Exercise 1

Let A be a propositional variable. Decide (and prove) whether there is a formula φ such that

1. $\varphi \rightarrow(\varphi \rightarrow A) \approx A$
2. $\varphi \rightarrow(\varphi \rightarrow A) \approx \neg A$
3. $\varphi \rightarrow(A \rightarrow \varphi) \approx A$
4. $\varphi \rightarrow(A \rightarrow \varphi) \approx \neg A$

Exercise 2

Given a formula $\psi \approx A \rightarrow(B \rightarrow(C \rightarrow(D \rightarrow E)))$, find an equivalent formula φ of the system $\mathcal{L}(\mid)$. (we define \mid by $\xi_{1} \mid \xi_{2} \approx \neg\left(\xi_{1} \wedge \xi_{2}\right)$ for all $\left.\xi_{1}, \xi_{2}\right)$

Exercise 3

Prove that the system $\mathcal{L}(\neg)$ is not functionally complete (i.e. "plnohodnotný").

Exercise 4

Decide and prove whether the system $\mathcal{L}(\rightarrow)$ is functionally complete.

Exercise 5

Decide and prove whether the system $\mathcal{L}(\leftrightarrow, \neg)$ is functionally complete.

Exercise 6

Let A, B be countable family and let $R \subseteq A \times B$ be a relation such that for all $a \in A$ the set $B_{a}=\{b \mid(a, b) \in R\}$ is a finite nonempty family. Find a family of propositional formulae T such that T is satisfiable if and only if there is an injective function $f: A \rightarrow B$ such that $f \subseteq R$.

Exercise 7

Give a polynomial time algorithm that to any finite directed graph $G=(V, E)$ (i.e. $E \subseteq V \times V$, see http://en.wikipedia.org/wiki/Graph_(mathematics)) for detailed information) returns a formula φ_{G} such that φ_{G} is satisfiable if and only if G is strongly connected (see http://en.wikipedia.org/ wiki/Strongly_connected_component). It suffices to describe the formula φ_{G} and argue why it can be constructed in time polynomial in the size of G.
(Note: The algorithm itself must not compute whether the graph is strongly connected. In particular, the solution "decide whether G is strongly connected and return A if yes and $A \wedge \neg A$ otherwise" does not count)

Exercise 8

Give a polynomial time algorithm that to any finite directed graph $G=(V, E)$ returns a formula φ_{G} such that φ_{G} is satisfiable if and only if G contains a Hamiltonian cycle (http://en.wikipedia.org/ wiki/Hamiltonian_path).

It suffices to describe the formula φ_{G} and argue why it can be constructed in time polynomial in the size of G.

