Definition 1. Binary relation on set A is a set $R \subseteq A \times A$.

- R is reflexive \Leftrightarrow for all $a \in A$ holds $(a, a) \in R$
- R is symmetric \Leftrightarrow for all $a, b \in A$ holds: if $(a, b) \in R$, then $(b, a) \in R$
- R is transitive \Leftrightarrow for all $a, b, c \in A$ holds: if $(a, b),(b, c) \in R$, then $(a, c) \in R$
- R is an equivalence relation $\Leftrightarrow R$ is reflexive, symmetric and transitive

Exercise 1

Give an example of a set A and a binary relation R on A such that

1. R is reflexive and symmetric, but not transitive.
2. R is reflexive and transitive, but not symmetric.
3. R is symmetric and transitive, but not reflexive.

Exercise 2

Let $R, S \subseteq A \times A$ be equivalences on A. Prove or disprove the following statements:

1. $R \cap S$ is equivalence relation.
2. $R \cup S$ is equivalence relation.
3. $R \backslash S$ is equivalence relation.

Exercise 3

Prove or disprove the following statement: If $R, S \subseteq A \times A$ are equivalence relations on A, then $R \circ S$ is equivalence.

Exercise 4

How many equivalence relations on \emptyset exist?
Definition 2. Function from the set A to the set B is a relation $f \subseteq A \times B$ satisfying the following. For all $a \in A$ there is exactly one $b \in B$ cush that $(a, b) \in f$.

We write $f: A \rightarrow B$ and we also use $f(a)=b$ instead of $(a, b) \in f$.

1. $f: A \rightarrow B$ is injective \Leftrightarrow for all $a, b \in A$ such that $a \neq b$ we have $f(a) \neq f(b)$.
2. $f: A \rightarrow B$ is surjective \Leftrightarrow for all $b \in B$ there is $a \in A$ such that $f(a)=b$.
3. $f: A \rightarrow B$ is bijective $\Leftrightarrow f$ is both injective and surjective.

Exercise 5

Let $f: A \rightarrow B$ be a function. Prove that f is injective iff there is $g: B \rightarrow A$ such that $g \circ f=i d_{A}$ $\left(i d_{A}(a)=a\right.$ for all $\left.a \in A\right)$.

Definition 3. Let $R \subseteq A \times A$ be a relation on A.

- R is antisymmetric \Leftrightarrow for all $a, b \in A$ the following holds: if $(a, b),(b, a) \in R$, then $a=b$
- R is an ordering $\Leftrightarrow R$ is reflexive, transitive and antisymmetric.

We write $a R b$ instead of $(a, b) \in R$.
Definition 4. Ordered set is a tuple (A, \sqsubseteq) where A is a set and $\sqsubseteq \subset A \times A$ is an ordering on A.

Two ordered sets (A, \sqsubseteq) and (B, \preceq) are isomorphic iff there is a bijection $f: A \rightarrow B$ such that for all $a, b \in A$ we have $a \sqsubseteq b \Leftrightarrow f(a) \preceq f(b)$.

Exercise 6

Find two ordering \sqsubseteq and \preceq on $\mathbb{N}_{0}=\{0,1, \ldots\}$ such that $\left(\mathbb{N}_{0}, \sqsubseteq\right)$ and $\left(\mathbb{N}_{0}, \preceq\right)$ are not isomorphic.

Exercise 7

Find infinitely many orderings $\preceq_{0}, \preceq_{1}, \ldots$ on \mathbb{N}_{0} such that for all $i \neq j$ the ordered sets $\left(\mathbb{N}_{0}, \preceq_{i}\right)$ and $\left(\mathbb{N}_{0}, \preceq_{j}\right)$ are not isomorphic.

Exercise 8

Let \mathbb{U} be an uncountable set. Find an ordering \preceq_{s} on \mathbb{N}_{0} for each $s \in \mathbb{U}$ such that for any $s_{1}, s_{2} \in \mathbb{U}$ satisfying $s_{1} \neq s_{2}$ the ordered sets $\left(\mathbb{N}_{0}, \preceq_{s_{1}}\right)$ and $\left(\mathbb{N}_{0}, \preceq_{s_{2}}\right)$ are not isomorphic.

Exercise 9

Find two linear orderings \sqsubseteq and \preceq on \mathbb{N}_{0} such that $\left(\mathbb{N}_{0}, \sqsubseteq\right)$ and $\left(\mathbb{N}_{0}, \preceq\right)$ are not isomorphic.

Exercise 10

Find infinitely many linear orderings $\preceq_{0}, \preceq_{1}, \ldots$ on \mathbb{N}_{0} such that for all $i \neq j$ the ordered sets $\left(\mathbb{N}_{0}, \preceq_{i}\right)$ and $\left(\mathbb{N}_{0}, \preceq_{j}\right)$ are not isomorphic.

Exercise 11

Let \mathbb{U} be an uncountable set. Find a linear ordering \preceq_{s} on \mathbb{N}_{0} for each $s \in \mathbb{U}$ such that for any $s_{1}, s_{2} \in \mathbb{U}$ satisfying $s_{1} \neq s_{2}$ the ordered sets $\left(\mathbb{N}_{0}, \preceq_{s_{1}}\right)$ and $\left(\mathbb{N}_{0}, \preceq_{s_{2}}\right)$ are not isomorphic.

Exercise 12

Let (A, \sqsubseteq) be a finite ordered set. Prove that there is a linear ordering \preceq on A such that $\sqsubseteq \subseteq \preceq$.

