triple DES algorithms in CBC mode expect an 8-byte parameter value for the initial
vector(IV) in bArray.
248 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

getAlgorithm()
• AES algorithms in CBC mode expect a 16-byte parameter value for the initial vector(IV) in bArray.

• ECDSA, RSA, and DSA algorithms throw CryptoException.ILLEGAL_VALUE.

Parameters:
theKey - the key object to use for signing

theMode - one of MODE_SIGN or MODE_VERIFY

bArray - byte array containing algorithm specific initialization information

bOff - offset within bArray where the algorithm specific data begins

bLen - byte length of algorithm specific parameter data

Throws:
CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if a byte
array parameter option is not supported by the algorithm or if the bLen is an incorrect byte length for
the algorithm specific data or if the Key is inconsistent with theMode or with the Signature
implementation.

• CryptoException.UNINITIALIZED_KEY if theKey instance is uninitialized.

getAlgorithm()

Declaration:
public abstract byte getAlgorithm()

Description:
Gets the Signature algorithm.

Returns: the algorithm code defined above

getLength()

Declaration:
public abstract short getLength()

throws CryptoException

Description:
Returns the byte length of the signature data.

Returns: the byte length of the signature data

Throws:
CryptoException - with the following reason codes:

• CryptoException.INVALID_INIT if this Signature object is not initialized.

• CryptoException.UNINITIALIZED_KEY if key not initialized.

update(byte[], short, short)

Declaration:
public abstract void update(byte[] inBuff, short inOffset, short inLength)

throws CryptoException

Description:
Accumulates a signature of the input data. This method requires temporary storage of intermediate results.
In addition, if the input data length is not block aligned (multiple of block size) then additional internal
 javacard.security Signature 249

Signature javacard.security

sign(byte[], short, short, byte[], short)
storage may be allocated at this time to store a partial input data block. This may result in additional
resource consumption and/or slow performance. This method should only be used if all the input data
required for signing/verifying is not available in one byte array. If all of the input data required for signing/
verifying is located in a single byte array, use of the sign() or verify() method is recommended. The
sign() or verify() method must be called to complete processing of input data accumulated by one or
more calls to the update() method.

Note:

• If inLength is 0 this method does nothing.

Parameters:
inBuff - the input buffer of data to be signed

inOffset - the offset into the input buffer at which to begin signature generation

inLength - the byte length to sign

Throws:
CryptoException - with the following reason codes:

• CryptoException.UNINITIALIZED_KEY if key not initialized.

• CryptoException.INVALID_INIT if this Signature object is not initialized.

See Also: sign(byte[], short, short, byte[], short), verify(byte[], short,
short, byte[], short, short)

sign(byte[], short, short, byte[], short)

Declaration:
public abstract short sign(byte[] inBuff, short inOffset, short inLength, byte[]

sigBuff, short sigOffset)

throws CryptoException

Description:
Generates the signature of all/last input data.

A call to this method also resets this Signature object to the state it was in when previously initialized
via a call to init(). That is, the object is reset and available to sign another message. In addition, note
that the initial vector(IV) used in AES and DES algorithms in CBC mode will be reset to 0.

Note:

• AES, DES, and triple DES algorithms in CBC mode reset the initial vector(IV) to 0. The initial
vector(IV) can be re-initialized using the init(Key, byte, byte[], short, short)
method.

The input and output buffer data may overlap.

Parameters:
inBuff - the input buffer of data to be signed

inOffset - the offset into the input buffer at which to begin signature generation

inLength - the byte length to sign

sigBuff - the output buffer to store signature data

sigOffset - the offset into sigBuff at which to begin signature data

Returns: number of bytes of signature output in sigBuff
250 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacard.security Signature

verify(byte[], short, short, byte[], short, short)
Throws:
CryptoException - with the following reason codes:

• CryptoException.UNINITIALIZED_KEY if key not initialized.

• CryptoException.INVALID_INIT if this Signature object is not initialized or initialized
for signature verify mode.

• CryptoException.ILLEGAL_USE if one of the following conditions is met:

• if this Signature algorithm does not pad the message and the message is not block aligned.

• if this Signature algorithm does not pad the message and no input data has been provided in
inBuff or via the update() method.

verify(byte[], short, short, byte[], short, short)

Declaration:
public abstract boolean verify(byte[] inBuff, short inOffset, short inLength, byte[]

sigBuff, short sigOffset, short sigLength)

throws CryptoException

Description:
Verifies the signature of all/last input data against the passed in signature.

A call to this method also resets this Signature object to the state it was in when previously initialized
via a call to init(). That is, the object is reset and available to verify another message. In addition, note
that the initial vector(IV) used in AES and DES algorithms in CBC mode will be reset to 0.

Note:

• AES, DES, and triple DES algorithms in CBC mode reset the initial vector(IV) to 0. The initial
vector(IV) can be re-initialized using the init(Key, byte, byte[], short, short)
method.

Parameters:
inBuff - the input buffer of data to be verified

inOffset - the offset into the input buffer at which to begin signature generation

inLength - the byte length to sign

sigBuff - the input buffer containing signature data

sigOffset - the offset into sigBuff where signature data begins

sigLength - the byte length of the signature data

Returns: true if the signature verifies, false otherwise Note, if sigLength is inconsistent with this
Signature algorithm, false is returned.

Throws:
CryptoException - with the following reason codes:

• CryptoException.UNINITIALIZED_KEY if key not initialized.

• CryptoException.INVALID_INIT if this Signature object is not initialized or initialized
for signature sign mode.

• CryptoException.ILLEGAL_USE if one of the following conditions is met:

• if this Signature algorithm does not pad the message and the message is not block aligned.

• if this Signature algorithm does not pad the message and no input data has been provided in
 javacard.security Signature 251

Signature javacard.security

verify(byte[], short, short, byte[], short, short)
inBuff or via the update() method.
252 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

C H A P T E R 8
Package

javacardx.crypto
Description
Extension package that contains functionality, which may be subject to export controls, for implementing a
security and cryptography framework on the Java Card platform. Classes that contain security and cryptography
functionality that are not subject to export control restrictions are contained in the package javacard.
security.

The javacardx.crypto package contains the Cipher class and the KeyEncryption interface.
Cipher provides methods for encrypting and decrypting messages. KeyEncryption provides functionality
that allows keys to be updated in a secure end-to-end fashion.

Class Summary

Interfaces

KeyEncryption KeyEncryption interface defines the methods used to enable encrypted key data
access to a key implementation.

Classes

Cipher The Cipher class is the abstract base class for Cipher algorithms.
253

Cipher javacardx.crypto

Declaration
javacardx.crypto

Cipher
Declaration
public abstract class Cipher

java.lang.Object
|
+--javacardx.crypto.Cipher

Description
The Cipher class is the abstract base class for Cipher algorithms. Implementations of Cipher algorithms must
extend this class and implement all the abstract methods.

The term “pad” is used in the public key cipher algorithms below to refer to all the operations specified in the
referenced scheme to transform the message block into the cipher block size.

The asymmetric key algorithms encrypt using either a public key (to cipher) or a private key (to sign). In
addition they decrypt using the either a private key (to decipher) or a public key (to verify).

A tear or card reset event resets an initialized Cipher object to the state it was in when previously initialized
via a call to init(). For algorithms which support keys with transient key data sets, such as DES, triple DES
and AES, the Cipher object key becomes uninitialized on clear events associated with the Key object used to
initialize the Cipher object.

Even if a transaction is in progress, update of intermediate result state in the implementation instance shall not
participate in the transaction.

Note:

• On a tear or card reset event, the AES, DES, and triple DES algorithms in CBC mode reset the initial
vector(IV) to 0. The initial vector(IV) can be re-initialized using the init(Key, byte, byte[],
short, short) method.

Member Summary

Fields
static byte ALG_AES_BLOCK_128_CBC_NOPAD

Cipher algorithm ALG_AES_BLOCK_128_CBC_NOPAD provides a cipher using
AES with block size 128 in CBC mode and does not pad input data.

static byte ALG_AES_BLOCK_128_ECB_NOPAD
Cipher algorithm ALG_AES_BLOCK_128_ECB_NOPAD provides a cipher using
AES with block size 128 in ECB mode and does not pad input data.

static byte ALG_DES_CBC_ISO9797_M1
Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in
CBC mode or triple DES in outer CBC mode, and pads input data according to the ISO
9797 method 1 scheme.

static byte ALG_DES_CBC_ISO9797_M2
Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in
CBC mode or triple DES in outer CBC mode, and pads input data according to the ISO
9797 method 2 (ISO 7816-4, EMV’96) scheme.
254 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacardx.crypto Cipher

Member Summary
static byte ALG_DES_CBC_NOPAD
Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode
or triple DES in outer CBC mode, and does not pad input data.

static byte ALG_DES_CBC_PKCS5
Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC
mode or triple DES in outer CBC mode, and pads input data according to the PKCS#5
scheme.

static byte ALG_DES_ECB_ISO9797_M1
Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in
ECB mode, and pads input data according to the ISO 9797 method 1 scheme.

static byte ALG_DES_ECB_ISO9797_M2
Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in
ECB mode, and pads input data according to the ISO 9797 method 2 (ISO 7816-4,
EMV’96) scheme.

static byte ALG_DES_ECB_NOPAD
Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB
mode, and does not pad input data.

static byte ALG_DES_ECB_PKCS5
Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB
mode, and pads input data according to the PKCS#5 scheme.

static byte ALG_RSA_ISO14888
Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA, and pads input
data according to the ISO 14888 scheme.

static byte ALG_RSA_ISO9796
This Cipher algorithm ALG_RSA_ISO9796 should not be used.

static byte ALG_RSA_NOPAD
Cipher algorithm ALG_RSA_NOPAD provides a cipher using RSA and does not pad
input data.

static byte ALG_RSA_PKCS1
Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA, and pads input
data according to the PKCS#1 (v1.5) scheme.

static byte ALG_RSA_PKCS1_OAEP
Cipher algorithm ALG_RSA_PKCS1_OAEP provides a cipher using RSA, and pads
input data according to the PKCS#1-OAEP scheme (IEEE 1363-2000).

static byte MODE_DECRYPT
Used in init() methods to indicate decryption mode.

static byte MODE_ENCRYPT
Used in init() methods to indicate encryption mode.

Constructors
protected Cipher()

Protected constructor.

Methods
abstract short doFinal(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)
Generates encrypted/decrypted output from all/last input data.

abstract byte getAlgorithm()
Gets the Cipher algorithm.

static Cipher getInstance(byte algorithm, boolean externalAccess)
Creates a Cipher object instance of the selected algorithm.

abstract void init(javacard.security.Key theKey, byte theMode)
Initializes the Cipher object with the appropriate Key.

Member Summary
 javacardx.crypto Cipher 255

Cipher javacardx.crypto

Inherited Member Summary
Fields

ALG_DES_CBC_NOPAD

Declaration:
public static final byte ALG_DES_CBC_NOPAD

Description:
Cipher algorithm ALG_DES_CBC_NOPAD provides a cipher using DES in CBC mode or triple DES in
outer CBC mode, and does not pad input data. If the input data is not (8-byte) block aligned it throws
CryptoException with the reason code ILLEGAL_USE.

ALG_DES_CBC_ISO9797_M1

Declaration:
public static final byte ALG_DES_CBC_ISO9797_M1

Description:
Cipher algorithm ALG_DES_CBC_ISO9797_M1 provides a cipher using DES in CBC mode or triple
DES in outer CBC mode, and pads input data according to the ISO 9797 method 1 scheme.

ALG_DES_CBC_ISO9797_M2

Declaration:
public static final byte ALG_DES_CBC_ISO9797_M2

Description:
Cipher algorithm ALG_DES_CBC_ISO9797_M2 provides a cipher using DES in CBC mode or triple
DES in outer CBC mode, and pads input data according to the ISO 9797 method 2 (ISO 7816-4, EMV’96)
scheme.

ALG_DES_CBC_PKCS5

Declaration:
public static final byte ALG_DES_CBC_PKCS5

abstract void init(javacard.security.Key theKey, byte theMode, byte[] bAr-
ray, short bOff, short bLen)

Initializes the Cipher object with the appropriate Key and algorithm specific
parameters.

abstract short update(byte[] inBuff, short inOffset, short inLength, byte[]
outBuff, short outOffset)

Generates encrypted/decrypted output from input data.

Inherited Member Summary

Methods inherited from class Object

equals(Object)

Member Summary
256 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacardx.crypto Cipher

ALG_DES_ECB_NOPAD
Description:
Cipher algorithm ALG_DES_CBC_PKCS5 provides a cipher using DES in CBC mode or triple DES in
outer CBC mode, and pads input data according to the PKCS#5 scheme.

ALG_DES_ECB_NOPAD

Declaration:
public static final byte ALG_DES_ECB_NOPAD

Description:
Cipher algorithm ALG_DES_ECB_NOPAD provides a cipher using DES in ECB mode, and does not pad
input data. If the input data is not (8-byte) block aligned it throws CryptoException with the reason
code ILLEGAL_USE.

ALG_DES_ECB_ISO9797_M1

Declaration:
public static final byte ALG_DES_ECB_ISO9797_M1

Description:
Cipher algorithm ALG_DES_ECB_ISO9797_M1 provides a cipher using DES in ECB mode, and pads
input data according to the ISO 9797 method 1 scheme.

ALG_DES_ECB_ISO9797_M2

Declaration:
public static final byte ALG_DES_ECB_ISO9797_M2

Description:
Cipher algorithm ALG_DES_ECB_ISO9797_M2 provides a cipher using DES in ECB mode, and pads
input data according to the ISO 9797 method 2 (ISO 7816-4, EMV’96) scheme.

ALG_DES_ECB_PKCS5

Declaration:
public static final byte ALG_DES_ECB_PKCS5

Description:
Cipher algorithm ALG_DES_ECB_PKCS5 provides a cipher using DES in ECB mode, and pads input data
according to the PKCS#5 scheme.

ALG_RSA_ISO14888

Declaration:
public static final byte ALG_RSA_ISO14888

Description:
Cipher algorithm ALG_RSA_ISO14888 provides a cipher using RSA, and pads input data according to
the ISO 14888 scheme.

ALG_RSA_PKCS1

Declaration:
public static final byte ALG_RSA_PKCS1
 javacardx.crypto Cipher 257

Cipher javacardx.crypto

ALG_RSA_ISO9796
Description:
Cipher algorithm ALG_RSA_PKCS1 provides a cipher using RSA, and pads input data according to the
PKCS#1 (v1.5) scheme.

Note:

• This algorithm is only suitable for messages of limited length. The total number of input bytes
processed may not be more than k-11, where k is the RSA key’s modulus size in bytes.

• The encryption block(EB) during encryption with a Public key is built as follows:
EB = 00 || 02 || PS || 00 || M
:: M (input bytes) is the plaintext message
:: PS is an octet string of length k-3-||M|| of pseudo random nonzero octets. The length of PS must be
at least 8 octets.
:: k is the RSA modulus size.

• The encryption block(EB) during encryption with a Private key (used to compute signatures when the
message digest is computed off-card) is built as follows:
EB = 00 || 01 || PS || 00 || D
:: D (input bytes) is the DER encoding of the hash computed elsewhere with an algorithm ID prepended
if appropriate
:: PS is an octet string of length k-3-||D|| with value FF. The length of PS must be at least 8 octets.
:: k is the RSA modulus size.

ALG_RSA_ISO9796

Declaration:
public static final byte ALG_RSA_ISO9796

Description:

Deprecated. This Cipher algorithm ALG_RSA_ISO9796 should not be used. The ISO 9796-1 algorithm
was withdrawn by ISO in July 2000.

ALG_RSA_NOPAD

Declaration:
public static final byte ALG_RSA_NOPAD

Description:
Cipher algorithm ALG_RSA_NOPAD provides a cipher using RSA and does not pad input data. If the input
data is bounded by incorrect padding bytes while using RSAPrivateCrtKey, incorrect output may result. If
the input data is not block aligned it throws CryptoException with the reason code ILLEGAL_USE.

ALG_AES_BLOCK_128_CBC_NOPAD

Declaration:
public static final byte ALG_AES_BLOCK_128_CBC_NOPAD

Description:
Cipher algorithm ALG_AES_BLOCK_128_CBC_NOPAD provides a cipher using AES with block size 128
in CBC mode and does not pad input data. If the input data is not block aligned it throws
CryptoException with the reason code ILLEGAL_USE.
258 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacardx.crypto Cipher

ALG_AES_BLOCK_128_ECB_NOPAD
ALG_AES_BLOCK_128_ECB_NOPAD

Declaration:
public static final byte ALG_AES_BLOCK_128_ECB_NOPAD

Description:
Cipher algorithm ALG_AES_BLOCK_128_ECB_NOPAD provides a cipher using AES with block size 128
in ECB mode and does not pad input data. If the input data is not block aligned it throws
CryptoException with the reason code ILLEGAL_USE.

ALG_RSA_PKCS1_OAEP

Declaration:
public static final byte ALG_RSA_PKCS1_OAEP

Description:
Cipher algorithm ALG_RSA_PKCS1_OAEP provides a cipher using RSA, and pads input data according to
the PKCS#1-OAEP scheme (IEEE 1363-2000).

MODE_DECRYPT

Declaration:
public static final byte MODE_DECRYPT

Description:
Used in init() methods to indicate decryption mode.

MODE_ENCRYPT

Declaration:
public static final byte MODE_ENCRYPT

Description:
Used in init() methods to indicate encryption mode.

Constructors

Cipher()

Declaration:
protected Cipher()

Description:
Protected constructor.

Methods

getInstance(byte, boolean)

Declaration:
public static final javacardx.crypto.Cipher getInstance(byte algorithm, boolean

externalAccess)

throws CryptoException
 javacardx.crypto Cipher 259

Cipher javacardx.crypto

init(Key, byte)
Description:
Creates a Cipher object instance of the selected algorithm.

Parameters:
algorithm - the desired Cipher algorithm. Valid codes listed in ALG_ .. constants above, for
example, ALG_DES_CBC_NOPAD.

externalAccess - true indicates that the instance will be shared among multiple applet instances
and that the Cipher instance will also be accessed (via a Shareable interface) when the owner of
the Cipher instance is not the currently selected applet. If true the implementation must not allocate
CLEAR_ON_DESELECT transient space for internal data.

Returns: the Cipher object instance of the requested algorithm

Throws:
javacard.security.CryptoException - with the following reason codes:

• CryptoException.NO_SUCH_ALGORITHM if the requested algorithm is not supported or
shared access mode is not supported.

init(Key, byte)

Declaration:
public abstract void init(javacard.security.Key theKey, byte theMode)

throws CryptoException

Description:
Initializes the Cipher object with the appropriate Key. This method should be used for algorithms which
do not need initialization parameters or use default parameter values.

init() must be used to update the Cipher object with a new key. If the Key object is modified after
invoking the init() method, the behavior of the update() and doFinal() methods is unspecified.

Note:

• AES, DES, and triple DES algorithms in CBC mode will use 0 for initial vector(IV) if this method is
used.

Parameters:
theKey - the key object to use for encrypting or decrypting

theMode - one of MODE_DECRYPT or MODE_ENCRYPT

Throws:
javacard.security.CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if the Key
is inconsistent with the Cipher implementation.

• CryptoException.UNINITIALIZED_KEY if theKey instance is uninitialized.

init(Key, byte, byte[], short, short)

Declaration:
public abstract void init(javacard.security.Key theKey, byte theMode, byte[] bArray,

short bOff, short bLen)

throws CryptoException

Description:
Initializes the Cipher object with the appropriate Key and algorithm specific parameters.
260 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacardx.crypto Cipher

getAlgorithm()
init() must be used to update the Cipher object with a new key. If the Key object is modified after
invoking the init() method, the behavior of the update() and doFinal() methods is unspecified.

Note:

• DES and triple DES algorithms in CBC mode expect an 8-byte parameter value for the initial
vector(IV) in bArray.

• AES algorithms in CBC mode expect a 16-byte parameter value for the initial vector(IV) in bArray.

• AES algorithms in ECB mode, DES algorithms in ECB mode, RSA and DSA algorithms throw
CryptoException.ILLEGAL_VALUE.

Parameters:
theKey - the key object to use for encrypting or decrypting.

theMode - one of MODE_DECRYPT or MODE_ENCRYPT

bArray - byte array containing algorithm specific initialization info

bOff - offset within bArray where the algorithm specific data begins

bLen - byte length of algorithm specific parameter data

Throws:
javacard.security.CryptoException - with the following reason codes:

• CryptoException.ILLEGAL_VALUE if theMode option is an undefined value or if a byte
array parameter option is not supported by the algorithm or if the bLen is an incorrect byte length for
the algorithm specific data or if the Key is inconsistent with the Cipher implementation.

• CryptoException.UNINITIALIZED_KEY if theKey instance is uninitialized.

getAlgorithm()

Declaration:
public abstract byte getAlgorithm()

Description:
Gets the Cipher algorithm.

Returns: the algorithm code defined above

doFinal(byte[], short, short, byte[], short)

Declaration:
public abstract short doFinal(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)

throws CryptoException

Description:
Generates encrypted/decrypted output from all/last input data. This method must be invoked to complete a
cipher operation. This method processes any remaining input data buffered by one or more calls to the
update() method as well as input data supplied in the inBuff parameter.

A call to this method also resets this Cipher object to the state it was in when previously initialized via a
call to init(). That is, the object is reset and available to encrypt or decrypt (depending on the operation
mode that was specified in the call to init()) more data. In addition, note that the initial vector(IV) used
in AES and DES algorithms will be reset to 0.

Notes:
 javacardx.crypto Cipher 261

Cipher javacardx.crypto

update(byte[], short, short, byte[], short)
• When using block-aligned data (multiple of block size), if the input buffer, inBuff and the output
buffer, outBuff are the same array, then the output data area must not partially overlap the input
data area such that the input data is modified before it is used; if inBuff==outBuff and
inOffset < outOffset < inOffset+inLength, incorrect output may result.

• When non-block aligned data is presented as input data, no amount of input and output buffer data
overlap is allowed; if inBuff==outBuff and
outOffset < inOffset+inLength, incorrect output may result.

• AES, DES, and triple DES algorithms in CBC mode reset the initial vector(IV) to 0. The initial
vector(IV) can be re-initialized using the init(Key, byte, byte[], short, short)
method.

• On decryption operations (except when ISO 9797 method 1 padding is used), the padding bytes are not
written to outBuff.

• On encryption and decryption operations, the number of bytes output into outBuff may be larger or
smaller than inLength or even 0.

• On decryption operations resulting in an ArrayIndexOutOfBoundException, outBuff may
be partially modified.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted

inOffset - the offset into the input buffer at which to begin encryption/decryption

inLength - the byte length to be encrypted/decrypted

outBuff - the output buffer, may be the same as the input buffer

outOffset - the offset into the output buffer where the resulting output data begins

Returns: number of bytes output in outBuff

Throws:
javacard.security.CryptoException - with the following reason codes:

• CryptoException.UNINITIALIZED_KEY if key not initialized.

• CryptoException.INVALID_INIT if this Cipher object is not initialized.

• CryptoException.ILLEGAL_USE if one of the following conditions is met:

• This Cipher algorithm does not pad the message and the message is not block aligned.

• This Cipher algorithm does not pad the message and no input data has been provided in inBuff
or via the update() method.

• The input message length is not supported.

• The decrypted data is not bounded by appropriate padding bytes.

update(byte[], short, short, byte[], short)

Declaration:
public abstract short update(byte[] inBuff, short inOffset, short inLength, byte[]

outBuff, short outOffset)

throws CryptoException

Description:
Generates encrypted/decrypted output from input data. This method is intended for multiple-part
encryption/decryption operations.
262 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacardx.crypto Cipher

update(byte[], short, short, byte[], short)
This method requires temporary storage of intermediate results. In addition, if the input data length is not
block aligned (multiple of block size) then additional internal storage may be allocated at this time to store
a partial input data block. This may result in additional resource consumption and/or slow performance.

This method should only be used if all the input data required for the cipher is not available in one byte
array. If all the input data required for the cipher is located in a single byte array, use of the doFinal()
method to process all of the input data is recommended. The doFinal() method must be invoked to
complete processing of any remaining input data buffered by one or more calls to the update() method.

Notes:

• When using block-aligned data (multiple of block size), if the input buffer, inBuff and the output
buffer, outBuff are the same array, then the output data area must not partially overlap the input
data area such that the input data is modified before it is used; if inBuff==outBuff and
inOffset < outOffset < inOffset+inLength, incorrect output may result.

• When non-block aligned data is presented as input data, no amount of input and output buffer data
overlap is allowed; if inBuff==outBuff and
outOffset < inOffset+inLength, incorrect output may result.

• On decryption operations(except when ISO 9797 method 1 padding is used), the padding bytes are not
written to outBuff.

• On encryption and decryption operations, block alignment considerations may require that the number
of bytes output into outBuff be larger or smaller than inLength or even 0.

• If inLength is 0 this method does nothing.

Parameters:
inBuff - the input buffer of data to be encrypted/decrypted

inOffset - the offset into the input buffer at which to begin encryption/decryption

inLength - the byte length to be encrypted/decrypted

outBuff - the output buffer, may be the same as the input buffer

outOffset - the offset into the output buffer where the resulting ciphertext/plaintext begins

Returns: number of bytes output in outBuff

Throws:
javacard.security.CryptoException - with the following reason codes:

• CryptoException.UNINITIALIZED_KEY if key not initialized.

• CryptoException.INVALID_INIT if this Cipher object is not initialized.

• CryptoException.ILLEGAL_USE if the input message length is not supported.
 javacardx.crypto Cipher 263

KeyEncryption javacardx.crypto

Declaration
javacardx.crypto

KeyEncryption
Declaration
public interface KeyEncryption

Description
KeyEncryption interface defines the methods used to enable encrypted key data access to a key
implementation.

See Also: javacard.security.KeyBuilder, Cipher

Methods

setKeyCipher(Cipher)

Declaration:
public void setKeyCipher(javacardx.crypto.Cipher keyCipher)

Description:
Sets the Cipher object to be used to decrypt the input key data and key parameters in the set methods.

Default Cipher object is null - no decryption performed.

Parameters:
keyCipher - the decryption Cipher object to decrypt the input key data. The null parameter
indicates that no decryption is required.

getKeyCipher()

Declaration:
public javacardx.crypto.Cipher getKeyCipher()

Description:
Returns the Cipher object to be used to decrypt the input key data and key parameters in the set methods.

Default is null - no decryption performed.

Member Summary

Methods
 Cipher getKeyCipher()

Returns the Cipher object to be used to decrypt the input key data and key
parameters in the set methods.

 void setKeyCipher(Cipher keyCipher)
Sets the Cipher object to be used to decrypt the input key data and key parameters in
the set methods.
264 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

javacardx.crypto KeyEncryption

getKeyCipher()
Returns: keyCipher, the decryption Cipher object to decrypt the input key data. The null return
indicates that no decryption is performed.
 javacardx.crypto KeyEncryption 265

KeyEncryption javacardx.crypto

getKeyCipher()
266 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

 267

ALMANAC LEGEND
ALMANAC LEGEND
The almanac presents classes and intefaces in alphabetic order, regardless of their package. Fields, methods and
constructors are in alphabetic order in a single list.

This almanac is modeled after the style introduced by Patrick Chan in his excellent book Java Developers
Almanac.

1. Name of the class, interface, nested class or nested interface. Interfaces are italic.

2. Name of the package containing the class or interface.

3. Inheritance hierarchy. In this example, RealtimeThread extends Thread, which extends Object.

4. Implemented interfaces. The interface is to the right of, and on the same line as, the class that implements
it. In this example, Thread implements Runnable, and RealtimeThread implements
Schedulable.

5. The first column above is for the value of the @since comment, which indicates the version in which the
item was introduced.

6. The second column above is for the following icons. If the “protected” symbol does not appear, the
member is public. (Private and package-private modifiers also have no symbols.) One symbol from each
group can appear in this column.

7. Return type of a method or declared type of a field. Blank for constructors.

8. Name of the constructor, field or method. Nested classes are listed in 1, not here.

Modifiers
❍ abstract
● final
❏ static
■ static final

Access Modifiers
♦protected

Constructors and Fields
❉ constructor
✍ field

Object
➥ Thread Runnable

➥ RealtimeThread Schedulable

RealtimeThread javax.realtime

void addToFeasibility()
RealtimeThread currentRealtimeThread()

Scheduler getScheduler()
❉ RealtimeThread()
❉ RealtimeThread(SchedulingParameters scheduling)
❏ void sleep(Clock clock, HighResolutionTime time)

➊ ➋

➌
➍

➎ ➏

➐ ➑

➘➘

➙
➙

➘

➚

➘
1.3 ❏

1.3

throws InterruptedException➚
268 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

AESKey SecretKey

Object
➥ AID

Object
➥ APDU

AESKey javacard.security

byte getKey(byte[] keyData, short kOff) throws CryptoException

void setKey(byte[] keyData, short kOff) throws CryptoException,
NullPointerException, ArrayIndexOutOfBoundsException

AID javacard.framework

❉ AID(byte[] bArray, short offset, byte length) throws SystemException,
NullPointerException, ArrayIndexOutOfBoundsException,
SecurityException

● boolean equals(byte[] bArray, short offset, byte length) throws
ArrayIndexOutOfBoundsException, SecurityException

● boolean equals(Object anObject) throws SecurityException

● byte getBytes(byte[] dest, short offset) throws NullPointerException,
ArrayIndexOutOfBoundsException, SecurityException

● byte getPartialBytes(short aidOffset, byte[] dest, short oOffset, byte oLength)
throws NullPointerException, ArrayIndexOutOfBoundsException,
SecurityException

● boolean partialEquals(byte[] bArray, short offset, byte length) throws
ArrayIndexOutOfBoundsException, SecurityException

● boolean RIDEquals(AID otherAID) throws SecurityException

APDU javacard.framework

byte[] getBuffer()

❏ byte getCLAChannel()

❏ APDU getCurrentAPDU() throws SecurityException

❏ byte[] getCurrentAPDUBuffer() throws SecurityException

byte getCurrentState()

❏ short getInBlockSize()

byte getNAD()

❏ short getOutBlockSize()

❏ byte getProtocol()

✍■ byte PROTOCOL_MEDIA_CONTACTLESS_TYPE_A

✍■ byte PROTOCOL_MEDIA_CONTACTLESS_TYPE_B
269

Almanac

APDUException
Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ CardRuntimeException
➥ APDUException

✍■ byte PROTOCOL_MEDIA_DEFAULT

✍■ byte PROTOCOL_MEDIA_MASK

✍■ byte PROTOCOL_MEDIA_USB

✍■ byte PROTOCOL_T0

✍■ byte PROTOCOL_T1

✍■ byte PROTOCOL_TYPE_MASK

short receiveBytes(short bOff) throws APDUException

void sendBytes(short bOff, short len) throws APDUException

void sendBytesLong(byte[] outData, short bOff, short len) throws
APDUException, SecurityException

short setIncomingAndReceive() throws APDUException

short setOutgoing() throws APDUException

void setOutgoingAndSend(short bOff, short len) throws APDUException

void setOutgoingLength(short len) throws APDUException

short setOutgoingNoChaining() throws APDUException

✍■ byte STATE_ERROR_IO

✍■ byte STATE_ERROR_NO_T0_GETRESPONSE

✍■ byte STATE_ERROR_NO_T0_REISSUE

✍■ byte STATE_ERROR_T1_IFD_ABORT

✍■ byte STATE_FULL_INCOMING

✍■ byte STATE_FULL_OUTGOING

✍■ byte STATE_INITIAL

✍■ byte STATE_OUTGOING

✍■ byte STATE_OUTGOING_LENGTH_KNOWN

✍■ byte STATE_PARTIAL_INCOMING

✍■ byte STATE_PARTIAL_OUTGOING

❏ void waitExtension() throws APDUException

APDUException javacard.framework

❉ APDUException(short reason)

✍■ short BAD_LENGTH

✍■ short BUFFER_BOUNDS

✍■ short ILLEGAL_USE

✍■ short IO_ERROR

✍■ short NO_T0_GETRESPONSE

✍■ short NO_T0_REISSUE

✍■ short T1_IFD_ABORT

❏ void throwIt(short reason)
270 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

Applet
Object
➥ Applet

AppletEvent

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ ArithmeticException

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ IndexOutOfBoundsException
➥ ArrayIndexOutOfBoundsException

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ ArrayStoreException

Applet javacard.framework

❉♦ Applet()

void deselect()

Shareable getShareableInterfaceObject(AID clientAID, byte parameter)

❏ void install(byte[] bArray, short bOffset, byte bLength) throws ISOException

❍ void process(APDU apdu) throws ISOException

●♦ void register() throws SystemException

●♦ void register(byte[] bArray, short bOffset, byte bLength) throws
SystemException

boolean select()

●♦ boolean selectingApplet()

AppletEvent javacard.framework

void uninstall()

ArithmeticException java.lang

❉ ArithmeticException()

ArrayIndexOutOfBoundsException java.lang

❉ ArrayIndexOutOfBoundsException()

ArrayStoreException java.lang

❉ ArrayStoreException()
 Almanac 271

Almanac

BasicService
Object
➥ BasicService Service

Object
➥ Throwable

➥ Exception
➥ CardException

Object
➥ CardRemoteObject java.rmi.Remote

BasicService javacard.framework.service

❉ BasicService()

boolean fail(javacard.framework.APDU apdu, short sw) throws ServiceException

byte getCLA(javacard.framework.APDU apdu)

byte getINS(javacard.framework.APDU apdu)

short getOutputLength(javacard.framework.APDU apdu) throws
ServiceException

byte getP1(javacard.framework.APDU apdu) throws ServiceException

byte getP2(javacard.framework.APDU apdu) throws ServiceException

short getStatusWord(javacard.framework.APDU apdu) throws ServiceException

boolean isProcessed(javacard.framework.APDU apdu)

boolean processCommand(javacard.framework.APDU apdu)

boolean processDataIn(javacard.framework.APDU apdu)

boolean processDataOut(javacard.framework.APDU apdu)

short receiveInData(javacard.framework.APDU apdu) throws ServiceException

boolean selectingApplet()

void setOutputLength(javacard.framework.APDU apdu, short length) throws
ServiceException

void setProcessed(javacard.framework.APDU apdu) throws ServiceException

void setStatusWord(javacard.framework.APDU apdu, short sw)

boolean succeed(javacard.framework.APDU apdu) throws ServiceException

boolean succeedWithStatusWord(javacard.framework.APDU apdu, short sw)
throws ServiceException

CardException javacard.framework

❉ CardException(short reason)

short getReason()

void setReason(short reason)

❏ void throwIt(short reason) throws CardException

CardRemoteObject javacard.framework.service

❉ CardRemoteObject()

❏ void export(java.rmi.Remote obj) throws SecurityException

❏ void unexport(java.rmi.Remote obj) throws SecurityException
272 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

CardRuntimeException
Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ CardRuntimeException

Object
➥ Checksum

Object
➥ Cipher

CardRuntimeException javacard.framework

❉ CardRuntimeException(short reason)

short getReason()

void setReason(short reason)

❏ void throwIt(short reason) throws CardRuntimeException

Checksum javacard.security

✍■ byte ALG_ISO3309_CRC16

✍■ byte ALG_ISO3309_CRC32

❉♦ Checksum()

❍ short doFinal(byte[] inBuff, short inOffset, short inLength, byte[] outBuff, short
outOffset)

❍ byte getAlgorithm()

■ Checksum getInstance(byte algorithm, boolean externalAccess) throws
CryptoException

❍ void init(byte[] bArray, short bOff, short bLen) throws CryptoException

❍ void update(byte[] inBuff, short inOffset, short inLength)

Cipher javacardx.crypto

✍■ byte ALG_AES_BLOCK_128_CBC_NOPAD

✍■ byte ALG_AES_BLOCK_128_ECB_NOPAD

✍■ byte ALG_DES_CBC_ISO9797_M1

✍■ byte ALG_DES_CBC_ISO9797_M2

✍■ byte ALG_DES_CBC_NOPAD

✍■ byte ALG_DES_CBC_PKCS5

✍■ byte ALG_DES_ECB_ISO9797_M1

✍■ byte ALG_DES_ECB_ISO9797_M2

✍■ byte ALG_DES_ECB_NOPAD

✍■ byte ALG_DES_ECB_PKCS5

✍■ byte ALG_RSA_ISO14888

✍■ byte ALG_RSA_ISO9796

✍■ byte ALG_RSA_NOPAD

✍■ byte ALG_RSA_PKCS1

✍■ byte ALG_RSA_PKCS1_OAEP

❉♦ Cipher()

❍ short doFinal(byte[] inBuff, short inOffset, short inLength, byte[] outBuff, short
outOffset) throws javacard.security.CryptoException
 Almanac 273

Almanac

ClassCastException
Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ ClassCastException

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ javacard.framework.CardRuntimeException
➥ CryptoException

DESKey SecretKey

Object
➥ Dispatcher

❍ byte getAlgorithm()

■ Cipher getInstance(byte algorithm, boolean externalAccess) throws javacard.
security.CryptoException

❍ void init(javacard.security.Key theKey, byte theMode) throws javacard.security.
CryptoException

❍ void init(javacard.security.Key theKey, byte theMode, byte[] bArray, short bOff,
short bLen) throws javacard.security.CryptoException

✍■ byte MODE_DECRYPT

✍■ byte MODE_ENCRYPT

❍ short update(byte[] inBuff, short inOffset, short inLength, byte[] outBuff, short
outOffset) throws javacard.security.CryptoException

ClassCastException java.lang

❉ ClassCastException()

CryptoException javacard.security

❉ CryptoException(short reason)

✍■ short ILLEGAL_USE

✍■ short ILLEGAL_VALUE

✍■ short INVALID_INIT

✍■ short NO_SUCH_ALGORITHM

❏ void throwIt(short reason)

✍■ short UNINITIALIZED_KEY

DESKey javacard.security

byte getKey(byte[] keyData, short kOff)

void setKey(byte[] keyData, short kOff) throws CryptoException,
NullPointerException, ArrayIndexOutOfBoundsException

Dispatcher javacard.framework.service

void addService(Service service, byte phase) throws ServiceException

Exception dispatch(javacard.framework.APDU command, byte phase) throws
ServiceException

❉ Dispatcher(short maxServices) throws ServiceException
274 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

DSAKey
DSAKey

DSAPrivateKey PrivateKey, DSAKey

DSAPublicKey PublicKey, DSAKey

ECKey

✍■ byte PROCESS_COMMAND

✍■ byte PROCESS_INPUT_DATA

✍■ byte PROCESS_NONE

✍■ byte PROCESS_OUTPUT_DATA

void process(javacard.framework.APDU command) throws javacard.
framework.ISOException

void removeService(Service service, byte phase) throws ServiceException

DSAKey javacard.security

short getG(byte[] buffer, short offset)

short getP(byte[] buffer, short offset)

short getQ(byte[] buffer, short offset)

void setG(byte[] buffer, short offset, short length) throws CryptoException

void setP(byte[] buffer, short offset, short length) throws CryptoException

void setQ(byte[] buffer, short offset, short length) throws CryptoException

DSAPrivateKey javacard.security

short getX(byte[] buffer, short offset)

void setX(byte[] buffer, short offset, short length) throws CryptoException

DSAPublicKey javacard.security

short getY(byte[] buffer, short offset)

void setY(byte[] buffer, short offset, short length) throws CryptoException

ECKey javacard.security

short getA(byte[] buffer, short offset) throws CryptoException

short getB(byte[] buffer, short offset) throws CryptoException

short getField(byte[] buffer, short offset) throws CryptoException

short getG(byte[] buffer, short offset) throws CryptoException

short getK() throws CryptoException

short getR(byte[] buffer, short offset) throws CryptoException

void setA(byte[] buffer, short offset, short length) throws CryptoException

void setB(byte[] buffer, short offset, short length) throws CryptoException

void setFieldF2M(short e) throws CryptoException

void setFieldF2M(short e1, short e2, short e3) throws CryptoException

void setFieldFP(byte[] buffer, short offset, short length) throws
CryptoException

void setG(byte[] buffer, short offset, short length) throws CryptoException

void setK(short K)

void setR(byte[] buffer, short offset, short length) throws CryptoException
 Almanac 275

Almanac

ECPrivateKey
ECPrivateKey PrivateKey, ECKey

ECPublicKey PublicKey, ECKey

Object
➥ Throwable

➥ Exception

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ IndexOutOfBoundsException

Object
➥ Throwable

➥ Exception
➥ IOException

ISO7816

ECPrivateKey javacard.security

short getS(byte[] buffer, short offset) throws CryptoException

void setS(byte[] buffer, short offset, short length) throws CryptoException

ECPublicKey javacard.security

short getW(byte[] buffer, short offset) throws CryptoException

void setW(byte[] buffer, short offset, short length) throws CryptoException

Exception java.lang

❉ Exception()

IndexOutOfBoundsException java.lang

❉ IndexOutOfBoundsException()

IOException java.io

❉ IOException()

ISO7816 javacard.framework

✍■ byte CLA_ISO7816

✍■ byte INS_EXTERNAL_AUTHENTICATE

✍■ byte INS_SELECT

✍■ byte OFFSET_CDATA

✍■ byte OFFSET_CLA

✍■ byte OFFSET_INS

✍■ byte OFFSET_LC

✍■ byte OFFSET_P1

✍■ byte OFFSET_P2

✍■ short SW_APPLET_SELECT_FAILED

✍■ short SW_BYTES_REMAINING_00
276 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

ISOException
Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ CardRuntimeException
➥ ISOException

Object
➥ JCSystem

✍■ short SW_CLA_NOT_SUPPORTED

✍■ short SW_COMMAND_NOT_ALLOWED

✍■ short SW_CONDITIONS_NOT_SATISFIED

✍■ short SW_CORRECT_LENGTH_00

✍■ short SW_DATA_INVALID

✍■ short SW_FILE_FULL

✍■ short SW_FILE_INVALID

✍■ short SW_FILE_NOT_FOUND

✍■ short SW_FUNC_NOT_SUPPORTED

✍■ short SW_INCORRECT_P1P2

✍■ short SW_INS_NOT_SUPPORTED

✍■ short SW_LOGICAL_CHANNEL_NOT_SUPPORTED

✍■ short SW_NO_ERROR

✍■ short SW_RECORD_NOT_FOUND

✍■ short SW_SECURE_MESSAGING_NOT_SUPPORTED

✍■ short SW_SECURITY_STATUS_NOT_SATISFIED

✍■ short SW_UNKNOWN

✍■ short SW_WARNING_STATE_UNCHANGED

✍■ short SW_WRONG_DATA

✍■ short SW_WRONG_LENGTH

✍■ short SW_WRONG_P1P2

ISOException javacard.framework

❉ ISOException(short sw)

❏ void throwIt(short sw)

JCSystem javacard.framework

❏ void abortTransaction() throws TransactionException

❏ void beginTransaction() throws TransactionException

✍■ byte CLEAR_ON_DESELECT

✍■ byte CLEAR_ON_RESET

❏ void commitTransaction() throws TransactionException

❏ AID getAID()

❏ Shareable getAppletShareableInterfaceObject(AID serverAID, byte parameter)

❏ byte getAssignedChannel()

❏ short getAvailableMemory(byte memoryType) throws SystemException

❏ short getMaxCommitCapacity()

❏ AID getPreviousContextAID()
 Almanac 277

Almanac

Key
Key

Object
➥ KeyAgreement

Object
➥ KeyBuilder

❏ byte getTransactionDepth()

❏ short getUnusedCommitCapacity()

❏ short getVersion()

❏ boolean isAppletActive(AID theApplet)

❏ boolean isObjectDeletionSupported()

❏ byte isTransient(Object theObj)

❏ AID lookupAID(byte[] buffer, short offset, byte length)

❏ boolean[] makeTransientBooleanArray(short length, byte event) throws
NegativeArraySizeException, SystemException

❏ byte[] makeTransientByteArray(short length, byte event) throws
NegativeArraySizeException, SystemException

❏ Object[] makeTransientObjectArray(short length, byte event) throws
NegativeArraySizeException, SystemException

❏ short[] makeTransientShortArray(short length, byte event) throws
NegativeArraySizeException, SystemException

✍■ byte MEMORY_TYPE_PERSISTENT

✍■ byte MEMORY_TYPE_TRANSIENT_DESELECT

✍■ byte MEMORY_TYPE_TRANSIENT_RESET

✍■ byte NOT_A_TRANSIENT_OBJECT

❏ void requestObjectDeletion() throws SystemException

Key javacard.security

void clearKey()

short getSize()

byte getType()

boolean isInitialized()

KeyAgreement javacard.security

✍■ byte ALG_EC_SVDP_DH

✍■ byte ALG_EC_SVDP_DHC

❍ short generateSecret(byte[] publicData, short publicOffset, short publicLength,
byte[] secret, short secretOffset) throws CryptoException

❍ byte getAlgorithm()

■ KeyAgreement getInstance(byte algorithm, boolean externalAccess) throws
CryptoException

❍ void init(PrivateKey privKey) throws CryptoException

❉♦ KeyAgreement()

KeyBuilder javacard.security

❏ Key buildKey(byte keyType, short keyLength, boolean keyEncryption) throws
CryptoException

✍■ short LENGTH_AES_128

✍■ short LENGTH_AES_192
278 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

KeyEncryption
KeyEncryption

✍■ short LENGTH_AES_256

✍■ short LENGTH_DES

✍■ short LENGTH_DES3_2KEY

✍■ short LENGTH_DES3_3KEY

✍■ short LENGTH_DSA_1024

✍■ short LENGTH_DSA_512

✍■ short LENGTH_DSA_768

✍■ short LENGTH_EC_F2M_113

✍■ short LENGTH_EC_F2M_131

✍■ short LENGTH_EC_F2M_163

✍■ short LENGTH_EC_F2M_193

✍■ short LENGTH_EC_FP_112

✍■ short LENGTH_EC_FP_128

✍■ short LENGTH_EC_FP_160

✍■ short LENGTH_EC_FP_192

✍■ short LENGTH_RSA_1024

✍■ short LENGTH_RSA_1280

✍■ short LENGTH_RSA_1536

✍■ short LENGTH_RSA_1984

✍■ short LENGTH_RSA_2048

✍■ short LENGTH_RSA_512

✍■ short LENGTH_RSA_736

✍■ short LENGTH_RSA_768

✍■ short LENGTH_RSA_896

✍■ byte TYPE_AES

✍■ byte TYPE_AES_TRANSIENT_DESELECT

✍■ byte TYPE_AES_TRANSIENT_RESET

✍■ byte TYPE_DES

✍■ byte TYPE_DES_TRANSIENT_DESELECT

✍■ byte TYPE_DES_TRANSIENT_RESET

✍■ byte TYPE_DSA_PRIVATE

✍■ byte TYPE_DSA_PUBLIC

✍■ byte TYPE_EC_F2M_PRIVATE

✍■ byte TYPE_EC_F2M_PUBLIC

✍■ byte TYPE_EC_FP_PRIVATE

✍■ byte TYPE_EC_FP_PUBLIC

✍■ byte TYPE_RSA_CRT_PRIVATE

✍■ byte TYPE_RSA_PRIVATE

✍■ byte TYPE_RSA_PUBLIC

KeyEncryption javacardx.crypto

Cipher getKeyCipher()

void setKeyCipher(Cipher keyCipher)
 Almanac 279

Almanac

KeyPair
Object
➥ KeyPair

Object
➥ MessageDigest

MultiSelectable

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ NegativeArraySizeException

KeyPair javacard.security

✍■ byte ALG_DSA

✍■ byte ALG_EC_F2M

✍■ byte ALG_EC_FP

✍■ byte ALG_RSA

✍■ byte ALG_RSA_CRT

● void genKeyPair() throws CryptoException

PrivateKey getPrivate()

PublicKey getPublic()

❉ KeyPair(byte algorithm, short keyLength) throws CryptoException

❉ KeyPair(PublicKey publicKey, PrivateKey privateKey) throws
CryptoException

MessageDigest javacard.security

✍■ byte ALG_MD5

✍■ byte ALG_RIPEMD160

✍■ byte ALG_SHA

❍ short doFinal(byte[] inBuff, short inOffset, short inLength, byte[] outBuff, short
outOffset)

❍ byte getAlgorithm()

■ MessageDigest getInstance(byte algorithm, boolean externalAccess) throws
CryptoException

❍ byte getLength()

❉♦ MessageDigest()

❍ void reset()

❍ void update(byte[] inBuff, short inOffset, short inLength)

MultiSelectable javacard.framework

void deselect(boolean appInstStillActive)

boolean select(boolean appInstAlreadyActive)

NegativeArraySizeException java.lang

❉ NegativeArraySizeException()
280 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

NullPointerException
Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ NullPointerException

Object

Object
➥ OwnerPIN PIN

PIN

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ CardRuntimeException
➥ PINException

NullPointerException java.lang

❉ NullPointerException()

Object java.lang

boolean equals(Object obj)

❉ Object()

OwnerPIN javacard.framework

boolean check(byte[] pin, short offset, byte length) throws
ArrayIndexOutOfBoundsException, NullPointerException

byte getTriesRemaining()

♦ boolean getValidatedFlag()

boolean isValidated()

❉ OwnerPIN(byte tryLimit, byte maxPINSize) throws PINException

void reset()

void resetAndUnblock()

♦ void setValidatedFlag(boolean value)

void update(byte[] pin, short offset, byte length) throws PINException

PIN javacard.framework

boolean check(byte[] pin, short offset, byte length) throws
ArrayIndexOutOfBoundsException, NullPointerException

byte getTriesRemaining()

boolean isValidated()

void reset()

PINException javacard.framework

✍■ short ILLEGAL_VALUE

❉ PINException(short reason)

❏ void throwIt(short reason)
 Almanac 281

Almanac

PrivateKey
PrivateKey Key

PublicKey Key

Object
➥ RandomData

Remote

Object
➥ Throwable

➥ Exception
➥ java.io.IOException

➥ RemoteException

RemoteService Service

Object
➥ BasicService Service

➥ RMIService RemoteService

PrivateKey javacard.security

PublicKey javacard.security

RandomData javacard.security

✍■ byte ALG_PSEUDO_RANDOM

✍■ byte ALG_SECURE_RANDOM

❍ void generateData(byte[] buffer, short offset, short length) throws
CryptoException

■ RandomData getInstance(byte algorithm) throws CryptoException

❉♦ RandomData()

❍ void setSeed(byte[] buffer, short offset, short length)

Remote java.rmi

RemoteException java.rmi

❉ RemoteException()

RemoteService javacard.framework.service

RMIService javacard.framework.service

✍■ byte DEFAULT_RMI_INVOKE_INSTRUCTION

boolean processCommand(javacard.framework.APDU apdu)

❉ RMIService(java.rmi.Remote initialObject) throws NullPointerException

void setInvokeInstructionByte(byte ins)
282 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

RSAPrivateCrtKey
RSAPrivateCrtKey PrivateKey

RSAPrivateKey PrivateKey

RSAPublicKey PublicKey

Object
➥ Throwable

➥ Exception
➥ RuntimeException

SecretKey Key

Object
➥ Throwable

RSAPrivateCrtKey javacard.security

short getDP1(byte[] buffer, short offset)

short getDQ1(byte[] buffer, short offset)

short getP(byte[] buffer, short offset)

short getPQ(byte[] buffer, short offset)

short getQ(byte[] buffer, short offset)

void setDP1(byte[] buffer, short offset, short length) throws CryptoException

void setDQ1(byte[] buffer, short offset, short length) throws CryptoException

void setP(byte[] buffer, short offset, short length) throws CryptoException

void setPQ(byte[] buffer, short offset, short length) throws CryptoException

void setQ(byte[] buffer, short offset, short length) throws CryptoException

RSAPrivateKey javacard.security

short getExponent(byte[] buffer, short offset)

short getModulus(byte[] buffer, short offset)

void setExponent(byte[] buffer, short offset, short length) throws
CryptoException

void setModulus(byte[] buffer, short offset, short length) throws
CryptoException

RSAPublicKey javacard.security

short getExponent(byte[] buffer, short offset)

short getModulus(byte[] buffer, short offset)

void setExponent(byte[] buffer, short offset, short length) throws
CryptoException

void setModulus(byte[] buffer, short offset, short length) throws
CryptoException

RuntimeException java.lang

❉ RuntimeException()

SecretKey javacard.security

SecurityException java.lang
 Almanac 283

Almanac

SecurityService
➥ Exception
➥ RuntimeException

➥ SecurityException

SecurityService Service

Service

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ javacard.framework.CardRuntimeException
➥ ServiceException

Shareable

❉ SecurityException()

SecurityService javacard.framework.service

boolean isAuthenticated(short principal) throws ServiceException

boolean isChannelSecure(byte properties) throws ServiceException

boolean isCommandSecure(byte properties) throws ServiceException

✍■ short PRINCIPAL_APP_PROVIDER

✍■ short PRINCIPAL_CARD_ISSUER

✍■ short PRINCIPAL_CARDHOLDER

✍■ byte PROPERTY_INPUT_CONFIDENTIALITY

✍■ byte PROPERTY_INPUT_INTEGRITY

✍■ byte PROPERTY_OUTPUT_CONFIDENTIALITY

✍■ byte PROPERTY_OUTPUT_INTEGRITY

Service javacard.framework.service

boolean processCommand(javacard.framework.APDU apdu)

boolean processDataIn(javacard.framework.APDU apdu)

boolean processDataOut(javacard.framework.APDU apdu)

ServiceException javacard.framework.service

✍■ short CANNOT_ACCESS_IN_COMMAND

✍■ short CANNOT_ACCESS_OUT_COMMAND

✍■ short COMMAND_DATA_TOO_LONG

✍■ short COMMAND_IS_FINISHED

✍■ short DISPATCH_TABLE_FULL

✍■ short ILLEGAL_PARAM

✍■ short REMOTE_OBJECT_NOT_EXPORTED

❉ ServiceException(short reason)

❏ void throwIt(short reason) throws ServiceException

Shareable javacard.framework
284 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

Signature
Object
➥ Signature

Object
➥ Throwable

➥ Exception

Signature javacard.security

✍■ byte ALG_AES_MAC_128_NOPAD

✍■ byte ALG_DES_MAC4_ISO9797_1_M2_ALG3

✍■ byte ALG_DES_MAC4_ISO9797_M1

✍■ byte ALG_DES_MAC4_ISO9797_M2

✍■ byte ALG_DES_MAC4_NOPAD

✍■ byte ALG_DES_MAC4_PKCS5

✍■ byte ALG_DES_MAC8_ISO9797_1_M2_ALG3

✍■ byte ALG_DES_MAC8_ISO9797_M1

✍■ byte ALG_DES_MAC8_ISO9797_M2

✍■ byte ALG_DES_MAC8_NOPAD

✍■ byte ALG_DES_MAC8_PKCS5

✍■ byte ALG_DSA_SHA

✍■ byte ALG_ECDSA_SHA

✍■ byte ALG_RSA_MD5_PKCS1

✍■ byte ALG_RSA_MD5_PKCS1_PSS

✍■ byte ALG_RSA_MD5_RFC2409

✍■ byte ALG_RSA_RIPEMD160_ISO9796

✍■ byte ALG_RSA_RIPEMD160_PKCS1

✍■ byte ALG_RSA_RIPEMD160_PKCS1_PSS

✍■ byte ALG_RSA_SHA_ISO9796

✍■ byte ALG_RSA_SHA_PKCS1

✍■ byte ALG_RSA_SHA_PKCS1_PSS

✍■ byte ALG_RSA_SHA_RFC2409

❍ byte getAlgorithm()

■ Signature getInstance(byte algorithm, boolean externalAccess) throws
CryptoException

❍ short getLength() throws CryptoException

❍ void init(Key theKey, byte theMode) throws CryptoException

❍ void init(Key theKey, byte theMode, byte[] bArray, short bOff, short bLen)
throws CryptoException

✍■ byte MODE_SIGN

✍■ byte MODE_VERIFY

❍ short sign(byte[] inBuff, short inOffset, short inLength, byte[] sigBuff, short
sigOffset) throws CryptoException

❉♦ Signature()

❍ void update(byte[] inBuff, short inOffset, short inLength) throws
CryptoException

❍ boolean verify(byte[] inBuff, short inOffset, short inLength, byte[] sigBuff, short
sigOffset, short sigLength) throws CryptoException

SystemException javacard.framework
 Almanac 285

Almanac

Throwable
➥ RuntimeException
➥ CardRuntimeException

➥ SystemException

Object
➥ Throwable

Object
➥ Throwable

➥ Exception
➥ RuntimeException

➥ CardRuntimeException
➥ TransactionException

Object
➥ Throwable

➥ Exception
➥ CardException

➥ UserException

✍■ short ILLEGAL_AID

✍■ short ILLEGAL_TRANSIENT

✍■ short ILLEGAL_USE

✍■ short ILLEGAL_VALUE

✍■ short NO_RESOURCE

✍■ short NO_TRANSIENT_SPACE

❉ SystemException(short reason)

❏ void throwIt(short reason) throws SystemException

Throwable java.lang

❉ Throwable()

TransactionException javacard.framework

✍■ short BUFFER_FULL

✍■ short IN_PROGRESS

✍■ short INTERNAL_FAILURE

✍■ short NOT_IN_PROGRESS

❏ void throwIt(short reason)

❉ TransactionException(short reason)

UserException javacard.framework

❏ void throwIt(short reason) throws UserException

❉ UserException()

❉ UserException(short reason)
286 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Almanac

Util
Object
➥ Util

Util javacard.framework

■ byte arrayCompare(byte[] src, short srcOff, byte[] dest, short destOff, short
length) throws ArrayIndexOutOfBoundsException,
NullPointerException

■ short arrayCopy(byte[] src, short srcOff, byte[] dest, short destOff, short length)
throws ArrayIndexOutOfBoundsException, NullPointerException,
TransactionException

■ short arrayCopyNonAtomic(byte[] src, short srcOff, byte[] dest, short destOff,
short length) throws ArrayIndexOutOfBoundsException,
NullPointerException

■ short arrayFillNonAtomic(byte[] bArray, short bOff, short bLen, byte bValue)
throws ArrayIndexOutOfBoundsException, NullPointerException

■ short getShort(byte[] bArray, short bOff) throws NullPointerException,
ArrayIndexOutOfBoundsException

■ short makeShort(byte b1, byte b2)

■ short setShort(byte[] bArray, short bOff, short sValue) throws
TransactionException, NullPointerException,
ArrayIndexOutOfBoundsException
 Almanac 287

Almanac

Util
288 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Index

A
abortTransaction()

of javacard.framework.JCSystem 94
addService(Service, byte)

of javacard.framework.service.Dispatcher 144
AESKey

of javacard.security 165
AID

of javacard.framework 39
AID(byte[], short, byte)

of javacard.framework.AID 40
ALG_AES_BLOCK_128_CBC_NOPAD

of javacardx.crypto.Cipher 258
ALG_AES_BLOCK_128_ECB_NOPAD

of javacardx.crypto.Cipher 259
ALG_AES_MAC_128_NOPAD

of javacard.security.Signature 246
ALG_DES_CBC_ISO9797_M1

of javacardx.crypto.Cipher 256
ALG_DES_CBC_ISO9797_M2

of javacardx.crypto.Cipher 256
ALG_DES_CBC_NOPAD

of javacardx.crypto.Cipher 256
ALG_DES_CBC_PKCS5

of javacardx.crypto.Cipher 256
ALG_DES_ECB_ISO9797_M1

of javacardx.crypto.Cipher 257
ALG_DES_ECB_ISO9797_M2

of javacardx.crypto.Cipher 257
ALG_DES_ECB_NOPAD

of javacardx.crypto.Cipher 257
ALG_DES_ECB_PKCS5

of javacardx.crypto.Cipher 257
ALG_DES_MAC4_ISO9797_1_M2_ALG3

of javacard.security.Signature 246
ALG_DES_MAC4_ISO9797_M1

of javacard.security.Signature 242
ALG_DES_MAC4_ISO9797_M2

of javacard.security.Signature 242
ALG_DES_MAC4_NOPAD

of javacard.security.Signature 242
ALG_DES_MAC4_PKCS5

of javacard.security.Signature 243
ALG_DES_MAC8_ISO9797_1_M2_ALG3

of javacard.security.Signature 246

ALG_DES_MAC8_ISO9797_M1
of javacard.security.Signature 242

ALG_DES_MAC8_ISO9797_M2
of javacard.security.Signature 243

ALG_DES_MAC8_NOPAD
of javacard.security.Signature 242

ALG_DES_MAC8_PKCS5
of javacard.security.Signature 243

ALG_DSA
of javacard.security.KeyPair 213

ALG_DSA_SHA
of javacard.security.Signature 245

ALG_EC_F2M
of javacard.security.KeyPair 213

ALG_EC_FP
of javacard.security.KeyPair 213

ALG_EC_SVDP_DH
of javacard.security.KeyAgreement 200

ALG_EC_SVDP_DHC
of javacard.security.KeyAgreement 200

ALG_ECDSA_SHA
of javacard.security.Signature 245

ALG_ISO3309_CRC16
of javacard.security.Checksum 168

ALG_ISO3309_CRC32
of javacard.security.Checksum 168

ALG_MD5
of javacard.security.MessageDigest 218

ALG_PSEUDO_RANDOM
of javacard.security.RandomData 224

ALG_RIPEMD160
of javacard.security.MessageDigest 218

ALG_RSA
of javacard.security.KeyPair 213

ALG_RSA_CRT
of javacard.security.KeyPair 213

ALG_RSA_ISO14888
of javacardx.crypto.Cipher 257

ALG_RSA_ISO9796
of javacardx.crypto.Cipher 258

ALG_RSA_MD5_PKCS1
of javacard.security.Signature 244

ALG_RSA_MD5_PKCS1_PSS
of javacard.security.Signature 246

ALG_RSA_MD5_RFC2409
of javacard.security.Signature 245

ALG_RSA_NOPAD
of javacardx.crypto.Cipher 258

ALG_RSA_PKCS1
of javacardx.crypto.Cipher 257
289

Index
ALG_RSA_PKCS1_OAEP
of javacardx.crypto.Cipher 259

ALG_RSA_RIPEMD160_ISO9796
of javacard.security.Signature 244

ALG_RSA_RIPEMD160_PKCS1
of javacard.security.Signature 244

ALG_RSA_RIPEMD160_PKCS1_PSS
of javacard.security.Signature 247

ALG_RSA_SHA_ISO9796
of javacard.security.Signature 243

ALG_RSA_SHA_PKCS1
of javacard.security.Signature 243

ALG_RSA_SHA_PKCS1_PSS
of javacard.security.Signature 246

ALG_RSA_SHA_RFC2409
of javacard.security.Signature 245

ALG_SECURE_RANDOM
of javacard.security.RandomData 224

ALG_SHA
of javacard.security.MessageDigest 218

APDU
of javacard.framework 44

APDUException
of javacard.framework 60

APDUException(short)
of javacard.framework.APDUException 62

Applet
of javacard.framework 64

Applet()
of javacard.framework.Applet 65

AppletEvent
of javacard.framework 71

ArithmeticException
of java.lang 11

ArithmeticException()
of java.lang.ArithmeticException 12

arrayCompare(byte[], short, byte[], short,
short)

of javacard.framework.Util 125
arrayCopy(byte[], short, byte[], short, short)

of javacard.framework.Util 123
arrayCopyNonAtomic(byte[], short, byte[],

short, short)
of javacard.framework.Util 124

arrayFillNonAtomic(byte[], short, short, byte)
of javacard.framework.Util 125

ArrayIndexOutOfBoundsException
of java.lang 13

ArrayIndexOutOfBoundsException()
of java.lang.ArrayIndexOutOfBoundsExcep-

tion 14
ArrayStoreException

of java.lang 15
ArrayStoreException()

of java.lang.ArrayStoreException 16

B
BAD_LENGTH

of javacard.framework.APDUException 62
BasicService

of javacard.framework.service 131
BasicService()

of javacard.framework.service.BasicService
133

beginTransaction()
of javacard.framework.JCSystem 94

BUFFER_BOUNDS
of javacard.framework.APDUException 61

BUFFER_FULL
of javacard.framework.TransactionException

118
buildKey(byte, short, boolean)

of javacard.security.KeyBuilder 211

C
CANNOT_ACCESS_IN_COMMAND

of javacard.framework.service.ServiceExcep-
tion 159

CANNOT_ACCESS_OUT_COMMAND
of javacard.framework.service.ServiceExcep-

tion 160
CardException

of javacard.framework 73
CardException(short)

of javacard.framework.CardException 74
CardRemoteObject

of javacard.framework.service 140
CardRemoteObject()

of javacard.framework.service.CardRemo-
teObject 140

CardRuntimeException
of javacard.framework 76

CardRuntimeException(short)
of javacard.framework.CardRuntimeException

77
check(byte[], short, byte)

of javacard.framework.OwnerPIN 103
of javacard.framework.PIN 107
290 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Index
Checksum
of javacard.security 167

Checksum()
of javacard.security.Checksum 168

Cipher
of javacardx.crypto 254

Cipher()
of javacardx.crypto.Cipher 259

CLA_ISO7816
of javacard.framework.ISO7816 84

ClassCastException
of java.lang 17

ClassCastException()
of java.lang.ClassCastException 18

CLEAR_ON_DESELECT
of javacard.framework.JCSystem 91

CLEAR_ON_RESET
of javacard.framework.JCSystem 90

clearKey()
of javacard.security.Key 198

COMMAND_DATA_TOO_LONG
of javacard.framework.service.ServiceExcep-

tion 159
COMMAND_IS_FINISHED

of javacard.framework.service.ServiceExcep-
tion 160

commitTransaction()
of javacard.framework.JCSystem 95

CryptoException
of javacard.security 171

CryptoException(short)
of javacard.security.CryptoException 173

D
DEFAULT_RMI_INVOKE_INSTRUCTION

of javacard.framework.service.RMIService
149

deselect()
of javacard.framework.Applet 68

deselect(boolean)
of javacard.framework.MultiSelectable 100

DESKey
of javacard.security 174

dispatch(APDU, byte)
of javacard.framework.service.Dispatcher 145

DISPATCH_TABLE_FULL
of javacard.framework.service.ServiceExcep-

tion 159

Dispatcher
of javacard.framework.service 142

Dispatcher(short)
of javacard.framework.service.Dispatcher 144

doFinal(byte[], short, short, byte[], short)
of javacard.security.Checksum 170
of javacard.security.MessageDigest 219
of javacardx.crypto.Cipher 261

DSAKey
of javacard.security 176

DSAPrivateKey
of javacard.security 180

DSAPublicKey
of javacard.security 182

E
ECKey

of javacard.security 184
ECPrivateKey

of javacard.security 192
ECPublicKey

of javacard.security 194
equals(byte[], short, byte)

of javacard.framework.AID 41
equals(Object)

of java.lang.Object 26
of javacard.framework.AID 41

Exception
of java.lang 19

Exception()
of java.lang.Exception 19

export(Remote)
of javacard.framework.service.CardRemo-

teObject 141

F
fail(APDU, short)

of javacard.framework.service.BasicService
136

G
generateData(byte[], short, short)

of javacard.security.RandomData 225
generateSecret(byte[], short, short, byte[], short)

of javacard.security.KeyAgreement 201
genKeyPair()

of javacard.security.KeyPair 215
 Index 291

Index
getA(byte[], short)
of javacard.security.ECKey 189

getAID()
of javacard.framework.JCSystem 93

getAlgorithm()
of javacard.security.Checksum 169
of javacard.security.KeyAgreement 201
of javacard.security.MessageDigest 219
of javacard.security.Signature 249
of javacardx.crypto.Cipher 261

getAppletShareableInterfaceObject(AID, byte)
of javacard.framework.JCSystem 97

getAssignedChannel()
of javacard.framework.JCSystem 98

getAvailableMemory(byte)
of javacard.framework.JCSystem 96

getB(byte[], short)
of javacard.security.ECKey 190

getBuffer()
of javacard.framework.APDU 50

getBytes(byte[], short)
of javacard.framework.AID 40

getCLA(APDU)
of javacard.framework.service.BasicService

137
getCLAChannel()

of javacard.framework.APDU 59
getCurrentAPDU()

of javacard.framework.APDU 58
getCurrentAPDUBuffer()

of javacard.framework.APDU 58
getCurrentState()

of javacard.framework.APDU 57
getDP1(byte[], short)

of javacard.security.RSAPrivateCrtKey 230
getDQ1(byte[], short)

of javacard.security.RSAPrivateCrtKey 231
getExponent(byte[], short)

of javacard.security.RSAPrivateKey 234
of javacard.security.RSAPublicKey 237

getField(byte[], short)
of javacard.security.ECKey 189

getG(byte[], short)
of javacard.security.DSAKey 179
of javacard.security.ECKey 190

getInBlockSize()
of javacard.framework.APDU 50

getINS(APDU)
of javacard.framework.service.BasicService

138

getInstance(byte)
of javacard.security.RandomData 224

getInstance(byte, boolean)
of javacard.security.Checksum 168
of javacard.security.KeyAgreement 200
of javacard.security.MessageDigest 218
of javacard.security.Signature 247
of javacardx.crypto.Cipher 259

getK()
of javacard.security.ECKey 191

getKey(byte[], short)
of javacard.security.AESKey 166
of javacard.security.DESKey 175

getKeyCipher()
of javacardx.crypto.KeyEncryption 264

getLength()
of javacard.security.MessageDigest 219
of javacard.security.Signature 249

getMaxCommitCapacity()
of javacard.framework.JCSystem 96

getModulus(byte[], short)
of javacard.security.RSAPrivateKey 233
of javacard.security.RSAPublicKey 236

getNAD()
of javacard.framework.APDU 51

getOutBlockSize()
of javacard.framework.APDU 51

getOutputLength(APDU)
of javacard.framework.service.BasicService

135
getP(byte[], short)

of javacard.security.DSAKey 178
of javacard.security.RSAPrivateCrtKey 229

getP1(APDU)
of javacard.framework.service.BasicService

138
getP2(APDU)

of javacard.framework.service.BasicService
138

getPartialBytes(short, byte[], short, byte)
of javacard.framework.AID 43

getPQ(byte[], short)
of javacard.security.RSAPrivateCrtKey 231

getPreviousContextAID()
of javacard.framework.JCSystem 96

getPrivate()
of javacard.security.KeyPair 216

getProtocol()
of javacard.framework.APDU 51
292 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Index
getPublic()
of javacard.security.KeyPair 215

getQ(byte[], short)
of javacard.security.DSAKey 178
of javacard.security.RSAPrivateCrtKey 230

getR(byte[], short)
of javacard.security.ECKey 191

getReason()
of javacard.framework.CardException 74
of javacard.framework.CardRuntimeException

77
getS(byte[], short)

of javacard.security.ECPrivateKey 193
getShareableInterfaceObject(AID, byte)

of javacard.framework.Applet 68
getShort(byte[], short)

of javacard.framework.Util 126
getSize()

of javacard.security.Key 198
getStatusWord(APDU)

of javacard.framework.service.BasicService
136

getTransactionDepth()
of javacard.framework.JCSystem 95

getTriesRemaining()
of javacard.framework.OwnerPIN 103
of javacard.framework.PIN 107

getType()
of javacard.security.Key 198

getUnusedCommitCapacity()
of javacard.framework.JCSystem 95

getValidatedFlag()
of javacard.framework.OwnerPIN 103

getVersion()
of javacard.framework.JCSystem 93

getW(byte[], short)
of javacard.security.ECPublicKey 195

getX(byte[], short)
of javacard.security.DSAPrivateKey 181

getY(byte[], short)
of javacard.security.DSAPublicKey 183

I
ILLEGAL_AID

of javacard.framework.SystemException 115
ILLEGAL_PARAM

of javacard.framework.service.ServiceExcep-
tion 159

ILLEGAL_TRANSIENT
of javacard.framework.SystemException 114

ILLEGAL_USE
of javacard.framework.APDUException 61
of javacard.framework.SystemException 115
of javacard.security.CryptoException 173

ILLEGAL_VALUE
of javacard.framework.PINException 110
of javacard.framework.SystemException 114
of javacard.security.CryptoException 172

IN_PROGRESS
of javacard.framework.TransactionException

118
IndexOutOfBoundsException

of java.lang 20
IndexOutOfBoundsException()

of java.lang.IndexOutOfBoundsException 21
init(byte[], short, short)

of javacard.security.Checksum 169
init(Key, byte)

of javacard.security.Signature 248
of javacardx.crypto.Cipher 260

init(Key, byte, byte[], short, short)
of javacard.security.Signature 248
of javacardx.crypto.Cipher 260

init(PrivateKey)
of javacard.security.KeyAgreement 201

INS_EXTERNAL_AUTHENTICATE
of javacard.framework.ISO7816 85

INS_SELECT
of javacard.framework.ISO7816 85

install(byte[], short, byte)
of javacard.framework.Applet 66

INTERNAL_FAILURE
of javacard.framework.TransactionException

118
INVALID_INIT

of javacard.security.CryptoException 172
IO_ERROR

of javacard.framework.APDUException 62
IOException

of java.io 6
IOException()

of java.io.IOException 7
isAppletActive(AID)

of javacard.framework.JCSystem 98
isAuthenticated(short)

of javacard.framework.service.SecurityService
154
 Index 293

Index
isChannelSecure(byte)
of javacard.framework.service.SecurityService

154
isCommandSecure(byte)

of javacard.framework.service.SecurityService
155

isInitialized()
of javacard.security.Key 197

ISO7816
of javacard.framework 79

isObjectDeletionSupported()
of javacard.framework.JCSystem 97

ISOException
of javacard.framework 86

ISOException(short)
of javacard.framework.ISOException 87

isProcessed(APDU)
of javacard.framework.service.BasicService

135
isTransient(Object)

of javacard.framework.JCSystem 91
isValidated()

of javacard.framework.OwnerPIN 104
of javacard.framework.PIN 107

J
JCSystem

of javacard.framework 88

K
Key

of javacard.security 197
KeyAgreement

of javacard.security 199
KeyAgreement()

of javacard.security.KeyAgreement 200
KeyBuilder

of javacard.security 203
KeyEncryption

of javacardx.crypto 264
KeyPair

of javacard.security 212
KeyPair(byte, short)

of javacard.security.KeyPair 214
KeyPair(PublicKey, PrivateKey)

of javacard.security.KeyPair 214

L
LENGTH_AES_128

of javacard.security.KeyBuilder 211
LENGTH_AES_192

of javacard.security.KeyBuilder 211
LENGTH_AES_256

of javacard.security.KeyBuilder 211
LENGTH_DES

of javacard.security.KeyBuilder 207
LENGTH_DES3_2KEY

of javacard.security.KeyBuilder 207
LENGTH_DES3_3KEY

of javacard.security.KeyBuilder 208
LENGTH_DSA_1024

of javacard.security.KeyBuilder 209
LENGTH_DSA_512

of javacard.security.KeyBuilder 209
LENGTH_DSA_768

of javacard.security.KeyBuilder 209
LENGTH_EC_F2M_113

of javacard.security.KeyBuilder 210
LENGTH_EC_F2M_131

of javacard.security.KeyBuilder 210
LENGTH_EC_F2M_163

of javacard.security.KeyBuilder 210
LENGTH_EC_F2M_193

of javacard.security.KeyBuilder 210
LENGTH_EC_FP_112

of javacard.security.KeyBuilder 209
LENGTH_EC_FP_128

of javacard.security.KeyBuilder 210
LENGTH_EC_FP_160

of javacard.security.KeyBuilder 210
LENGTH_EC_FP_192

of javacard.security.KeyBuilder 210
LENGTH_RSA_1024

of javacard.security.KeyBuilder 208
LENGTH_RSA_1280

of javacard.security.KeyBuilder 208
LENGTH_RSA_1536

of javacard.security.KeyBuilder 209
LENGTH_RSA_1984

of javacard.security.KeyBuilder 209
LENGTH_RSA_2048

of javacard.security.KeyBuilder 209
LENGTH_RSA_512

of javacard.security.KeyBuilder 208
LENGTH_RSA_736

of javacard.security.KeyBuilder 208
294 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Index
LENGTH_RSA_768
of javacard.security.KeyBuilder 208

LENGTH_RSA_896
of javacard.security.KeyBuilder 208

lookupAID(byte[], short, byte)
of javacard.framework.JCSystem 93

M
makeShort(byte, byte)

of javacard.framework.Util 126
makeTransientBooleanArray(short, byte)

of javacard.framework.JCSystem 91
makeTransientByteArray(short, byte)

of javacard.framework.JCSystem 92
makeTransientObjectArray(short, byte)

of javacard.framework.JCSystem 93
makeTransientShortArray(short, byte)

of javacard.framework.JCSystem 92
MEMORY_TYPE_PERSISTENT

of javacard.framework.JCSystem 90
MEMORY_TYPE_TRANSIENT_DESELECT

of javacard.framework.JCSystem 90
MEMORY_TYPE_TRANSIENT_RESET

of javacard.framework.JCSystem 90
MessageDigest

of javacard.security 217
MessageDigest()

of javacard.security.MessageDigest 218
MODE_DECRYPT

of javacardx.crypto.Cipher 259
MODE_ENCRYPT

of javacardx.crypto.Cipher 259
MODE_SIGN

of javacard.security.Signature 247
MODE_VERIFY

of javacard.security.Signature 247
MultiSelectable

of javacard.framework 99

N
NegativeArraySizeException

of java.lang 22
NegativeArraySizeException()

of java.lang.NegativeArraySizeException 22
NO_RESOURCE

of javacard.framework.SystemException 115
NO_SUCH_ALGORITHM

of javacard.security.CryptoException 172

NO_T0_GETRESPONSE
of javacard.framework.APDUException 62

NO_T0_REISSUE
of javacard.framework.APDUException 62

NO_TRANSIENT_SPACE
of javacard.framework.SystemException 114

NOT_A_TRANSIENT_OBJECT
of javacard.framework.JCSystem 90

NOT_IN_PROGRESS
of javacard.framework.TransactionException

118
NullPointerException

of java.lang 24
NullPointerException()

of java.lang.NullPointerException 25

O
Object

of java.lang 26
Object()

of java.lang.Object 26
OFFSET_CDATA

of javacard.framework.ISO7816 84
OFFSET_CLA

of javacard.framework.ISO7816 84
OFFSET_INS

of javacard.framework.ISO7816 84
OFFSET_LC

of javacard.framework.ISO7816 84
OFFSET_P1

of javacard.framework.ISO7816 84
OFFSET_P2

of javacard.framework.ISO7816 84
OwnerPIN

of javacard.framework 101
OwnerPIN(byte, byte)

of javacard.framework.OwnerPIN 102

P
partialEquals(byte[], short, byte)

of javacard.framework.AID 42
PIN

of javacard.framework 106
PINException

of javacard.framework 109
PINException(short)

of javacard.framework.PINException 110
 Index 295

Index
PRINCIPAL_APP_PROVIDER
of javacard.framework.service.SecurityService

154
PRINCIPAL_CARD_ISSUER

of javacard.framework.service.SecurityService
154

PRINCIPAL_CARDHOLDER
of javacard.framework.service.SecurityService

153
PrivateKey

of javacard.security 221
process(APDU)

of javacard.framework.Applet 67
of javacard.framework.service.Dispatcher 146

PROCESS_COMMAND
of javacard.framework.service.Dispatcher 143

PROCESS_INPUT_DATA
of javacard.framework.service.Dispatcher 143

PROCESS_NONE
of javacard.framework.service.Dispatcher 143

PROCESS_OUTPUT_DATA
of javacard.framework.service.Dispatcher 143

processCommand(APDU)
of javacard.framework.service.BasicService

133
of javacard.framework.service.RMIService

150
of javacard.framework.service.Service 157

processDataIn(APDU)
of javacard.framework.service.BasicService

133
of javacard.framework.service.Service 156

processDataOut(APDU)
of javacard.framework.service.BasicService

134
of javacard.framework.service.Service 157

PROPERTY_INPUT_CONFIDENTIALITY
of javacard.framework.service.SecurityService

153
PROPERTY_INPUT_INTEGRITY

of javacard.framework.service.SecurityService
153

PROPERTY_OUTPUT_CONFIDENTIALITY
of javacard.framework.service.SecurityService

153
PROPERTY_OUTPUT_INTEGRITY

of javacard.framework.service.SecurityService
153

PROTOCOL_MEDIA_CONTACTLESS_TYP

E_A
of javacard.framework.APDU 50

PROTOCOL_MEDIA_CONTACTLESS_TYP
E_B

of javacard.framework.APDU 50
PROTOCOL_MEDIA_DEFAULT

of javacard.framework.APDU 49
PROTOCOL_MEDIA_MASK

of javacard.framework.APDU 49
PROTOCOL_MEDIA_USB

of javacard.framework.APDU 50
PROTOCOL_T0

of javacard.framework.APDU 49
PROTOCOL_T1

of javacard.framework.APDU 49
PROTOCOL_TYPE_MASK

of javacard.framework.APDU 49
PublicKey

of javacard.security 222

R
RandomData

of javacard.security 223
RandomData()

of javacard.security.RandomData 224
receiveBytes(short)

of javacard.framework.APDU 53
receiveInData(APDU)

of javacard.framework.service.BasicService
134

register()
of javacard.framework.Applet 69

register(byte[], short, byte)
of javacard.framework.Applet 69

Remote
of java.rmi 34

REMOTE_OBJECT_NOT_EXPORTED
of javacard.framework.service.ServiceExcep-

tion 160
RemoteException

of java.rmi 35
RemoteException()

of java.rmi.RemoteException 36
RemoteService

of javacard.framework.service 147
removeService(Service, byte)

of javacard.framework.service.Dispatcher 144
requestObjectDeletion()

of javacard.framework.JCSystem 97
296 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Index
reset()
of javacard.framework.OwnerPIN 104
of javacard.framework.PIN 108
of javacard.security.MessageDigest 220

resetAndUnblock()
of javacard.framework.OwnerPIN 105

RIDEquals(AID)
of javacard.framework.AID 42

RMIService
of javacard.framework.service 148

RMIService(Remote)
of javacard.framework.service.RMIService

149
RSAPrivateCrtKey

of javacard.security 226
RSAPrivateKey

of javacard.security 232
RSAPublicKey

of javacard.security 235
RuntimeException

of java.lang 28
RuntimeException()

of java.lang.RuntimeException 29

S
SecretKey

of javacard.security 238
SecurityException

of java.lang 30
SecurityException()

of java.lang.SecurityException 31
SecurityService

of javacard.framework.service 152
select()

of javacard.framework.Applet 67
select(boolean)

of javacard.framework.MultiSelectable 99
selectingApplet()

of javacard.framework.Applet 70
of javacard.framework.service.BasicService

139
sendBytes(short, short)

of javacard.framework.APDU 55
sendBytesLong(byte[], short, short)

of javacard.framework.APDU 56
Service

of javacard.framework.service 156
ServiceException

of javacard.framework.service 158

ServiceException(short)
of javacard.framework.service.ServiceExcep-

tion 160
setA(byte[], short, short)

of javacard.security.ECKey 186
setB(byte[], short, short)

of javacard.security.ECKey 187
setDP1(byte[], short, short)

of javacard.security.RSAPrivateCrtKey 228
setDQ1(byte[], short, short)

of javacard.security.RSAPrivateCrtKey 228
setExponent(byte[], short, short)

of javacard.security.RSAPrivateKey 233
of javacard.security.RSAPublicKey 236

setFieldF2M(short)
of javacard.security.ECKey 185

setFieldF2M(short, short, short)
of javacard.security.ECKey 186

setFieldFP(byte[], short, short)
of javacard.security.ECKey 185

setG(byte[], short, short)
of javacard.security.DSAKey 177
of javacard.security.ECKey 187

setIncomingAndReceive()
of javacard.framework.APDU 54

setInvokeInstructionByte(byte)
of javacard.framework.service.RMIService

150
setK(short)

of javacard.security.ECKey 188
setKey(byte[], short)

of javacard.security.AESKey 165
of javacard.security.DESKey 174

setKeyCipher(Cipher)
of javacardx.crypto.KeyEncryption 264

setModulus(byte[], short, short)
of javacard.security.RSAPrivateKey 232
of javacard.security.RSAPublicKey 235

setOutgoing()
of javacard.framework.APDU 51

setOutgoingAndSend(short, short)
of javacard.framework.APDU 57

setOutgoingLength(short)
of javacard.framework.APDU 52

setOutgoingNoChaining()
of javacard.framework.APDU 52

setOutputLength(APDU, short)
of javacard.framework.service.BasicService

135
 Index 297

Index
setP(byte[], short, short)
of javacard.security.DSAKey 176
of javacard.security.RSAPrivateCrtKey 227

setPQ(byte[], short, short)
of javacard.security.RSAPrivateCrtKey 229

setProcessed(APDU)
of javacard.framework.service.BasicService

134
setQ(byte[], short, short)

of javacard.security.DSAKey 177
of javacard.security.RSAPrivateCrtKey 227

setR(byte[], short, short)
of javacard.security.ECKey 188

setReason(short)
of javacard.framework.CardException 74
of javacard.framework.CardRuntimeException

77
setS(byte[], short, short)

of javacard.security.ECPrivateKey 193
setSeed(byte[], short, short)

of javacard.security.RandomData 225
setShort(byte[], short, short)

of javacard.framework.Util 127
setStatusWord(APDU, short)

of javacard.framework.service.BasicService
136

setValidatedFlag(boolean)
of javacard.framework.OwnerPIN 103

setW(byte[], short, short)
of javacard.security.ECPublicKey 195

setX(byte[], short, short)
of javacard.security.DSAPrivateKey 180

setY(byte[], short, short)
of javacard.security.DSAPublicKey 182

Shareable
of javacard.framework 112

sign(byte[], short, short, byte[], short)
of javacard.security.Signature 250

Signature
of javacard.security 239

Signature()
of javacard.security.Signature 247

STATE_ERROR_IO
of javacard.framework.APDU 49

STATE_ERROR_NO_T0_GETRESPONSE
of javacard.framework.APDU 48

STATE_ERROR_NO_T0_REISSUE
of javacard.framework.APDU 49

STATE_ERROR_T1_IFD_ABORT
of javacard.framework.APDU 48

STATE_FULL_INCOMING
of javacard.framework.APDU 48

STATE_FULL_OUTGOING
of javacard.framework.APDU 48

STATE_INITIAL
of javacard.framework.APDU 47

STATE_OUTGOING
of javacard.framework.APDU 48

STATE_OUTGOING_LENGTH_KNOWN
of javacard.framework.APDU 48

STATE_PARTIAL_INCOMING
of javacard.framework.APDU 47

STATE_PARTIAL_OUTGOING
of javacard.framework.APDU 48

succeed(APDU)
of javacard.framework.service.BasicService

137
succeedWithStatusWord(APDU, short)

of javacard.framework.service.BasicService
137

SW_APPLET_SELECT_FAILED
of javacard.framework.ISO7816 81

SW_BYTES_REMAINING_00
of javacard.framework.ISO7816 80

SW_CLA_NOT_SUPPORTED
of javacard.framework.ISO7816 83

SW_COMMAND_NOT_ALLOWED
of javacard.framework.ISO7816 81

SW_CONDITIONS_NOT_SATISFIED
of javacard.framework.ISO7816 81

SW_CORRECT_LENGTH_00
of javacard.framework.ISO7816 82

SW_DATA_INVALID
of javacard.framework.ISO7816 81

SW_FILE_FULL
of javacard.framework.ISO7816 83

SW_FILE_INVALID
of javacard.framework.ISO7816 81

SW_FILE_NOT_FOUND
of javacard.framework.ISO7816 82

SW_FUNC_NOT_SUPPORTED
of javacard.framework.ISO7816 82

SW_INCORRECT_P1P2
of javacard.framework.ISO7816 82

SW_INS_NOT_SUPPORTED
of javacard.framework.ISO7816 83

SW_LOGICAL_CHANNEL_NOT_SUPPORT
ED

of javacard.framework.ISO7816 83
298 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

Index
SW_NO_ERROR
of javacard.framework.ISO7816 80

SW_RECORD_NOT_FOUND
of javacard.framework.ISO7816 82

SW_SECURE_MESSAGING_NOT_SUPPOR
TED

of javacard.framework.ISO7816 83
SW_SECURITY_STATUS_NOT_SATISFIED

of javacard.framework.ISO7816 81
SW_UNKNOWN

of javacard.framework.ISO7816 83
SW_WARNING_STATE_UNCHANGED

of javacard.framework.ISO7816 83
SW_WRONG_DATA

of javacard.framework.ISO7816 82
SW_WRONG_LENGTH

of javacard.framework.ISO7816 81
SW_WRONG_P1P2

of javacard.framework.ISO7816 82
SystemException

of javacard.framework 113
SystemException(short)

of javacard.framework.SystemException 115

T
T1_IFD_ABORT

of javacard.framework.APDUException 62
Throwable

of java.lang 32
Throwable()

of java.lang.Throwable 32
throwIt(short)

of javacard.framework.APDUException 63
of javacard.framework.CardException 74
of javacard.framework.CardRuntimeException

77
of javacard.framework.ISOException 87
of javacard.framework.PINException 110
of javacard.framework.service.ServiceExcep-

tion 160
of javacard.framework.SystemException 115
of javacard.framework.TransactionException

119
of javacard.framework.UserException 121
of javacard.security.CryptoException 173

TransactionException
of javacard.framework 117

TransactionException(short)
of javacard.framework.TransactionException

119
TYPE_AES

of javacard.security.KeyBuilder 207
TYPE_AES_TRANSIENT_DESELECT

of javacard.security.KeyBuilder 207
TYPE_AES_TRANSIENT_RESET

of javacard.security.KeyBuilder 207
TYPE_DES

of javacard.security.KeyBuilder 205
TYPE_DES_TRANSIENT_DESELECT

of javacard.security.KeyBuilder 205
TYPE_DES_TRANSIENT_RESET

of javacard.security.KeyBuilder 205
TYPE_DSA_PRIVATE

of javacard.security.KeyBuilder 206
TYPE_DSA_PUBLIC

of javacard.security.KeyBuilder 206
TYPE_EC_F2M_PRIVATE

of javacard.security.KeyBuilder 206
TYPE_EC_F2M_PUBLIC

of javacard.security.KeyBuilder 206
TYPE_EC_FP_PRIVATE

of javacard.security.KeyBuilder 207
TYPE_EC_FP_PUBLIC

of javacard.security.KeyBuilder 207
TYPE_RSA_CRT_PRIVATE

of javacard.security.KeyBuilder 206
TYPE_RSA_PRIVATE

of javacard.security.KeyBuilder 206
TYPE_RSA_PUBLIC

of javacard.security.KeyBuilder 206

U
unexport(Remote)

of javacard.framework.service.CardRemo-
teObject 141

UNINITIALIZED_KEY
of javacard.security.CryptoException 172

uninstall()
of javacard.framework.AppletEvent 71

update(byte[], short, byte)
of javacard.framework.OwnerPIN 104

update(byte[], short, short)
of javacard.security.Checksum 170
of javacard.security.MessageDigest 220
of javacard.security.Signature 249

update(byte[], short, short, byte[], short)
of javacardx.crypto.Cipher 262
 Index 299

Index
UserException
of javacard.framework 120

UserException()
of javacard.framework.UserException 121

UserException(short)
of javacard.framework.UserException 121

Util
of javacard.framework 122

V
verify(byte[], short, short, byte[], short, short)

of javacard.security.Signature 251

W
waitExtension()

of javacard.framework.APDU 59
300 Application Programming Interface, Java Card Platform, Version 2.2.1 • October 21, 2003

	Application Programming Interface
	Contents
	Overview
	java.io
	IOException

	java.lang
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	ClassCastException
	Exception
	IndexOutOfBoundsException
	NegativeArraySizeException
	NullPointerException
	Object
	RuntimeException
	SecurityException
	Throwable

	java.rmi
	Remote
	RemoteException

	javacard.framework
	AID
	APDU
	APDUException
	Applet
	AppletEvent
	CardException
	CardRuntimeException
	ISO7816
	ISOException
	JCSystem
	MultiSelectable
	OwnerPIN
	PIN
	PINException
	Shareable
	SystemException
	TransactionException
	UserException
	Util

	javacard.framework.service
	BasicService
	CardRemoteObject
	Dispatcher
	RemoteService
	RMIService
	SecurityService
	Service
	ServiceException

	javacard.security
	AESKey
	Checksum
	CryptoException
	DESKey
	DSAKey
	DSAPrivateKey
	DSAPublicKey
	ECKey
	ECPrivateKey
	ECPublicKey
	Key
	KeyAgreement
	KeyBuilder
	KeyPair
	MessageDigest
	PrivateKey
	PublicKey
	RandomData
	RSAPrivateCrtKey
	RSAPrivateKey
	RSAPublicKey
	SecretKey
	Signature

	javacardx.crypto
	Cipher
	KeyEncryption

	Almanac
	AESKey
	AID
	APDU
	APDUException
	Applet
	AppletEvent
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	BasicService
	CardException
	CardRemoteObject
	CardRuntimeException
	Checksum
	Cipher
	ClassCastException
	CryptoException
	DESKey
	Dispatcher
	DSAKey
	DSAPrivateKey
	DSAPublicKey
	ECKey
	ECPrivateKey
	ECPublicKey
	Exception
	IndexOutOfBoundsException
	IOException
	ISO7816
	ISOException
	JCSystem
	Key
	KeyAgreement
	KeyBuilder
	KeyEncryption
	KeyPair
	MessageDigest
	MultiSelectable
	NegativeArraySizeException
	NullPointerException
	Object
	OwnerPIN
	PIN
	PINException
	PrivateKey
	PublicKey
	RandomData
	Remote
	RemoteException
	RemoteService
	RMIService
	RSAPrivateCrtKey
	RSAPrivateKey
	RSAPublicKey
	RuntimeException
	SecretKey
	SecurityException
	SecurityService
	Service
	ServiceException
	Shareable
	Signature
	SystemException
	Throwable
	TransactionException
	UserException
	Util

	Index

