
// CREATE PIN OBJECT (try limit == 5, max. PIN length == 4)
OwnerPIN m_pin = new OwnerPIN((byte) 5, (byte) 4);
// SET CORRECT PIN VALUE
m_pin.update(INIT_PIN, (short) 0, (byte) INIT_PIN.length);
// VERIFY CORRECTNESS OF SUPPLIED PIN
boolean correct = m_pin.check(array_with_pin, (short) 0, (byte) array_with_pin.length);
// GET REMAING PIN TRIES
byte j = m_pin.getTriesRemaining();
// RESET PIN RETRY COUNTER AND UNBLOCK IF BLOCKED
m_pin.resetAndUnblock();

JavaCard cryptography
General hints:

• Use existing algorithms/modes rather than write your own - Algorithms in
JavaCard are much slower and most probably less secure against power analysis
than the native functions provided by JavaCard library.

• Store session data in RAM – operation in RAM are much faster and more secure
against power analysis. Moreover, EEPROM has limited number of rewrites before
becomes unreliable (105 - 106 writes).

• Do NOT store keys and PINs in primitive arrays – Use specialized objects like
OwnerPIN and Key for storage. These are better protected against power ad fault
attacks.

• Erase unused keys and arrays with sensitive values – Use specialized method if
exists (Key::clearKey()) or overwrite with random data.

• Use transactions to ensure atomic operations – Short parts of code that must be
executed together should be protected by the transaction. Otherwise, power supply
can be interrupted inside code and inconsistency may occur. Be aware of attacks
based on interrupted transactions so called Rollback attack.

• Do not use conditional jumps with sensitive data – Branching after condition is
recognizable with power analysis. E.g., branch THEN increase offset for next
instruction only by 1, but branch ELSE must compute new offset dependent on length
of THEN code. This addition takes much longer time and is recognizable using power
analysis.

• Allocate all necessary resources in constructor – Applet installation is usually
performed in trusted environment. Will prevent attacks based on limiting resources
necessary for applet and thus introducing inconsistency into applet execution.

JavaCard applet for PIN verification
The sample applet implements the following logical steps:

• Allocation of PIN object (OwnerPIN())
• Initial setting of the secret value of PIN (OwnerPIN.update())
• Verification of the correctness of the supplied PIN (OwnerPIN.check())
• Get remaining tries of PIN verification attempts (OwnerPIN.getTriesRemaining())
• Set tries counter to maximum value and unblock blocked PIN.

(OwnerPIN.resetAndUnblock())

// …. INICIALIZATION SOMEWHERE (IN CONSTRUCT)
// CREATE DES KEY OBJECT
DESKey m_desKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES, KeyBuilder.LENGTH_DES,
false);
// SET KEY VALUE
m_desKey.setKey(array, (short) 0);

// CREATE OBJECTS FOR ECB CIPHERING
m_encryptCipher = Cipher.getInstance(Cipher.ALG_DES_ECB_NOPAD, false);
// INIT CIPHER WITH KEY FOR ENCRYPT DIRECTION
m_encryptCipher.init(m_desKey, Cipher.MODE_ENCRYPT);
//….

// ENCRYPT INCOMING BUFFER
void Encrypt(APDU apdu) {
 byte[] apdubuf = apdu.getBuffer();
 short dataLen = apdu.setIncomingAndReceive();

 // CHECK EXPECTED LENGTH (MULTIPLY OF 64 bites)
 if ((dataLen % 8) != 0) ISOException.throwIt(SW_CIPHER_DATA_LENGTH_BAD);

 // ENCRYPT INCOMING BUFFER
 m_encryptCipher.doFinal(apdubuf, ISO7816.OFFSET_CDATA, dataLen, m_ramArray, (short) 0);

 // COPY ENCRYPTED DATA INTO OUTGOING BUFFER
 Util.arrayCopyNonAtomic(m_ramArray, (short) 0, apdubuf, ISO7816.OFFSET_CDATA, dataLen);

 // SEND OUTGOING BUFFER
 apdu.setOutgoingAndSend(ISO7816.OFFSET_CDATA, dataLen);
}

JavaCard applet for encryption of the supplied data
The sample applet implements the following logical steps:

• Allocation and initialization of the key object (KeyBuilder.buildKey())
• Set key value (DESKey.setKey())
• Allocation and initialization of the object of cipher (Cipher. getInstance(), Cipher. init())
• Receive incoming data (APDU.setIncomingAndReceive())
• Encrypt or decrypt data (Cipher.update(), Cipher.doFinal())
• Send outgoing data (APDU. setOutgoingAndSend())

JavaCard applet for hashing of the supplied data
JavaCard 2.2.2 standard describes hashing functions MD5, SHA-1, SHA-256 and
RIPEMD160. Not all must be implemented by a particular smart card.

// CREATE SHA-1 OBJECT
MessageDigest m_sha1 = MessageDigest.getInstance(MessageDigest.ALG_SHA, false);

// RESET HASH ENGINE
m_sha1.reset();
// PROCESS ALL PARTS OF DATA
while (next_part_to_hash_available) {
 m_sha1.update(array_to_hash, (short) 0, (short) array_to_hash.length);
}
// FINALIZE HASH VALUE (WHEN LAST PART OF DATA IS AVAILABLE)
// AND OBTAIN RESULTING HASH VALUE
m_sha1.doFinal(array_to_hash, (short) 0, (short) array_to_hash.length, out_hash_array, (short) 0);

private Signature m_sessionCBCMAC = null;
private DESKey m_session3DesKey = null;

// CREATE SIGNATURE OBJECT
m_sessionCBCMAC = Signature.getInstance(Signature.ALG_DES_MAC4_NOPAD, false);
// CREATE KEY USED IN MAC
m_session3DesKey = (DESKey) KeyBuilder.buildKey(KeyBuilder.TYPE_DES,
KeyBuilder.LENGTH_DES3_3KEY, false);

// INITIALIZE SIGNATURE DES KEY
m_session3DesKey.setKey(m_ram, (short) 0);
// SET KEY INTO SIGNATURE OBJECT
m_sessionCBCMAC.init(m_session3DesKey, Signature.MODE_SIGN);

// GENERATE SIGNATURE OF buff ARRAY, STORE INTO m_ram ARRAY
m_sessionCBCMAC.sign(buff, ISO7816.OFFSET_CDATA, length, m_ram, (short) 0);

The sample applet implements the following logical steps:
• Allocation of the hashing object (MessageDigest.getInstance())
• Reset internal state of hash object (MessageDigest. reset ())
• Update intermediate hash value using incoming array (MessageDigest.update())
• Finalize and read hash value of data (MessageDigest.doFinal())

JavaCard applet for computation of MAC based on symmetric cryptography
Various cryptographic checksum algorithms are implemented by the card (see
javacard.security.Signature).
The sample applet implements the following logical steps:

• Allocation of the signature object (Signature.getInstance ())
• Allocation of the key object used for signature (KeyBuilder.buildKey ())
• Set key for usage with signature object in SIGN mode (Signature.init ())
• Generation of MAC over buffer (Signature.sign())

// CREATE RSA KEYS AND PAIR
m_privateKey = KeyBuilder.buildKey(KeyBuilder.TYPE_RSA_PRIVATE,KeyBuilder.LENGTH_RSA_1024,false);
m_publicKey = KeyBuilder.buildKey(KeyBuilder.TYPE_RSA_PUBLIC,KeyBuilder.LENGTH_RSA_1024,true);
m_keyPair = new KeyPair(KeyPair.ALG_RSA, (short) m_publicKey.getSize());

// STARTS ON-CARD KEY GENERATION PROCESS
m_keyPair.genKeyPair();
// OBTAIN KEY REFERENCES
m_publicKey = m_keyPair.getPublic();
m_privateKey = m_keyPair.getPrivate();

// CREATE SIGNATURE OBJECT
Signature m_sign = Signature.getInstance(Signature.ALG_RSA_SHA_PKCS1, false);
// INIT WITH PRIVATE KEY
m_sign.init(m_privateKey, Signature.MODE_SIGN);

// SIGN INCOMING BUFFER
signLen = m_sign.sign(apdubuf, ISO7816.OFFSET_CDATA, (byte) dataLen, m_ramArray, (byte) 0);

private RandomData m_rngRandom = null;

// CREATE RNG OBJECT
m_rngRandom = RandomData.getInstance(RandomData.ALG_SECURE_RANDOM);

// GENERATE RANDOM BLOCK WITH 16 BYTES
m_rngRandom.generateData(m_testArray1, (short) 0, ARRAY_ONE_BLOCK_16B);

JavaCard applet for signing of the supplied data
JavaCard 2.2.2 standard describes various combination of signature functions based on
asymmetric cryptography (RSA, DSA, ECDSA) and symmetric cryptography (MAC – DES,
AES based). Again, not all must be implemented by a particular smart card.
The sample applet implements the following logical steps:

• Allocation of the key and signature objects (KeyBuilder.buildKey, new KeyPair,
Signature.getInstance)

• On-card generation of key pair (KeyPair.genKeyPair())
• Obtaining references to private and public key (KeyPair.getPrivate/Public)
• Initialization of signature engine with private key (Signature.init)
• Performing signature operation (Signature.update, Signature.sign)

JavaCard applet for generating random data
JavaCard 2.2.2 standard defines two types of random generators within object RandomData:
RandomData.ALG_SECURE_RANDOM and RandomData.ALG_PSEUDO_RANDOM.
Sometimes, the ALG_PSEUDO_RANDOM is not implementated by the card.
The sample applet implements the following logical steps:

• Allocation of the random data object (RandomData.getInstance())
• Generation of random block with given length (RandomData.generateData())

Homework
Design your own protocol for mutual authentication and secure message transmission. You
do not need to actually implement the protocol. However, you have to describe it on very
detailed level (e.g., what mode of cipher is used, how many blocks are encrypted, what
padding is used, when the protocol should abort due to incorrect values, …) and you can use
only simple cryptographic primitives available on smart card (e.g., you can use DES cipher,
SHA-1 hash function or random generator but not the OPSystem.getSecurityDomain()
secure messaging object).
You protocol must provide:

• Mutual authentication between smart card and PC application based on pre-shared
symmetric cryptography secret.

• Secure message exchange after authentication – all subsequent commands send to
and from smart card after authentication must be confidential and integrity protected.

Few things you should keep in the mind:
• It is not a good idea to use long-term secrets to directly protect ordinary

communication.
• Be aware of replay attack.
• What block cipher mode are you using, how the IV is, what type of padding is used.
• How the integrity is protected, is the apdu header and response protected as well?

You have 2 weeks to complete this task. Submit your description of the protocol (informal
language, but detailed description what primitives were used, why and what threat are
mitigated by the construction – should be around 1-2 A4 text) into IS before 9.12. and
prepare short presentation (5 minute max.) for 10.12. (resp. 11.12.) lesson. Your design will
be discussed and “attacked” by your classmates.

	JavaCard cryptography
	General hints:
	JavaCard applet for PIN verification
	JavaCard applet for encryption of the supplied data
	JavaCard applet for hashing of the supplied data
	JavaCard applet for computation of MAC based on symmetric cryptography
	JavaCard applet for signing of the supplied data
	JavaCard applet for generating random data
	Homework

