Definition 1. Binary relation on set A is a set $R \subseteq A \times A$.

- R is reflexive \Leftrightarrow for all $a \in A$ holds $(a, a) \in R$
- R is symmetric \Leftrightarrow for all $a, b \in A$ holds: if $(a, b) \in R$, then $(b, a) \in R$
- R is transitive \Leftrightarrow for all $a, b, c \in A$ holds: if $(a, b), (b, c) \in R$, then $(a, c) \in R$
- R is an equivalence relation \Leftrightarrow R is reflexive, symmetric and transitive

Exercise 1

Give an example of a set A and a binary relation R on A such that

- 1. R is reflexive and symmetric, but not transitive.
- 2. R is reflexive and transitive, but not symmetric.
- 3. R is symmetric and transitive, but not reflexive.

Exercise 2

Let $R, S \subseteq A \times A$ be equivalences on A. Prove or disprove the following statements:

- 1. $R \cap S$ is equivalence relation.
- 2. $R \cup S$ is equivalence relation.
- 3. $R \setminus S$ is equivalence relation.

Exercise 3

Prove or disprove the following statement: If $R, S \subseteq A \times A$ are equivalence relations on A, then $R \circ S$ is equivalence.

Exercise 4

How many equivalence relations on \emptyset exist?

Definition 2. Function from the set A to the set B is a relation $f \subseteq A \times B$ satisfying the following. For all $a \in A$ there is exactly one $b \in B$ cush that $(a, b) \in f$.

We write $f : A \to B$ and we also use f(a) = b instead of $(a, b) \in f$.

1. $f: A \to B$ is injective \Leftrightarrow for all $a, b \in A$ such that $a \neq b$ we have $f(a) \neq f(b)$.

2. $f: A \to B$ is surjective \Leftrightarrow for all $b \in B$ there is $a \in A$ such that f(a) = b.

3. $f: A \to B$ is bijective $\Leftrightarrow f$ is both injective and surjective.

Exercise 5

Let $f : A \to B$ be a function. Prove that f is injective iff there is $g : B \to A$ such that $g \circ f = id_A$ $(id_A(a) = a \text{ for all } a \in A).$

Definition 3. Let $R \subseteq A \times A$ be a relation on A.

- R is antisymmetric \Leftrightarrow for all $a, b \in A$ the following holds: if $(a, b), (b, a) \in R$, then a = b
- R is an ordering \Leftrightarrow R is reflexive, transitive and antisymmetric.

We write aRb instead of $(a, b) \in R$.

Definition 4. Ordered set is a tuple (A, \sqsubseteq) where A is a set and $\sqsubseteq \subset A \times A$ is an ordering on A.

Two ordered sets (A, \sqsubseteq) and (B, \preceq) are isomorphic iff there is a bijection $f : A \to B$ such that for all $a, b \in A$ we have $a \sqsubseteq b \Leftrightarrow f(a) \preceq f(b)$.

Exercise 6

Find two ordering \sqsubseteq and \preceq on $\mathbb{N}_0 = \{0, 1, \ldots\}$ such that $(\mathbb{N}_0, \sqsubseteq)$ and (\mathbb{N}_0, \preceq) are not isomorphic.

Exercise 7

Find infinitely many orderings \leq_0, \leq_1, \ldots on \mathbb{N}_0 such that for all $i \neq j$ the ordered sets (\mathbb{N}_0, \leq_i) and (\mathbb{N}_0, \leq_j) are not isomorphic.

Exercise 8

Let \mathbb{U} be an uncountable set. Find an ordering \leq_s on \mathbb{N}_0 for each $s \in \mathbb{U}$ such that for any $s_1, s_2 \in \mathbb{U}$ satisfying $s_1 \neq s_2$ the ordered sets $(\mathbb{N}_0, \leq_{s_1})$ and $(\mathbb{N}_0, \leq_{s_2})$ are not isomorphic.

Exercise 9

Find two linear orderings \sqsubseteq and \preceq on \mathbb{N}_0 such that $(\mathbb{N}_0, \sqsubseteq)$ and (\mathbb{N}_0, \preceq) are not isomorphic.

Exercise 10

Find infinitely many linear orderings \leq_0, \leq_1, \ldots on \mathbb{N}_0 such that for all $i \neq j$ the ordered sets (\mathbb{N}_0, \leq_i) and (\mathbb{N}_0, \leq_j) are not isomorphic.

Exercise 11

Let \mathbb{U} be an uncountable set. Find a linear ordering \leq_s on \mathbb{N}_0 for each $s \in \mathbb{U}$ such that for any $s_1, s_2 \in \mathbb{U}$ satisfying $s_1 \neq s_2$ the ordered sets $(\mathbb{N}_0, \leq_{s_1})$ and $(\mathbb{N}_0, \leq_{s_2})$ are not isomorphic.

Exercise 12

Let (A, \sqsubseteq) be a finite ordered set. Prove that there is a linear ordering \preceq on A such that $\sqsubseteq \subseteq \preceq$.