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Abstract

Sage is free, open-source math software that supports research and teaching in algebra,
geometry, number theory, cryptography, numerical computation, and related areas. Both the
Sage development model and the technology in Sage itself are distinguished by an extremely
strong emphasis on openness, community, cooperation, and collaboration: we are building
the car, not reinventing the wheel. The overall goal of Sage is to create a viable, free,
open-source alternative to Maple, Mathematica, Magma, and MATLAB.

This tutorial is the best way to become familiar with Sage in only a few hours. You can read
it in HTML or PDF versions, or from the Sage notebook (click Help, then click Tutorial to
interactively work through the tutorial from within Sage).
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CHAPTER
ONE

Introduction

This tutorial should take at most 3—4 hours to fully work through. You can read it in HTML
or PDF versions, or from the Sage notebook click Help, then click Tutorial to interactively
work through the tutorial from within Sage.

Though much of Sage is implemented using Python, no Python background is needed to
read this tutorial. You will want to learn Python (a very fun language!) at some point, and
there are many excellent free resources for doing so including [PyT] and [Dive]. If you just
want to quickly try out Sage, this tutorial is the place to start. For example:

sage: 2 + 2

4

sage: factor(-2007)
-1 % 372 % 223

sage: A = matrix(4,4, range(16)); A

[0 1 2 3]
[4 5 6 7]
[ 8 9 10 11]

[12 13 14 15]

sage: factor(A.charpoly())
x"2 * (x72 - 30*x - 80)

sage: m = matrix(ZZ,2, range(4))
sage: m[0,0] = m[0,0] - 3

sage: m
[-3 1]
[ 2 3]

sage: E = EllipticCurve([1,2,3,4,5]);

sage: E

Elliptic Curve defined by y™2 + x*y + 3%y = x"3 + 2*%x"2 + 4*x + b
over Rational Field




sage: E.anlist(10)

[O, 1, 1, O, -1, _3, O, -1, —3, -3) _3]
sage: E.rank()

1

sage: k = 1/(sqrt(3)*I + 3/4 + sqrt(73)*5/9); print

o

sqrt(3) I + —————————- + -
9 4
sage: N(k)
0.165495678130644 - 0.0521492082074256%1
sage: N(k,30) # 30 "bits"

0.16549568 - 0.052149208%1
sage: latex(k)
\frac{1}{{\sqrt{ 3 } i} + \frac{{5 \sqrt{ 73 }}}{9} + \frac{3}{4}}

1.1 Installation

If you do not have Sage installed on a computer and just want to try some Sage commands,
use Sage online at http://www.sagenb.org.

See the Sage Installation Guide in the documentation section of the main Sage webpage [SA]
for instructions on installing Sage on your computer. Here we merely make two comments.

1. The Sage download file comes with “batteries included”. In other words, although Sage
uses Python, IPython, PARI, GAP, Singular, Maxima, NTL, GMP, and so on, you do
not need to install them separately as they are included with the Sage distribution.
However, to use certain Sage features, e.g., Macaulay or KASH, you must install the
relevant optional Sage package or at least have the relevant programs installed on
your computer already. Macaulay and KASH are Sage packages (for a list of available
optional packages, type sage -optional, or browse the “Download” page on the Sage
website).

2. The pre-compiled binary version of Sage (found on the Sage web site) may be easier
and quicker to install than the source code version. Just unpack the file and run sage.

1.2 Ways to Use Sage

You can use Sage in several ways.
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1.3

Notebook graphical interface: see the section on the Notebook in the reference
manual and Section below,

Interactive command line: see Chapter [3]

Programs: By writing interpreted and compiled programs in Sage (see Section

and , and

Scripts: by writing stand-alone Python scripts that use the Sage library (see Sec-

tion .

Longterm Goals for Sage

Useful: Sage’s intended audience is mathematics students (from high school to grad-
uate school), teachers, and research mathematics. The aim is to provide software that
can be used to explore and experiment with mathematical constructions in algebra,
geometry, number theory, calculus, numerical computation, etc. Sage helps make it
easier to interactively experiment with mathematical objects.

Efficient: Be fast. Sage uses highly-optimized mature software like GMP, PARI, GAP,
and NTL, and so is very fast at certain operations.

Free and open source: The source code must be freely available and readable, so
users can understand what the system is really doing and more easily extend it. Just
as mathematicians gain a deeper understanding of a theorem by carefully reading or at
least skimming the proof, people who do computations should be able to understand
how the calculations work by reading documented source code. If you use Sage to
do computations in a paper you publish, you can rest assured that your readers will
always have free access to Sage and all its source code, and you are even allowed to
archive and re-distribute the version of Sage you used.

Easy to compile: Sage should be easy to compile from source for Linux, OS X and
Windows users. This provides more flexibility for users to modify the system.

Cooperation: Provide robust interfaces to most other computer algebra systems,
including PARI, GAP, Singular, Maxima, KASH, Magma, Maple, and Mathematica.
Sage is meant to unify and extend existing math software.

Well documented: Tutorial, programming guide, reference manual, and how-to, with
numerous examples and discussion of background mathematics.

Extensible: Be able to define new data types or derive from built-in types, and use
code written in a range of languages.

User friendly: It should be easy to understand what functionality is provided for a
given object and to view documentation and source code. Also attain a high level of
user support.

1.3.
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CHAPTER
TWO

A Guided Tour

This section is a guided tour of some of what is available in Sage. For many more exam-
ples, see “Sage Constructions”, which is intended to answer the general question “How do I
construct ...7”. See also the “Sage Reference Manual”, which has thousands more examples.
Also note that you can interactively work through this tour in the Sage notebook by clicking
the Help link.

Note: If you are viewing the tutorial in the Sage notebook, press shift-enter to evaluate
any input cell. You can even edit the input before pressing shift-enter. On some Macs you
might have to press shift-return rather than shift-enter.

2.1 Assignment, Equality, and Arithmetic

With some minor exceptions, Sage uses the Python programming language, so most intro-
ductory books on Python will help you to learn Sage.

Sage uses = for assignment. It uses ==,<=,>=,< and > for comparison:
sage: a =5
sage: a

5

sage: 2 == 2
True

sage: 2 == 3
False

sage: 2 < 3
True

sage: a ==
True

Sage provides all of the basic mathematical operations:

sage: 2%*3 # ** means exponent
8




sage: 273 # ~ is a synonym for ** (unlike in Python)

8

sage: 10 % 3 # for integer arguments, ’ means mod, i.e., remainder
1

sage: 10/4

5/2

sage: 10//4 # for integer arguments, // returns the integer quotient
2

sage: 4 *x (10 // 4) + 10 % 4 == 10

True

sage: 372*4 + 2J5

38

The computation of an expression like 3724 + 25 depends on the order in which the
operations are applied; this is specified in the “operator precedence table” in Section [A.1]

Sage also provides many familiar mathematical functions; here are just a few examples:

sage: sqrt(3.4)
1.84390889145858
sage: sin(5.135)
-0.912021158525540
sage: sin(pi/3)
sqrt(3)/2

As the last example shows, some mathematical expressions return ’exact’ values, rather than
numerical approximations. To get a numerical approximation, use either the function n or
the method n (and both of these have a longer name, numerical approx, and the function
N is the same as n)). These take optional arguments prec, which is the requested number of
bits of precision, and digits, which is the requested number of decimal digits of precision;
the default is 53 bits of precision.

sage: exp(2)

e"2

sage: n(exp(2))

7.38905609893065

sage: sqrt(pi).numerical_approx()
1.77245385090552

sage: sin(10).n(digits=5)

-0.54402

sage: N(sin(10),digits=10)
-0.5440211109

sage: numerical_approx(pi, prec=200)
3.1415926535897932384626433832795028841971693993751058209749

Python is dynamically typed, so the value referred to by each variable has a type associated
with it, but a given variable may hold values of any Python type within a given scope:
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sage: a = b5 # a is an integer

sage: type(a)

<type ’sage.rings.integer.Integer’>

sage: a = 5/3 # now a is a rational number
sage: type(a)

<type ’sage.rings.rational.Rational’>

sage: a = ’hello’ # now a is a string
sage: type(a)

<type ’str’>

The C programming language, which is statically typed, is much different; a variable declared

to hold an int can only hold an int in its scope.

A potential source of confusion in Python is that an integer literal that begins with a zero
is treated as an octal number, i.e., a number in base 8.

sage: 011

9

sage: 8 + 1
9

sage: n = 011
sage: n.str(8) # string representation of n in base 8
7117

This is consistent with the C programming language.

2.2 Getting Help

Sage has extensive built-in documentation, accessible by typing the name of a function or a
constant (for example), followed by a question mark:

sage: tan?

Type: <class ’sage.calculus.calculus.Function_tan’>
Definition: tan( [noargspec] )
Docstring:

The tangent function

EXAMPLES:
sage: tan(pi)
0
sage: tan(3.1415)
-0.0000926535900581913
sage: tan(3.1415/4)
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0.999953674278156
sage: tan(pi/4)

1

sage: tan(1/2)
tan(1/2)

sage: RR(tan(1/2))
0.546302489843790

sage: log2?

Type: <class ’sage.functions.constants.Log2’>
Definition: log2( [noargspec] )

Docstring:

The natural logarithm of the real number 2.

EXAMPLES:
sage: log2
log2
sage: float(log2)
0.69314718055994529
sage: RR(log2)
0.693147180559945
sage: R = RealField(200); R
Real Field with 200 bits of precision
sage: R(log2)
0.69314718055994530941723212145817656807550013436025525412068
sage: 1 = (1-1log2)/(1+log2); 1
(1 - 1log(2))/(log(2) + 1)
sage: R(1)
0.18123221829928249948761381864650311423330609774776013488056
sage: maxima(log2)
log(2)
sage: maxima(log2).float()
.6931471805599453
sage: gp(log2)
0.6931471805599453094172321215 # 32-bit
0.69314718055994530941723212145817656807  # 64-bit
sage: sudoku?

File: sage/local/lib/python2.5/site-packages/sage/games/sudoku.py
Type: <type ’function’>

Definition: sudoku(A)

Docstring:

Solve the 9x9 Sudoku puzzle defined by the matrix A.

EXAMPLE:
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sage: A = matrix(Zz,9,[5,0,0, 0,8,0, 0,4,9, 0,0,0, 5,0,0,
0,3,0, 0,6,7, 3,0,0, 0,0,1, 1,5,0, 0,0,0, 0,0,0, 0,0,0, 2,0,8, 0,0,0,
0,0,0, 0,0,0, 0,1,8, 7,0,0, 0,0,4, 1,5,0, 0,3,0, 0,0,2,
0,0,0, 4,9,0, 0,5,0, 0,0,3])

sage: A

[5000800 4 9]

[0O005000 30]

[067 30000 1]

[1 5000000 0]

[00020800 0]

[00000O0O0 18]

[70000415 0]

[030002000]

[49005000 3]

sage: sudoku(A)

[613687249]

8495216 37]

267 34958 1]

[15846397 2]

97421836 5]

32679541 8]

[78293415 6]

63517289 4]

[49185672 3]

Sage also provides ‘Tab completion’: type the first few letters of a function and then hit the
tab key. For example, if you type ta followed by TAB, Sage will print tachyon_rt, tan,
tanh, taylor. This provides a good way to find the names of functions and other structures
in Sage.

2.3 Functions, Indentation, and Counting

To define a new function in Sage, use the def command and a colon after the list of variable
names. For example:

sage: def is_even(n):
ce return nj%2 ==
sage: is_even(2)

True

sage: is_even(3)

False

Note: You should not type the triple dots ... above; they are just to emphasize that the
code is indented.

2.3. Functions, Indentation, and Counting 9



You do not specify the types of any of the input arguments. You can specify multiple inputs,
each of which may have an optional default value. For example, the function below defaults
to divisor=2 if divisor is not specified.

sage: def is_divisible_by(number, divisor=2):
.. return number}divisor ==
sage: is_divisible_by(6,2)

True

sage: is_divisible_by(6)
True

sage: is_divisible_by(6, 5)
False

You can also explicitly specify one or either of the inputs when calling the function; if you
specify the inputs explicitly, you can give them in any order:

sage: is_divisible_by(6, divisor=5)

False

sage: is_divisible_by(divisor=2, number=6)
True

In Python, blocks of code are not indicated by curly braces or begin and end blocks as
in many other languages. Instead, blocks of code are indicated by indentation, which must
match up exactly. For example, the following is a syntax error because the return statement
is not indented the same amount as the other lines above it.

sage: def even(n):
v =[]
for i in range(3,n):
if 1 % 2 == 0:
v.append (i)
.. return v
Syntax Error:
return v

If you fix the indentation, the function works:

sage: def even(n):
v =[]
for i in range(3,n):
if 1 % 2 == 0:
v.append (i)
R return v
sage: even(10)
(4, 6, 8]
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Semicolons are not needed at the ends of lines; a line is in most cases ended by a newline.
However, you can put multiple statements on one line, separated by semicolons:

sage: a =b5b; b=a+ 3; c =b"2; c
64

If you would like a single line of code to span multiple lines, use a terminating backslash:

sage: 2 + \
ce 3
5

In Sage, you count by iterating over a range of integers. For example, the first line below is
exactly like for (i=0; i<3; i++) in C++ or Java:

sage: for i in range(3):
c. print i

0
1
2

The first line below is like for (i=2;i<5;i++).

sage: for i in range(2,5):
ce print i

2
3
4

The third argument controls the step, so the following is like for(i=1;i<6;i+=2).

sage: for i in range(1,6,2):
.. print i

1
3
5

Often you will want to create a nice table to display numbers you have computed using Sage.
One easy way to do this is to use string formatting. Below, we create three columns each of
width exactly 6 and make a table of squares and cubes.

sage: for i in range(5):
print ’%6s %6s %6s’%(i, i"2, i°3)
0 0 0

2.3. Functions, Indentation, and Counting 11



1 1 1
2 4 8
3 9 27
4 16 64

The most basic data structure in Sage is the list, which is — as the name suggests — just a
list of arbitrary objects. For example, the range command that we used creates a list:

sage: range(2,10)
(2, 3, 4, 5, 6, 7, 8, 9]

Here is a more complicated list:
sage: v = [1, "hello", 2/3, sin(x"3)]
sage: v

[1, ’hello’, 2/3, sin(x"3)]

List indexing is 0-based, as in many programming languages.

sage: v[0]
1

sage: v[3]
sin(x"3)

Use len(v) to get the length of v, use v.append(obj) to append a new object to the end
of v, and use del v[i] to delete the ith entry of v:

sage: len(v)

4
sage: v.append(1.5)
sage: Vv

[1, ’hello’, 2/3, sin(x~3), 1.50000000000000]
sage: del v[1]

sage: v

[1, 2/3, sin(x~3), 1.50000000000000]

Another important data structure is the dictionary (or associative array). This works like a
list, except that it can be indexed with almost any object (the indices must be immutable):

sage: d = {’hi’:-2, 3/8:pi, e:pi}
sage: d[’hi’]

-2

sage: dl[e]

pi
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You can also define new data types using classes. Encapsulating mathematical objects with
classes is a powerful technique that can help to simplify and organize your Sage programs.
Below, we define a class that represents the list of even positive integers up to n; it derives
from the builtin type 1list.

sage: class Evens(list):
def __init__(self, n):
self.n =n
list.__init__(self, range(2, nt+l, 2))
def __repr__(self):
return "Even positive numbers up to n."

The __init__ method is called to initialize the object when it is created; the __repr__
method prints the object out. We call the list constructor method in the second line of the
__init__ method. We create an object of class Evens as follows:

sage: e = Evens(10)
sage: e
Even positive numbers up to n.

Note that e prints using the __repr__ method that we defined. To see the underlying list
of numbers, use the 1ist function:

sage: list(e)
(2, 4, 6, 8, 10]

We can also access the n attribute or treat e like a list.

sage: e.n
10

sage: e[2]
6

2.4 Basic Algebra and Calculus

Sage can perform various computations related to basic algebra and calculus: for example,
finding solutions to equations, differentiation, integration, and Laplace transforms. See the
“Sage Constructions” documentation for more examples.

2.4.1 Solving Equations

The solve function solves equations. To use it, first specify some variables; then the argu-
ments to solve are an equation (or a system of equations), together with the variables for
which to solve:

2.4. Basic Algebra and Calculus 13



sage: x = var(’x’)
sage: solve(x™2 + 3*x + 2, x)
[X == —2, X == —1]

You can solve equations for one variable in terms of others:

sage: x, b, ¢ = var(’x b ¢’)

sage: solve([x"2 + bxx + ¢ == 0],x)

[x == (-sqrt(b"2 - 4xc) - b)/2, x == (sqrt(b"2 - 4*c) - b)/2]
You can also solve for several variables:

sage: x, y = var(’x, y’)

sage: solve([x+y==6, x-y==4], x, y)

[[X == 5, y == 1]]

The following example of using Sage to solve a system of non-linear equations was provided
by Jason Grout: first, we solve the system symbolically:

sage: var(’x y p q’)

=, ¥, ps @

sage: eql = p+tg==

sage: eq2 = qxy+p*x==-6
sage: eq3 = q*y 2+p*xx~2==24

sage: solve([eql,eq2,eq3,p==1],p,q,X,y)
[[p==1, q ==8, x == (-4%sqrt(10) - 2)/3, y == (sqrt(2)*sqrt(5) - 4)/6],
[p==1, q == 8, x == (4xsqrt(10) - 2)/3, y == (-sqrt(2)*sqrt(5) - 4)/6]]

For a numerical solution, you can instead use:

sage: solns = solve([eql,eq2,eq3,p==1],p,q,%,y, solution_dict=True)
sage: [[slp].n(30), sl[ql.n(30), s[x].n(30), sly].n(30)] for s in solns]
[[1.0000000, 8.0000000, -4.8830369, -0.13962039],

[1.0000000, 8.0000000, 3.5497035, -1.1937129]]

(The function n prints a numerical approximation, and the argument is the number of bits
of precision.)

2.4.2 Differentiation, Integration, etc.

Sage knows how to differentiate and integrate many functions. For example, to differentiate
sin(u) with respect to u, do the following:
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sage: u = var(’u’)
sage: diff(sin(u), u)
cos (u)

To compute the fourth derivative of sin(z?):

sage: diff(sin(x~2), x, 4)
16*x"4*sin(x"2) - 12*sin(x"2) - 48%*x"2*cos(x"2)

To compute the partial derivatives of 22 + 17y* with respect to z and y, respectively:

sage: x, y = var(’x,y’)
sage: f = x72 + 17*xy"2
sage: f.diff(x)

2%x

sage: f.diff(y)

34x*y

We move on to integrals, both indefinite and definite. To compute [ xsin(z?)dz and
1
Jo #rdr:

sage: integral(xxsin(x~2), x)
-cos(x72)/2

sage: integral(x/(x"2+1), x, 0, 1)
log(2)/2

To compute the partial fraction decomposition of z2—1_1:

sage: f = 1/((1+x)*(x-1))

sage: f.partial_fraction(x)
1/(2x(x - 1)) - 1/(2*x(x + 1))
sage: print f.partial_fraction(x)

2 (x - 1) 2 (x + 1)

2.4.3 Solving Differential Equations

You can use Sage to investigate ordinary differential equations. To solve the equation x’ 4+
z—1=0:

sage: t = var(’t’) # define a variable t

sage: x = function(’x’,t) # define x to be a function of that variable
sage: DE = lambda y: diff(y,t) +y - 1

sage: desolve(DE(x(t)), [x,tl)

Vhe”—tx (e t+%c)’
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This uses Sage’s interface to Maxima [Max]|, and so its output may be a bit different from
other Sage output. In this case, this says that the general solution to the differential equation
is z(t) = e (e + ¢).

You can compute Laplace transforms also; the Laplace transform of t?e* —sin(t) is computed
as follows:

sage: s = var("s")

sage: t = var("t")

sage: f = t"2xexp(t) - sin(t)
sage: f.laplace(t,s)

2/(s - 1)°3 - 1/(s"2 + 1)

Here is a more involved example. The displacement from equilibrium (respectively) for a
coupled spring attached to a wall on the left

| ===——= \/N/N/N/N\-—-Imass1|----\/\/\/\/\/----|mass2]|
springl spring?2

is modeled by the system of 2nd order differential equations
mla:’{ + (kl + k’g)l’l — ]{21'2 = 0, mz.’ﬂg + kz(.’l?Q — xl) = O,
where m; is the mass of object i, z; is the displacement from equilibrium of mass i, and k;

is the spring constant for spring .

Example: Use Sage to solve the above problem with m; = 2, ms = 1, k1 = 4, ko = 2,
x1(0) = 3, 21(0) = 0, 22(0) = 3, 24,(0) = 0.

Solution: Take the Laplace transform of the first equation (with the notation x = 1, y = x»):

sage: del = maxima("2+diff(x(t),t, 2) + 6*x(t) - 2*xy(t)")
sage: ldel = del.laplace("t","s"); ldel

2% (-7%at (P diff (x(t),t,1),t=0)+s"2x7)laplace(x(t) ,t,s)-x(0)*s)-
2x7)laplace(y(t),t,s)+6x7%laplace(x(t),t,s)

This is hard to read, but it says that
—22(0) + 25 x X (5) — 252(0) — 2Y(s) + 6X(s) =0

(where the Laplace transform of a lower case function like z(t) is the upper case function
X(s)). Take the Laplace transform of the second equation:

sage: de2 = maxima("diff(y(t),t, 2) + 2xy(t) - 2*x(t)")

sage: lde2 = de2.laplace("t","s"); lde2

-?%at (°diff (y(t),t,1),t=0)+s"2*?%laplace(y(t),t,s)+2*7%laplace(y(t),t,s)~
2%7%laplace(x(t),t,s)-y(0)*s
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This says
’ —Y'(0) + s*Y(s) + 2Y(s) — 2X (s) — sy(0) = 0.

Plug in the initial conditions for z(0), 2z/(0), y(0), and ¥'(0), and solve the resulting two
equations:

sage: var(’s X Y’)
(s, X, Y)
sage: eqns = [(2%s72+6)*xX-2xY == 6%s, -2%xX +(s72+2)*Y == 3x*s]
sage: solve(eqns, X,Y)
[[X == (B3%s"3 + 9%s)/(874 + 5*s"2 + 4),
Y == (3%s"3 + 15%s)/(s"4 + 5*s™2 + 4)]]

Now take inverse Laplace transforms to get the answer:

sage: var(’s t’)

(s, t)

sage: inverse_laplace((3*s”3 + 9%s)/(s"4 + 5%s”2 + 4),s,t)
cos(2%t) + 2*cos(t)

sage: inverse_laplace((3*%s~3 + 15%s)/(s”4 + b5*s”2 + 4),s,t)
4xcos(t) - cos(2*t)

Therefore, the solution is
x1(t) = cos(2t) 4+ 2cos(t), wa(t) = 4cos(t) — cos(2t).

This can be plotted parametrically using

sage: t = var(’t’)

sage: P = parametric_plot((cos(2*t) + 2x*cos(t), 4*cos(t) - cos(2*t) ),\
0, 2*pi, rgbcolor=hue(0.9))

sage: show(P)

The individual components can be plotted using

sage: t = var(’t’)
sage: pl = plot(cos(2*t) + 2*cos(t), 0, 2*pi, rgbcolor=hue(0.3))
sage: p2 = plot(4xcos(t) - cos(2*xt), 0, 2%pi, rgbcolor=hue(0.6))
sage: show(pl + p2)

(For more on plotting, see Section )

REFERENCES: Nagle, Saff, Snider, Fundamentals of Differential FEquations, 6th ed,
Addison-Wesley, 2004. (see §5.5).
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2.4.4 Euler's Method for Systems of Differential Equations

In the next example, we will illustrate Euler’s method for first and second order ODEs. We
first recall the basic idea for first order equations. Given an initial value problem of the form

y = flz,y), wyla)=c,

we want to find the approximate value of the solution at x = b for any given b with b > a.

Recall from the definition of the derivative that

oy Y@+ h) —y(r)
Yy (r) ~ h ,

. . : ~ Yath)—y(z)
where h > 0 is given and small. This and the DE together give f(z,y(r)) =~ £==—"%.
Now solve for y(x + h):

y(a +h) = y(x) + hf(z,y(@)).

If we call hf(z,y(x)) the “correction term” (for lack of anything better), call y(x) the “old
value of y”, and call y(x + h) the “new value of y’, then this approximation can be re-
expressed as

Unew =~ Yold + h - f($7 yold)-

If we break the interval from a to b into n steps, so that h = b’T“, then we can record the
information for this method in a table.

T y hi(2,y)
a c hf(a,c)
at+h | c+hfla,c)
a+2h
b=a+nh 777

The goal is to fill out all the blanks of the table, one row at a time, until we reach the 777
entry, which is the Euler’s method approximation for y(b).

The idea for systems of ODEs is similar.

Example: Numerically approximate z(t) at t=1 using 4 steps of Euler’s method, where
2+t +2=0,2(0) =1, 2/(0) = 0.

One must reduce the 2nd order ODE down to a system of two first order DEs (using = = z,
y = 2') and apply Euler’s method:

sage: t,x,y = PolynomialRing(RealField(10),3,"txy") .gens()

sage: T =y; g=-x -y *xt

sage: eulers_method_2x2(f,g, 0, 1, 0, 1/4, 1)
t X h*f (t,x,y) y hxg(t,x,y)
0 1 0.00000 0 -0.25000
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1/4 1.0000 -0.062500 -0.25000 -0.23438

1/2 0.93750 -0.11719 -0.46875 -0.17578
3/4 0.82031 -0.15381 -0.61523 -0.089722
1 0.66602 -0.16650 -0.66602 0.00000

Therefore, z(1) ~ 0.75.

We can also plot the points (z,y) to get an approximate picture of the curve. The function
eulers_method 2x2 plot will do this; in order to use it, we need to define functions fand
g which takes one argument with three coordinates: (¢, z, y).

sage: f = lambda z: z[2] # £(t,x,y) =y
sage: g = lambda z: -sin(z[1]) # g(t,x,y) = -sin(x)
sage: P = eulers_method_2x2_plot(f,g, 0.0, 0.75, 0.0, 0.1, 1.0)

At this point, P is storing two plots: P[0], the plot of x vs. ¢, and P[1], the plot of y vs. ¢
We can plot both of these as follows:

sage: show(P[0] + P[1])

(For more on plotting, see Section [2.5])

2.4.5 Special functions

Several orthogonal polynomials and special functions are implemented, using both PARI
[GP] and Maxima [Max]|. These are documented in the appropriate sections (“Orthogonal
polynomials” and “Special functions”, respectively) of the Sage reference manual.

sage: x = polygen(QQ, ’x’)

sage: chebyshev_U(2,x)

4%x72 - 1

sage: bessel_I(1,1,"pari",250)
0.56515910399248502720769602760986330732889962162109200948029448947925564096
sage: bessel_I(1,1)

0.565159103992485

sage: bessel_I(2,1.1,"maxima" # last few digits are random
0.16708949925104899

At this point, Sage has only wrapped these functions for numerical use. For symbolic use,
please use the Maxima interface directly, as in the following example:

sage: maxima.eval("f:bessel_y(v, w)")

> ?Ybessel_y(v,w)’

sage: maxima.eval("diff(f,w)")

' (?%bessel_y(v-1,w)-7%bessel_y(v+1l,w))/2’
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2.5 Plotting

Sage can produce two-dimensional and three-dimensional plots.

2.5.1 Two-dimensional Plots

In two dimensions, Sage can draw circles, lines, and polygons; plots of functions in rectangular
coordinates; and also polar plots, contour plots and vector field plots. We present examples
of some of these here. For more examples of plotting with Sage, see sections and [4.4]
and also the “Sage Constructions” documentation.

This command produces a yellow circle of radius 1, centered at the origin:
sage: circle((0,0), 1, rgbcolor=(1,1,0))

You can also produce a filled circle:

sage: circle((0,0), 1, rgbcolor=(1,1,0), fill=True)

You can also create a circle by assigning it to a variable; this does not plot it:
sage: ¢ = circle((0,0), 1, rgbcolor=(1,1,0))

To plot it, use c.show() or show(c), as follows:

sage: c.show()

Alternatively, evaluating c.save(’filename.png’) will save the plot to the given file.

It’s easy to plot basic functions:
sage: plot(cos, (-5,5))
Once you specify a variable name, you can create parametric plots also:

sage: x = var(’x’)
sage: parametric_plot((cos(x),sin(x)"~3),0,2xpi,rgbcolor=hue(0.6))

You can combine several plots by adding them:

sage: x = var(’x’)

sage: pl = parametric_plot((cos(x),sin(x)),0,2xpi,rgbcolor=hue(0.2))
sage: p2 = parametric_plot((cos(x),sin(x)"2),0,2*pi,rgbcolor=hue(0.4))
sage: p3 = parametric_plot((cos(x),sin(x)~3),0,2*pi,rgbcolor=hue(0.6))
sage: show(pl+p2+p3, axes=false)
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A good way to produce filled-in shapes is to produce a list of points (L in the example below)
and then use the polygon command to plot the shape with boundary formed by those points.
For example, here is a green deltoid:

sage: L = [[-1+cos(pi*i/100)* (1+cos(pi*i/100)),\
2xsin(pi*i/100)*(1-cos(pi*i/100))] for i in range(200)]

sage: p = polygon(L, rgbcolor=(1/8,3/4,1/2))

sage: show(p)

Type show(p, axes=false) to see this without any axes.

You can add text to a plot:

sage: L = [[6%cos(pi*i/100)+5*cos((6/2)*pi*i/100),\

...  6%sin(pi*i/100)-5*sin((6/2)*pi*i/100)] for i in range(200)]
sage: p = polygon(L, rgbcolor=(1/8,1/4,1/2))

sage: t = text("hypotrochoid", (5,4), rgbcolor=(1,0,0))

sage: g=p+t

sage: show(g)

Calculus teachers draw the following plot frequently on the board: not just one branch of
arcsin but rather several of them: i.e., the plot of y = sin(z) for x between —27 and 27,
flipped about the 45 degree line. The following Sage commands construct this:

sage: v = [(sin(x),x) for x in srange(-2*xfloat(pi),2*float(pi),0.1)]
sage: line(v)

Since the tangent function has a larger range than sine, if you use the same trick to plot the
inverse tangent, you should change the minimum and maximum coordinates for the z-axis:

sage: v = [(tan(x),x) for x in srange(-2*float(pi),2*float(pi),0.01)]
sage: P = line(v)
sage: show(P, xmin=-20, xmax=20)

Sage also computes polar plots, contour plots and vector field plots (for special types of
functions). Here is an example of a contour plot:

sage: f = lambda x,y: cos(x*y)
sage: C = contour_plot(f, (-4, 4), (-4, 4))
sage: show(C)

2.5.2 Three-Dimensional Plots

Sage produces three-dimensional plots using an open source package called [Jmol]. Here are
a few examples:

Yellow Whitney’s umbrella http://en.wikipedia.org/wiki/Whitney_umbrella:
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sage: u, v = var(’u,v’)

sage: fx = uxv

sage: fy = u

sage: fz = v72

sage: P = parametric_plot3d([fx, fy, fz], (u, -1, 1), (v, -1, 1),
...  frame=False, color="yellow")

sage: show(P)

Once you have evaluated show(P), so that the plot is visible, you can click and drag on it
to rotate the figure.

Cross cap http://en.wikipedia.org/wiki/Cross-cap:

sage: u, v = var(’u,v’)
sage: fx = (1l+cos(v))*cos(u)
sage: fy = (1+cos(v))*sin(u)

sage: fz = -tanh((2/3)*(u-pi))*sin(v)

sage: P = parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi),
- frame=False, color="red")

sage: show(P)

Twisted torus:

sage: u, v = var(’u,v’)

sage: fx = (3+sin(v)+cos(u))*cos(2*v)
sage: fy = (3+sin(v)+cos(u))*sin(2+v)
sage: fz = sin(u)+2*cos(v)

sage: P = parametric_plot3d([fx, fy, fz], (u, 0, 2*pi), (v, 0, 2*pi),
c frame=False, color="red")
sage: show(P)

2.6 Basic Rings

We illustrate some basic rings in Sage. For example, the field Q of rational numbers may be
referred to using either RationalField() or QQ:

sage: RationalField()
Rational Field

sage: QQ

Rational Field

sage: 1/2 in QQ

True

22 Chapter 2. A Guided Tour


http://en.wikipedia.org/wiki/Cross-cap

The decimal number 1.2 is considered to be in Q, since there is a coercion map from the
reals to the rationals:

sage: 1.2 in QQ
True

However, there is no coercion map from the finite field with 3 elements to Q:

sage: ¢ = GF(3)(1) # c is the element 1 of the field GF(3)
sage: ¢ in QQ
False

Also, of course, the symbolic constant 7 is not in Q:

sage: pi in QQ
False

The symbol I represents the square root of —1; i is a synonym for I. Of course, this is not

in Q:

sage: 1 # square root of -1
I

sage: 1 in QQ

False

By the way, some other pre-defined Sage rings are the integers ZZ, the real numbers RR, and
the complex numbers CC. We discuss polynomial rings in Section [2.7]

Now we illustrate some arithmetic.

sage: a, b = 4/3, 2/3
sage: a + b

2

sage: 2%b ==

True

sage: parent(2/3)
Rational Field

sage: parent(4/2)
Rational Field

sage: 2/3 + 0.1 # automatic coercion before addition
0.766666666666667
sage: 0.1 + 2/3 # coercion rules are symmetric in SAGE

0.766666666666667

There is one subtlety in defining complex numbers: as mentioned above, the symbol i
represents a square root of —1, but it is a formal square root of —1; it is not in the complex
numbers. Calling CC(i) returns the complex square root of —1.
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sage: 1 in CC

False

sage: i = CC(1) # floating point complex number
sage: z = a + bx*i

sage: z

1.33333333333333 + 0.666666666666667*1

sage: z.imag() # imaginary part
0.666666666666667

sage: z.real() == a  # automatic coercion before comparison
True

sage: QQ(11.1)

111/10

2.7 Polynomials

In this section we illustrate how to create and use polynomials in Sage.

2.7.1 Univariate Polynomials
There are three ways to create polynomial rings.

sage: R = PolynomialRing(QQ, ’t’)
sage: R
Univariate Polynomial Ring in t over Rational Field

This creates a polynomial ring and tells Sage to use (the string) ‘t’ as the indeterminate
when printing to the screen; however, this does not define the symbol t for use in Sage, so
you cannot use it to enter a polynomial (such as t? + 1) belonging to R.

An alternate way is
sage: S = QQ[’t’]
sage: S ==

True

This has the same issue regarding t.

A third very convenient way is

sage: R.<t> = PolynomialRing(QQ)
or
sage: R.<t> = QQ[’t’]
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or even
sage: R.<t> = QQ[]

This has the additional side effect that it defines the variable t to be the indeterminate of
the polynomial ring, so you can easily construct elements of R, as follows. (Note that the
third way is very similar to the constructor notation in Magma, and just as in Magma it can
be used for a wide range of objects.)

sage: poly = (t+1) * (t+2); poly
t72 + 3%t + 2

sage: poly in R

True

Whatever method you use to define a polynomial ring, you can recover the indeterminate as
the Oth generator:

sage: R = PolynomialRing(QQ, ’t’)
sage: t = R.0

sage: t in R

True

Note that a similar construction works with the complex numbers: the complex numbers
can be viewed as being generated over the real numbers by the symbol i; thus we have the
following:

sage: CC

Complex Field with 53 bits of precision
sage: CC.0 # Oth generator of CC
1.00000000000000*I

For polynomial rings, you can obtain both the ring and its generator, or just the generator,
during ring creation as follows:

sage: R, t = QQ[’t’].objgen()
sage: t = QQ[’t’].gen()
sage: R, t = objgen(QQ[’t’])
sage: t = gen(QQ[’t’])

Finally we do some arithmetic in Q[¢].

sage: R, t = QQ[’t’].objgen()
sage: f = 2%t~7 + 3%t"2 - 15/19
sage: 72
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4xt714 + 12%t79 - 60/19%t"7 + 9%t~4 - 90/19%t"2 + 225/361

sage: cyclo = R.cyclotomic_polynomial(7); cyclo

t76+tHh+t4+t°3+tT2+t +1

sage: g = 7 * cyclo * t°5 x (t°5 + 10*%t + 2)

sage: g

T*¥t~16 + 7*t715 + T*t714 + T*t"13 + T7*t712 + 91xt"11 + 91xt710 + 84%t~9
+ 84%t"8 + 84%t"7 + 84xt"6 + 14%t”5

sage: F = factor(g); F

(7) * £75 % (£°5 + 10%t + 2) * (t°6 + t°6 + t74 + t7°3 + t72 +t + 1)

sage: F.unit()

7

sage: list(F)

[(t, B), (£°5 + 10*t + 2, 1), (t76 + t75 + t74 + t"3 +t°2 +t + 1, 1)]

Notice that the factorization correctly takes into account and records the unit part.

If you were to use, e.g., the R.cyclotomic_polynomial function a lot for some research
project, in addition to citing Sage you should make an attempt to find out what component
of Sage is being used to actually compute the cyclotomic polynomial and cite that as well.
In this case, if you type R.cyclotomic_polynomial?? to see the source code, you’ll quickly
see a line f = pari.polcyclo(n) which means that PARI is being used for computation of

the cyclotomic polynomial. Cite PARI in your work as well.

Dividing two polynomials constructs an element of the fraction field (which Sage creates

automatically).
sage: x = QQ[’x’].0
sage: £ =x"3+1; g =x"2 - 17

sage: h = f/g; h

"3 + 1)/(x"2 - 17)

sage: h.parent()

Fraction Field of Univariate Polynomial Ring in x over Rational Field

Using Laurent series, one can compute series expansions in the fraction field of QQ[x]:

sage: R.<x> = LaurentSeriesRing(QQ); R

Laurent Series Ring in x over Rational Field

sage: 1/(1-x) + 0(x710)

1+x+x"2+x"3+x74+ x5+ x76+x77+x78+ x79 + 0(x710)

If we name the variable differently, we obtain a different univariate polynomial ring.

sage: R.<x>
sage: S.<y>
sage: X ==y

PolynomialRing(QQ)
PolynomialRing(QQ)
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False

sage: R == 8
False

sage: R(y)

X

sage: R(y"2 - 17)
x"2 - 17

The ring is determined by the variable. Note that making another ring with variable called

x does not return a different ring.

sage: R = PolynomialRing(QQ, "x")
sage: T = PolynomialRing(QQ, "x")
sage: R ==

True

sage: R is T

True

sage: R.O ==T.0

True

Sage also has support for power series and Laurent series rings over any base ring. In the
following example we create an element of F7[[T]] and divide to create an element of F7((T)).

sage: R.<T> = PowerSeriesRing(GF(7)); R
Power Series Ring in T over Finite Field of size 7
sage: £ =T + 3+T"2 + T"3 + 0(T"4)

sage: £°3
T"3 + 2xT"4 + 2xT"5 + 0(T"6)
sage: 1/f

T°-1 +4 + T + 0(T"2)
sage: parent(1/f)
Laurent Series Ring in T over Finite Field of size 7

You can also create power series rings using a double-brackets shorthand:

sage: GF(7)[[’T’]]
Power Series Ring in T over Finite Field of size 7

2.7.2 Multivariate Polynomials

To work with polynomials of several variables, we declare the polynomial ring and variables

first, in one of two ways.
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sage: R = PolynomialRing(GF(5),3,"z") # here, 3 = number of variables
sage: R
Multivariate Polynomial Ring in z0, zl1l, z2 over Finite Field of size 5

Just as for defining univariate polynomial rings, there are alternative ways:

sage: GF(5)[’z0, z1, z2’]

Multivariate Polynomial Ring in z0, zl, z2 over Finite Field of size b5
sage: R.<z0,z1,z2> = GF(5)[]; R

Multivariate Polynomial Ring in z0, zl1l, z2 over Finite Field of size 5

Also, if you want the variable names to be single letters then you can use the following
shorthand:

sage: PolynomialRing(GF(5), 3, ’xyz’)
Multivariate Polynomial Ring in x, y, z over Finite Field of size b

Next let’s do some arithmetic.

sage: z = GF(5)[’z0, z1, z2’].gens()

sage: z

(z0, z1, z2)

sage: (z[0]+z[1]+z[2])"2

z072 + 2xz0*zl1 + z172 + 2%z0*z2 + 2%zl1xz2 + 2272

You can also use more mathematical notation to construct a polynomial ring.

sage: R = GF(5) [’x,y,z’]

sage: X,y,z = R.gens()

sage: QQ[’x’]

Univariate Polynomial Ring in x over Rational Field

sage: QQ[’x,y’].gens()

(x, y)

sage: QQ[’x’].objgens()

(Univariate Polynomial Ring in x over Rational Field, (x,))

Multivariate polynomials are implemented in Sage using Python dictionaries and the “dis-
tributive representation” of a polynomial. Sage makes some use of Singular [Si], e.g., for
computation of ged’s and Grobner basis of ideals.

sage: R, (x, y) = PolynomialRing(RationalField(), 2, ’xy’).objgens()
sage: f = (x73 + 2*y~2xx)"2

sage: g = x"2xy~2

sage: f.gcd(g)

x"2
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Next we create the ideal (f, g) generated by f and g, by simply multiplying (f,g) by R (we
could also write ideal([f,g]) or ideal(f,g)).

sage: I = (f, g)*R; I

Ideal (x76 + 4xx"4*y~2 + 4xx"2*y~4, x"2*y~2) of Multivariate Polynomial
Ring in x, y over Rational Field

sage: B = I.groebner_basis(); B

[x"2xy~2, x76]

sage: x"2 in I

False

Incidentally, the Grobner basis above is not a list but an immutable sequence. This means
that it has a universe, parent, and cannot be changed (which is good because changing the
basis would break other routines that use the Grébner basis).

sage: B.parent()

Category of sequences in Multivariate Polynomial Ring in x, y over Rational
Field

sage: B.universe()

Multivariate Polynomial Ring in x, y over Rational Field

sage: B[1] = x

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.

Some (read: not as much as we would like) commutative algebra is available in Sage, im-
plemented via Singular. For example, we can compute the primary decomposition and
associated primes of I:

sage: I.primary_decomposition()

[Ideal (x72) of Multivariate Polynomial Ring in x, y over Rational Field,
Ideal (y~2,x"6) of Multivariate Polynomial Ring in x, y over Rational Field]

sage: I.associated_primes()

[Ideal (x) of Multivariate Polynomial Ring in x, y over Rational Field,
Ideal (y, x) of Multivariate Polynomial Ring in x, y over Rational Field]

2.8 Linear Algebra

Sage provides standard constructions from linear algebra, e.g., the characteristic polynomial,
echelon form, trace, decomposition, etc., of a matrix.

Creation of matrices and matrix multiplication is easy and natural:

sage: A = Matrix([[1,2,3],[3,2,1],[1,1,1]1])
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sage: w = vector([1,1,-4])

sage: wxA
(0, 0, 0
sage: Axw
(-9, 1, -2)

sage: kernel(A)

Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:

[1 1 -4]

Note that in Sage, the kernel of a matrix A is the “left kernel” i.e. the space of vectors w
such that wA = 0.

We create the space Matgy3(Q):

sage: M = MatrixSpace(QQ,3)
sage: M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field

(To specify the space of 3 by 4 matrices, you would use MatrixSpace(QQ,3,4). If the
number of columns is omitted, it defaults to the number of rows, so MatrixSpace(QQ,3) is
a synonym for MatrixSpace(QQ,3,3).) The space of matrices has a basis which Sage stores
as a list:

sage: B = M.basis()
sage: len(B)

9

sage: B[1]

[0 1 0]

[0 0 0]

[0 0 0]

We create a matrix as an element of M.

sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]

Next we compute its reduced row echelon form and kernel.

sage: A.echelon_form()
[1 0 -1]
[0 1 2]
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[0 O O]

sage: A.kernel()

Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:

[1-2 1]

Next we illustrate computation of matrices defined over finite fields:

sage: M = MatrixSpace(GF(2),4,8)

sage: A = M([1,1,0,0, 1,1,1,1, 0,1,0,0, 1,0,1,1,
e 0,0,1,0, 1,1,0,1, 0,0,1,1, 1,1,1,0])
sage: A

[11001111]

(0100101 1]

(0010110 1]

(0011111 0]

sage: rows = A.rows()

sage: A.columns()
[(1, 0, 0, 0), (14, 1, 0, 0), (0, O, 1, 1), (O, O, O, 1),
(1, 1,1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
sage: rows
(¢, 1, 0, 0,1, 1,1, 1), (0, 1, 0, 0, 1, 0, 1, 1),

1, 0 (0, 0, 1,1, 1, 1, 1, O]

We make the subspace over Fy spanned by the above rows.

sage: V = VectorSpace(GF(2),8)
sage: S = V.subspace(rows)
sage: S

Vector space of degree 8 and dimension 4 over Finite Field of size 2
Basis matrix:

1000010 0]
(0100101 1]
(0010110 1]
[0001001 1]
sage: A.echelon_form()
(1000010 0]
(0100101 1]
(0010110 1]
[0001001 1]

The basis of S used by Sage is obtained from the non-zero rows of the reduced row echelon
form of the matrix of generators of S.
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2.8.1 Sparse Linear Algebra

Sage has support for sparse linear algebra over PID’s.

sage: M = MatrixSpace(QQ, 100, sparse=True)
sage: A = M.random_element(density = 0.05)
sage: E = A.echelon_form()

The multi-modular algorithm in Sage is good for square matrices (but not so good for non-
square matrices):

sage: M = MatrixSpace(QQ, 50, 100, sparse=True)
sage: A = M.random_element (density = 0.05)

sage: E = A.echelon_form()

sage: M = MatrixSpace(GF(2), 20, 40, sparse=True)
sage: A = M.random_element ()

sage: E = A.echelon_form()

Note that Python is case sensitive:

sage: M = MatrixSpace(QQ, 10,10, Sparse=True)
Traceback (most recent call last):

TypeError: MatrixSpace() got an unexpected keyword argument ’Sparse’

Sage can compute eigenvalues and eigenvectors:

sage: MS = MatrixSpace(GF(7),2,2)

sage: g = MS([[5, 11, [4, 111)

sage: eigvals = [g.eigenspaces()[0][0], g.eigenspaces() [1]1[0]]; eigvals
4, 2]

sage: g.eigenspaces()

[

(4, Vector space of degree 2 and dimension 1 over Finite Field of size 7
User basis matrix:

[1 51),

(2, Vector space of degree 2 and dimension 1 over Finite Field of size 7
User basis matrix:

(1 1)
]

Eigenvalues and eigenvectors over Q or R can also be computed using Maxima (see section

below).
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2.9 Finite Groups, Abelian Groups

Sage has some support for computing with permutation groups, finite classical groups (such
as SU(n,q)), finite matrix groups (with your own generators), and abelian groups (even
infinite ones). Much of this is implemented using the interface to GAP.

For example, to create a permutation group, give a list of generators, as in the following
example.

sage: G = PermutationGroup([’(1,2,3)(4,5)’, ’(3,4)’])
sage: G

Permutation Group with generators [(1,2,3)(4,5), (3,4)]
sage: G.order()

120

sage: G.is_abelian()

False

sage: G.derived_series() # random-ish output

[Permutation Group with generators [(1,2,3)(4,5), (3,4)],
Permutation Group with generators [(1,5)(3,4), (1,5)(2,4), (1,3,5)]]
sage: G.center()

Permutation Group with generators [()]

sage: G.random_element () # random output

(1,5,3)(2,4)

sage: print latex(G)

\langle (1,2,3)(4,5), (3,4) \rangle

You can also obtain the character table (in KTEX format) in Sage

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3)]1])
sage: latex(G.character_table())

\left (\begin{array}{rrrr}

1&1&1&1\\

1 &1 & -\zeta_{3} - 1 & \zeta_{3} \\

1 &1 & \zeta_{3} & -\zeta_{3} - 1 \\

3&-1&0&0

\end{array}\right)

Sage also includes classical and matrix groups over finite fields:

sage: MS = MatrixSpace(GF(7), 2)

sage: gens = [MS([[1,0],[-1,1]11),MS([[1,1],[0,111)]
sage: G = MatrixGroup(gens)

sage: G.conjugacy_class_representatives()

I
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[1 0]
(o 1],
[0 1]
6 11,

[6 0]
[0 6]
]
sage: G = Sp(4,GF(7))
sage: G._gap_init_Q)
'Sp(4, 7)°
sage: G
Symplectic Group of rank 2 over Finite Field of size 7
sage: G.random_element () # random output
[5 5 5 1]
[0 2 6 3]
(501 0]
[4 6 3 4]
sage: G.order()
276595200

You can also compute using abelian groups (infinite and finite):

sage: F = AbelianGroup(5, [5,5,7,8,9], names=’abcde’)
sage: (a, b, ¢, d, e) = F.gens()

sage: d * b**2 * c**3

b~2%c”3*d

sage: F = AbelianGroup(3,[2]*3); F

Multiplicative Abelian Group isomorphic to C2 x C2 x C2
sage: H = AbelianGroup([2,3], names="xy"); H
Multiplicative Abelian Group isomorphic to C2 x C3
sage: AbelianGroup(5)

Multiplicative Abelian Group isomorphic to Z x Z x Zx Z x Z
sage: AbelianGroup(5).order()

+Infinity

2.10  Number Theory

Sage has extensive functionality for number theory. For example, we can do arithmetic in
Z/NZ as follows:

sage: R = IntegerModRing(97)

34 Chapter 2. A Guided Tour



sage: a = R(2) / R(3)

sage: a

33

sage: a.rational_reconstruction()
2/3

sage: b = R(47)
sage: b~20052005
50

sage: b.modulus()
97

sage: b.is_square()
True

Sage contains standard number theoretic functions. For example,

sage: gcd(515,2005)

5
sage: factor(2005)
5 *x 401

sage: ¢ = factorial(25); c
15511210043330985984000000

sage: [valuation(c,p) for p in prime_range(2,23)]
[22, 10, 6, 3, 2, 1, 1, 1]

sage: next_prime(2005)

2011

sage: previous_prime(2005)

2003

sage: divisors(28); sum(divisors(28)); 2*28
(1, 2, 4, 7, 14, 28]

56

56

Perfect!

Sage’s sigma(n,k) function adds up the kth powers of the divisors of n:

sage: sigma(28,0); sigma(28,1); sigma(28,2)
6

56

1050

We next illustrate the extended Euclidean algorithm, Euler’s ¢-function, and the Chinese

remainder theorem:

sage: d,u,v = xgcd(12,15)
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sage: d == ux12 + v*15
True

sage: n = 2005

sage: inverse_mod(3,n)

1337

sage: 3 * 1337

4011

sage: prime_divisors(n)

[6, 401]

sage: phi = n*prod([1 - 1/p for p in prime_divisors(n)]); phi
1600

sage: euler_phi(n)

1600

sage: prime_to_m_part(n, 5)
401

We next verify something about the 3n 4+ 1 problem.

sage: n = 2005
sage: for i in range(1000):
n = 3xodd_part(n) + 1
if odd_part(n)==1:
print i
break
38

Finally we illustrate the Chinese remainder theorem.

sage: x = crt(2, 1, 3, 5); x

11
sage: x % 3 # xmod 3 =2
2
sage: x %4 5 # xmod 5 =1
1

sage: [binomial(13,m) for m in range(14)]

(1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1]
sage: [binomial(13,m)%2 for m in range(14)]

(t, 1, 0, 0, 1, 1, 0, 0, 1, 1, O, O, 1, 1]

sage: [kronecker(m,13) for m in range(1,13)]

(¢, -1, 1, 1, -1, -1, -1, -1, 1, 1, -1, 1]

sage: n = 10000; sum([moebius(m) for m in range(1l,n)])

-23

sage: list(partitions(4))

(1, 1,1, 1), (1, 1, 2), (2, 2), (1, 3), 4,)]
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2.10.1 p-adic numbers

The field of p-adic numbers is implemented in Sage. Note that once a p-adic field is created,
you can not change its precision.

sage: K = Qp(11); K

11-adic Field with capped relative precision 20

sage: a = K(211/17); a

4 + 4%11 + 1172 + 71173 + 9%11°5 + 51176 + 4%x11°7 + 8%x11°8 + 7%x117°9
+ 9%11710 + 3*11711 + 10%11712 + 11713 + 5*%x11714 + 6%x11715 + 2*11716
+ 3%11717 + 11718 + 711719 + 0(11°20)

sage: b = K(3211/1172); b

10%117-2 + 5x11°-1 + 4 + 2*11 + 0(11718)

Much work has been done implementing rings of integers in p-adic fields or number fields
other than Q. The interested reader is invited to ask the experts on the sage-support
Google group for further details.

A number of related methods are already implemented in the NumberField class.

sage: R.<x> = PolynomialRing(QQ)

sage: K = NumberField(x"3 + x"2 - 2*x + 8, ’a’)
sage: K.integral_basis()

[1, a, 1/2*xa"2 + 1/2x*al

sage: K.galois_group()
Galois group PARI group [6, -1, 2, "S3"] of degree 3 of the Number Field
in a with defining polynomial x°3 + x"2 - 2%x + 8

sage: K.polynomial_quotient_ring()

Univariate Quotient Polynomial Ring in a over Rational Field with modulus
x"3 + x72 - 2xx + 8

sage: K.units()

[3%a”"2 + 13%a + 13]

sage: K.discriminant()

-503

sage: K.class_group()

Class group of order 1 with structure of Number Field in a with
defining polynomial x"3 + x"2 - 2%x + 8

sage: K.class_number()

1
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2.11 Some more advanced mathematics

2.11.1 Algebraic Geometry

You can define arbitrary algebraic varieties in Sage, but sometimes nontrivial functionality
is limited to rings over Q or finite fields. For example, we compute the union of two affine
plane curves, then recover the curves as the irreducible components of the union.

sage: x, y = AffineSpace(2, QQ, ’xy’).gens()
sage: C2 = Curve(x"2 + y°2 - 1)

sage: C3 = Curve(x"3 + y~3 - 1)

sage: D = C2 + C3

sage: D

Affine Curve over Rational Field defined by
Xh + xX73*y"2 + x"2%y"3 + yb-x"3-y3-x"2-y2+1
sage: D.irreducible_components()
[
Closed subscheme of Affine Space of dimension 2 over Rational Field defined
by:
x"3+y3-1,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined
by:
xX"2+y2-1
]

We can also find all points of intersection of the two curves by intersecting them and com-
puting the irreducible components.

sage: V = C2.intersection(C3)
sage: V.irreducible_components()

[
Closed subscheme of Affine Space of dimension 2 over Rational Field defined
by:

X+y+2

2xy~2 + 4xy + 3,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined

by:
y -1
X,
Closed subscheme of Affine Space of dimension 2 over Rational Field defined
by:
y
x -1
]
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Thus, e.g., (1,0) and (0,1) are on both curves (visibly clear), as are certain (quadratic)
points whose y coordinates satisfy 2y? + 4y + 3 = 0.

Sage can compute the toric ideal of the twisted cubic in projective 3 space:

sage: R.<a,b,c,d> = PolynomialRing(QQ, 4)
sage: I = ideal(b~2-a*c, c"2-b*d, a*d-b*c)
sage: F = I.groebner_fan(); F
Groebner fan of the ideal:
Ideal (b"2 - a*c, c”2 - bxd, -b*c + a*d) of Multivariate Polynomial Ring
in a, b, ¢, d over Rational Field
sage: F.reduced_groebner_bases ()
[[-c”2 + bxd, -bxc + axd, -b"2 + axc],
[c"2 - bxd, -b*c + axd, -b~2 + axc],
[c™2 - b*xd, b*c - a*d, -b"2 + axc, -b~3 + a~2xd],
[c™2 - b*xd, b*c - a*d, b3 - a~2%d, -b"2 + axc],
[c™2 - b*xd, b*c - axd, b~2 - axc],
[-c™2 + b*d, b™2 - a*c, -bxc + axd],
[-c”2 + b*xd, b*c - axd, b"2 - axc, -c”~3 + axd~2],
[c™3 - a*d™2, -c”2 + b*d, bxc - a*d, b~2 - axc]]
sage: F.polyhedralfan()
Polyhedral fan in 4 dimensions of dimension 4

2.11.2 Elliptic Curves

Elliptic curve functionality includes most of the elliptic curve functionality of PARI, access
to the data in Cremona’s online tables (this requires an optional database package), the
functionality of mwrank, i.e., 2-descents with computation of the full Mordell-Weil group,
the SEA algorithm, computation of all isogenies, much new code for curves over Q, and
some of Denis Simon’s algebraic descent software.

The command EllipticCurve for creating an elliptic curve has many forms:

EllipticCurve(la;,as,a3,a4,a6]): Returns the elliptic curve
y2 + a1y + azy = 3+ a2x2 + a4 + ag,

where the a;’s are coerced into the parent of a;. If all the a; have parent Z, they are
coerced into Q.

e EllipticCurve([ay,as]): Same as above, but a; = ay = az = 0.

e EllipticCurve(label): Returns the elliptic curve over Q from the Cremona database
with the given (new!) Cremona label. The label is a string, such as "11a" or "37b2".
The letter must be lower case (to distinguish it from the old labeling).

e EllipticCurve(j): Returns an elliptic curve with j-invariant j.
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e EllipticCurve(R, [ai,as,as3,a4,a6]): Create the elliptic curve over a ring R with
given a;’s as above.

We illustrate each of these constructors:

sage: EllipticCurve([0,0,1,-1,0])
Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field

sage: EllipticCurve([GF(5)(0),0,1,-1,0])
Elliptic Curve defined by y~2 + y = x°3 + 4*x over Finite Field of size b

sage: EllipticCurve([1,2])
Elliptic Curve defined by y"2 = x"3 + x + 2 over Rational Field

sage: EllipticCurve(’37a’)
Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field

sage: EllipticCurve(1)
Elliptic Curve defined by y"2 = x"3 + 5181*x - 5965058 over Rational Field

sage: EllipticCurve(GF(5), [0,0,1,-1,0])
Elliptic Curve defined by y"2 + y = x”3 + 4*x over Finite Field of size b

The pair (0,0) is a point on the elliptic curve F defined by y* + y = 23 — x. To create this
point in Sage type E([0,0]). Sage can add points on such an elliptic curve (recall elliptic
curves support an additive group structure where the point at infinity is the zero element
and three co-linear points on the curve add to zero):

sage: E = EllipticCurve([0,0,1,-1,0])

sage: E

Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field
sage: P = E([0,0])

sage: P + P

(1 :0:1)

sage: 10x*P

(161/16 : -2065/64 : 1)

sage: 20%P

(683916417/264517696 : -18784454671297/43021156807744 : 1)
sage: E.conductor()

37

The elliptic curves over the complex numbers are parameterized by the j-invariant. Sage
computes j-invariant as follows:
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sage: E = EllipticCurve([0,0,1,-1,0]); E

Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field
sage: E.j_invariant()

110692/37

If we make a curve with the same j-invariant as that of F, it need not be isomorphic to E. In
the following example, the curves are not isomorphic because their conductors are different.

sage: F = EllipticCurve(110592/37)
sage: factor(F.conductor())
276 * 372 x 3772

However, the twist of F' by 2 gives an isomorphic curve.

sage: G = F.quadratic_twist(-6%37); G
Elliptic Curve defined by y"2 + y = x"3 - x over Rational Field
sage: G.conductor()

37
sage: G.j_invariant()
110592/37

We can compute the coefficients a,, of the L-series or modular form ) °  a,q" attached to
the elliptic curve. This computation uses the PARI C-library:

sage: E = EllipticCurve([0,0,1,-1,0])

sage: print E.anlist(30)

(o, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,
3, 10, 2, 0, -1, 4, -9, -2, 6, -12]

sage: v = E.anlist(10000)

It only takes a second to compute all a,, for n < 10°:

sage: time v = E.anlist(100000)
CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s
Wall time: 1.06

Elliptic curves can be constructed using their Cremona labels. This pre-loads the elliptic
curve with information about its rank, Tamagawa numbers, regulator, etc.

sage: E = EllipticCurve("37b2")

sage: E

Elliptic Curve defined by y™2 + y = x"3 + x72 - 1873*x - 31833 over Rational
Field

sage: E = EllipticCurve("389a")
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sage: E

Elliptic Curve defined by y"2 + y = x"3 + x"2 - 2*%x over Rational Field
sage: E.rank()

2

sage: E = EllipticCurve("5077a")

sage: E.rank()

3

We can also access the Cremona database directly.

sage: db = sage.databases.cremona.CremonaDatabase ()
sage: db.curves(37)
{’at’: [[0, O, 1, -1, 0], 1, 1], ’b1’: [[O, 1, 1, -23, -50], O, 3]}
sage: db.allcurves(37)
{’a1’: [[0, O, 1, -1, 0], 1, 1],
’b1’: [[O0, 1, 1, -23, -50], O, 3],
'vb2’: [[0, 1, 1, -1873, -31833], 0, 1],
'p3’: [[0, 1, 1, -3, 1], O, 3]}

The objects returned from the database are not of type E11ipticCurve. They are elements
of a database and have a couple of fields, and that’s it. There is a small version of Cremona’s
database, which is distributed by default with Sage, and contains limited information about
elliptic curves of conductor < 10000. There is also a large optional version, which contains
extensive data about all curves of conductor up to 120000 (as of October 2005). There is
also a huge (2GB) optional database package for Sage that contains the hundreds of millions
of elliptic curves in the Stein-Watkins database.

2.11.3 Dirichlet Characters

A Dirichlet character is the extension of a homomorphism (Z/NZ)* — R*, for some ring R,
to the map Z — R obtained by sending those integers x with ged(N,z) > 1 to 0.

sage: G = DirichletGroup(21)

sage: list(G)

([1, 11, [-1, 11, [1, zeta6], [-1, zetaB], [1, zeta6 - 1], [-1, zeta6 - 1],
(1, -11, [-1, -11, [1, -zetab], [-1, -zetab], [1, -zetab + 1],
[-1, -zeta6 + 1]]

sage: G.gens()

([-1, 11, [1, zetab])

sage: len(G)

12

Having created the group, we next create an element and compute with it.
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sage: chi = G.1; chi

[1, zetab]

sage: chi.values()

[0, 1, zeta6 - 1, 0, —-zeta6, —zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,
0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]

sage: chi.conductor()

7

sage: chi.modulus()
21

sage: chi.order()

6

sage: chi(19)
-zeta6 + 1

sage: chi(40)
-zeta6 + 1

It is also possible to compute the action of the Galois group Gal(Q((x)/Q) on these char-
acters, as well as the direct product decomposition corresponding to the factorization of the
modulus.

sage: G.galois_orbits()

[

([1, 111,

[[1, zetaB], [1, -zeta6 + 111,
[[1, zeta6 - 1], [1, -zeta6]],
[([1, -111,

([-1, 117,

[[-1, zetaB], [-1, -zeta6 + 1]],
[[-1, zeta6 - 1], [-1, —-zetab]],
[[-1, -11]

]

sage: G.decomposition()
Group of Dirichlet characters of modulus 3 over Cyclotomic Field of order
6 and degree 2,

Group of Dirichlet characters of modulus 7 over Cyclotomic Field of order
6 and degree 2

Next, we construct the group of Dirichlet characters mod 20, but with values in Q(7):

sage: G = DirichletGroup(20)
sage: G.list()
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(f1, 11, [-1, 11, [1, zetad], [-1, zetad], [1, -11, [-1, -1], [1, -zetad],
[-1, -zeta4d]]

We next compute several invariants of G:
sage: G.gens()

(-1, 11, [1, zetadl)
sage: G.unit_gens()

[11, 17]

sage: G.zeta()

zetad

sage: G.zeta_order()
4

In this example we create a Dirichlet character with values in a number field. We explicitly
specify the choice of root of unity by the third argument to DirichletGroup below.

sage: x = polygen(QQ, ’x’)

sage: K = NumberField(x"4 + 1, ’a’); a = K.O
sage: b = K.gen(); a == b

True

sage: K

Number Field in a with defining polynomial x"4 + 1

sage: G = DirichletGroup(5, K, a); G

Group of Dirichlet characters of modulus 5 over Number Field in a with
defining polynomial x"4 + 1

sage: G.list()

(f11, (a~2], [-1], [-a"2]]

Here NumberField(x"4 + 1, ’a’) tells Sage to use the symbol “a” in printing what K is (a
“Number Field in a with defining polynomial 2% + 17). The name “a” is undeclared at this
point. Once a = K.O (or equivalently a = K.gen()) is evaluated, the symbol “a” represents

a root of the generating polynomial z* + 1.

2.11.4 Modular Forms

Sage can do some computations related to modular forms, including dimensions, computing
spaces of modular symbols, Hecke operators, and decompositions.

There are several functions available for computing dimensions of spaces of modular forms.
For example,

sage: dimension_cusp_forms(Gamma0O(11),2)
1
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sage: dimension_cusp_forms(Gamma0O(1),12)
1

sage: dimension_cusp_forms(Gammal(389),2)
6112

Next we illustrate computation of Hecke operators on a space of modular symbols of level 1
and weight 12.

sage: M = ModularSymbols(1,12)

sage: M.basis()

([X"8xY~2,(0,0)], [X"9%Y,(0,0)], [X"10,(0,0)]1)
sage: t2 = M.T(2)

sage: t2

Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)
of weight 12 with sign O over Rational Field
sage: t2.matrix()

[ 24 0 0]

[ 0 -24 0]

(4860 0 2049]

sage: f = t2.charpoly(’x’); f

x"3 - 2001%x"2 - 97776*x - 1180224

sage: factor(f)

(x - 2049) * (x + 24)"2

sage: M.T(11).charpoly(’x’).factor()

(x - 285311670612) * (x - 534612)°2

We can also create spaces for I'g(IV) and I'; (N).

sage: ModularSymbols(11,2)

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field

sage: ModularSymbols(Gammal(11),2)

Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with
sign O and over Rational Field

Let’s compute some characteristic polynomials and g-expansions.

sage: M = ModularSymbols(Gammal(11),2)
sage: M.T(2).charpoly(’x’)
x711 - 8%x710 + 20*x79 + 10*%x"8 - 145%x77 + 229%x"6 + b58*x"5 - 360*x"4
+ 70%x"3 - H51b6*x"2 + 1804*x - 1452
sage: M.T(2).charpoly(’x’).factor()
(x - 3) % (x +2)72 % (x74 - 7*x"3 + 19%x72 - 23%x + 11)
* (x74 - 2%xx73 + 4%x”2 + 2%x + 11)
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sage: S = M.cuspidal_submodule()
sage: S.T(2) .matrix()

[-2 0]

[ 0 -2]

sage: S.q_expansion_basis(10)
[

q - 2%q"2 - q°3 + 2%¥q74 + Q"5 + 2%q"6 - 2*q"7 - 2%q”~9 + 0(q"10)

We can even compute spaces of modular symbols with character.

sage: G = DirichletGroup(13)

sage: e = G.072

sage: M = ModularSymbols(e,2); M

Modular Symbols space of dimension 4 and level 13, weight 2, character

[zeta6], sign O, over Cyclotomic Field of order 6 and degree 2

sage: M.T(2).charpoly(’x’).factor()

(x - 2%zetab - 1) * (x - zetab - 2) * (x + zeta6 + 1)72

sage: S = M.cuspidal_submodule(); S

Modular Symbols subspace of dimension 2 of Modular Symbols space of

dimension 4 and level 13, weight 2, character [zeta6], sign O, over

Cyclotomic Field of order 6 and degree 2

sage: S.T(2).charpoly(’x’).factor()

(x + zetab + 1)72

sage: S.q_expansion_basis(10)

[

q + (-zetab - 1)*q~2 + (2*zetab - 2)*q~3 + zetab*xq 4 + (-2*zetab + 1)*q~5
+ (-2%zetab + 4)*q~6 + (2*zetab - 1)*q~8 - zetab*q~9 + 0(q~10)

]

Here is another example of how Sage can compute the action of Hecke operators on a space
of modular forms.

sage: T = ModularForms(GammaO(11),2)
sage: T

Modular Forms space of dimension 2 for Congruence Subgroup GammaO(11) of
weight 2 over Rational Field

sage: T.degree()

2

sage: T.level()

11

sage: T.group()

Congruence Subgroup GammaO(11)

sage: T.dimension()
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sage: T.cuspidal_subspace()

Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for
Congruence Subgroup GammaO(11) of weight 2 over Rational Field

sage: T.eisenstein_subspace()

Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2
for Congruence Subgroup GammaO(11) of weight 2 over Rational Field

sage: M = ModularSymbols(11); M

Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field

sage: M.weight()

2

sage: M.basis()

((1,0), (1,8), (1,9))

sage: M.sign()

0

Let 7T}, denote the usual Hecke operators (p prime). How do the Hecke operators T5, T5, T5
act on the space of modular symbols?

sage: M.T(2) .matrix()

[ 3 0 -1]
[ 0 -2 0]
[0 0 -2]
sage: M.T(3).matrix()
[4 0 -1]
[ 0-1 0]
[0 0 -1]
sage: M.T(5) .matrix()
[ 6 0 -1]
[0 1 0]
[0 O 1]
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CHAPTER
THREE

The Interactive Shell

In most of this tutorial we assume you start the Sage interpreter using the sage command.
This starts a customized version of the IPython shell, and imports many functions and
classes, so they are ready to use from the command prompt. Further customization is
possible by editing the SAGE_RO0T/ipythonrc file. Upon starting Sage you get output
similar to the following:

| SAGE Version 3.0.2, Release Date: 2008-05-24 |
| Type notebook() for the GUI, and license() for information. |

sage:
To quit Sage either press Ctrl-D or type quit or exit.

sage: quit
Exiting SAGE (CPU time OmO.00s, Wall time OmO.89s)

The wall time is the time that elapsed on the clock hanging from your wall. This is relevant,
since CPU time does not track time used by subprocesses like GAP or Singular.

Note: Avoid killing a Sage process with kill -9 from a terminal, since Sage might not kill
child processes, e.g., Maple processes, or cleanup temporary files from $HOME/ . sage/tmp.

3.1 Your Sage session

The session is the sequence of input and output from when you start Sage until you quit.
Sage logs all Sage input, via [Python. In fact if you're using the interactive shell (not the
notebook interface), then at any point you may type %hist to get a listing of all input lines
typed so far. You can type ? at the Sage prompt to find out more about IPython, e.g.,
“IPython offers numbered prompts ... with input and output caching. All input is saved and
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can be retrieved as variables (besides the usual arrow key recall). The following GLOBAL
variables always exist (so don’t overwrite them!)”:

previous input (interactive shell and notebook)
__: next previous input (interactive shell only)
_oh : list of all inputs (interactive shell only)

Here is an example:

sage: factor(100)

_1 =272 % 572

sage: kronecker_symbol(3,5)

2=-1

sage: %hist  #This only works from the interactive shell, not the notebook.
1: factor(100)

2: kronecker_symbol(3,5)

3: %hist

sage: _oh

4 ={1: 272 x 572, 2: -1}
sage: _il

_5 = ’factor(ZZ(100))\n’
sage: eval(_il)

_6 =272 x 572

sage: %hist

factor(100)
kronecker_symbol(3,5)
%hist

_oh

_i1

eval(_i1)

%hist

~N o O W N

We omit the output numbering in the rest of this tutorial and the other Sage documentation.

You can also store a list of input from session in a macro for that session.

sage: E = EllipticCurve([1,2,3,4,5])

sage: M = ModularSymbols(37)

sage: %hist

1: E = EllipticCurve([1,2,3,4,5])

2: M = ModularSymbols(37)

3: %hist

sage: Jmacro em 1-2

Macro ‘em‘ created. To execute, type its name (without quotes).
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sage: E
Elliptic Curve defined by y~2 + x*xy + 3%y
Rational Field

X"3 + 2xx"2 + 4*xx + 5 over

sage: E =56

sage: M = None
sage: em
Executing Macro...
sage: E

X3 + 2xx72 + 4xx + 5 over

Elliptic Curve defined by y~2 + x*xy + 3x*y
Rational Field

When using the interactive shell, any UNIX shell command can be executed from Sage by
prefacing it by an exclamation point (!). For example,

sage: !ls
auto example.sage glossary.tex t tmp tut.log tut.tex

returns the listing of the current directory.

The PATH has the Sage bin directory at the front, so if you run gp, gap, singular, maxima,
etc., you get the versions included with Sage.

sage: !'gp
Reading GPRC: /etc/gprc ...Done.

GP/PARI CALCULATOR Version 2.2.11 (alpha)
1686 running linux (ix86/GMP-4.1.4 kernel) 32-bit version

sage: !singular

SINGULAR / Development
A Computer Algebra System for Polynomial Computations /  version 3-0-1
0<
by: G.-M. Greuel, G. Pfister, H. Schoenemann \ October 2005

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

3.2 Logging Input and Output

Logging your Sage session is not the same as saving it (see for that). To log input (and
optionally output) use the logstart command. Type logstart? for more details. You can
use this command to log all input you type, all output, and even play back that input in a
future session (by simply reloading the log file).

was@form:~$ sage
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| SAGE Version 3.0.2, Release Date: 2008-05-24
| Type notebook() for the GUI, and license() for information. |

sage: logstart setup
Activating auto-logging. Current session state plus future input saved.

Filename : setup

Mode : backup

Output logging : False

Timestamping : False

State : active

sage: E = EllipticCurve([1,2,3,4,5]) .minimal_model ()
sage: F = QQ°3

sage: x,y = QQL’x,y’].gens()

sage: G = E.gens()

sage:

Exiting SAGE (CPU time OmO.61s, Wall time Om50.39s).

was@form:~$ sage

| SAGE Version 3.0.2, Release Date: 2008-05-24

| Type notebook() for the GUI, and license() for information. |

sage: load "setup"

Loading log file <setup> one line at a time...

Finished replaying log file <setup>

sage: E

Elliptic Curve defined by y"2 + x*xy = x"3 - x"2 + 4*x + 3 over Rational
Field

sage: Xxy
X*y

sage: G

[(2 : 3: 1]

If you use Sage in the Linux KDE terminal konsole then you can save your session as follows
after starting Sage in konsole, select “settings”, then “history...”, then “set unlimited”.
When you are ready to save your session, select “edit” then “save history as...” and type in
a name to save the text of your session to your computer. After saving this file, you could
then load it into an editor, such as xemacs, and print it.
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3.3 Paste Ignores Prompts

Suppose you are reading a session of Sage or Python computations and want to copy them
into Sage. But there are annoying >>> or sage: prompts to worry about. In fact, you can
copy and paste an example, including the prompts if you want, into Sage. In other words, by
default the Sage parser strips any leading >>> or sage: prompt before passing it to Python.
For example,

sage: 2710

1024

sage: sage: sage: 2710
1024

sage: >>> 2710

1024

3.4 Timing Commands

If you place the time command at the beginning of an input line, the time the command
takes to run will be displayed after the output. For example, we can compare the running
time for a certain exponentiation operation in several ways. The timings below will probably
be much different on your computer, or even between different versions of Sage. First, native
Python:

sage: time a = int(1938)~int(99484)
CPU times: user 0.66 s, sys: 0.00 s, total: 0.66 s
Wall time: 0.66

This means that 0.66 seconds total were taken, and the “Wall time”, i.e., the amount of time
that elapsed on your wall clock, is also 0.66 seconds. If your computer is heavily loaded with
other programs the wall time may be much larger than the CPU time.

Next we time exponentiation using the native Sage Integer type, which is implemented (in
Cython) using the GMP library:

sage: time a = 1938799484
CPU times: user 0.04 s, sys: 0.00 s, total: 0.04 s
Wall time: 0.04

Using the PARI C-library interface:

sage: time a = pari(1938) “pari(99484)
CPU times: user 0.05 s, sys: 0.00 s, total: 0.05 s
Wall time: 0.05
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GMP is better, but only slightly (as expected, since the version of PARI built for Sage uses
GMP for integer arithmetic).

You can also time a block of commands using the cputime command, as illustrated below:

sage: t = cputime()

sage: a = int(1938) " int(99484)

sage: b = 1938799484

sage: ¢ = pari(1938) "pari(99484)

sage: cputime(t) # somewhat random output
0.64

sage: cputime?

Return the time in CPU second since SAGE started, or with optional
argument t, return the time since time t.

INPUT:

t -- (optional) float, time in CPU seconds
QUTPUT:

float —- time in CPU seconds

The walltime command behaves just like the cputime command, except that it measures
wall time.

We can also compute the above power in some of the computer algebra systems that Sage
includes. In each case we execute a trivial command in the system, in order to start up
the server for that program. The most relevant time is the wall time. However, if there is
a significant difference between the wall time and the CPU time then this may indicate a
performance issue worth looking into.

sage: time 1938799484;

CPU times: user 0.01 s, sys: 0.00 s, total: 0.01 s
Wall time: 0.01

sage: gp(0)

0

sage: time g = gp(’1938799484’)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.04

sage: maxima(0)

0

sage: time g = maxima(’1938799484°)

CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s
Wall time: 0.30

sage: kash(0)

0
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sage: time g = kash(’1938799484’)

CPU times: user 0.00 s, sys: 0.00 s, total:

Wall time: 0.04
sage: mathematica(0)
0
sage: time g = mathematica(’1938799484’)

CPU times: user 0.00 s, sys: 0.00 s, total:

Wall time: 0.03

sage: maple(0)

0

sage: time g = maple(’1938799484°)

CPU times: user 0.00 s, sys: 0.00 s, total:

Wall time: 0.11

sage: gap(0)

0

sage: time g = gap.eval(’1938799484;;’)

CPU times: user 0.00 s, sys: 0.00 s, total:

Wall time: 1.02

0.00

0.00

0.00

0.00

Note that GAP and Maxima are the slowest in this test (this was run on the machine
sage.math.washington.edu). Because of the pexpect interface overhead, it is perhaps

unfair to compare these to Sage, which is the fastest.

3.5 Errors and Exceptions

When something goes wrong, you will usually see a Python “exception”. Python even tries to
suggest what raised the exception. Often you see the name of the exception, e.g., NameError
or ValueError (see the Python Reference Manual [Py] for a complete list of exceptions).

For example,

File "<console>", line 1
ZZ(3)_2

SyntaxError: invalid syntax

sage: EllipticCurve([0,infinity])

Traceback (most recent call last):

TypeError: Unable to coerce Infinity (<class ’sage...Infinity’>) to Rational

3.5. Errors and Exceptions
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The interactive debugger is sometimes useful for understanding what went wrong. You can
toggle it being on or off using %pdb (the default is off). The prompt ipdb> appears if an
exception is raised and the debugger is on. From within the debugger, you can print the
state of any local variable, and move up and down the execution stack. For example,

sage: %pdb
Automatic pdb calling has been turned ON
sage: EllipticCurve([1,infinity])

<type ’exceptions.TypeError’> Traceback (most recent call last)

ipdb>
For a list of commands in the debugger type 7 at the ipdb> prompt:

ipdb> 7?7

Documented commands (type help <topic>):

EQF break commands  debug h 1 pdef  quit tbreak
a bt condition disable help list pdoc r u
alias c cont down ignore n pinfo return unalias
args cl continue enable j next pp s up
b clear d exit jump P q step W

whatis where

Miscellaneous help topics:

exec pdb

Undocumented commands:

retval rv

Type Ctrl-D or quit to return to Sage.

3.6 Reverse Search and Tab Completion

First create the three dimensional vector space V = Q? as follows:
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sage: V = VectorSpace(QQ,3)
sage: V
Vector space of dimension 3 over Rational Field

You can also use the following more concise notation:
sage: V = QQ°3

Type the beginning of a command, then Ctrl-p (or just hit the up arrow key) to go back to
each line you have entered that begins in that way. This works even if you completely exit
Sage and restart later. You can also do a reverse search through the history using Ctrl-r.
All these features use the readline package, which is available on most flavors of Linux.

It is easy to list all member functions for V' using tab completion. Just type V., then type
the [tab key] key on your keyboard:

sage: V. [tab key]
V. _VectorSpace_generic__base_field

.ambient_space
.base_field
.base_ring
.basis
.coordinates

S <SS <

< -

.zero_vector

If you type the first few letters of a function, then [tab key], you get only functions that
begin as indicated.

sage: V.i[tab key]
V.is_ambient V.is_dense V.is_full V.is_sparse

If you wonder what a particular function does, e.g., the coordinates function, type
V.coordinates? for help or V.coordinates?? for the source code, as explained in the
next section.

3.7 Integrated Help System

Sage features an integrated help facility. Type a function name followed by ? for the
documentation for that function.
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sage: V = QQ°3
sage: V.coordinates?

Type: instancemethod

Base Class: <type ’instancemethod’>

String Form: <bound method FreeModule_ambient_field.coordinates of Vector
space of dimension 3 over Rational Field>

Namespace: Interactive

File: /home/was/s/local/lib/python2.4/site-packages/sage/modules/f
ree_module.py

Definition: V.coordinates(self, v)

Docstring:

Write v in terms of the basis for self.
Returns a list ¢ such that if B is the basis for self, then
sum c_i B_i = v.

If v is not in self, raises an ArithmeticError exception.

EXAMPLES:
sage: M = FreeModule(IntegerRing(), 2); MO,M1=M.gens()
sage: W = M.submodule([MO + M1, MO - 2xM1])

sage: W.coordinates(2+*M0O-M1)
(2, -1]

As shown above, the output tells you the type of the object, the file in which it is defined,
and a useful description of the function with examples that you can paste into your current
session. Almost all of these examples are regularly automatically tested to make sure they
work and behave exactly as claimed.

Another feature that is very much in the spirit of the open source nature of Sage is that if £
is a Python function, then typing £77 displays the source code that defines f. For example,

sage: V = QQ°3
sage: V.coordinates??
Type: instancemethod

Source:

def coordinates(self, v):
nnn

Write $v$ in terms of the basis for self.

return self.coordinate_vector(v).list()
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This tells us that all the coordinates function does is call the coordinate_vector function
and change the result into a list. What does the coordinate_vector function do?

sage: V = QQ°3
sage: V.coordinate_vector??

def coordinate_vector(self, v):
return self.ambient_vector_space() (v)

The coordinate_vector function coerces its input into the ambient space, which has the
effect of computing the vector of coefficients of v in terms of V. The space V is already
ambient since it’s just Q3. There is also a coordinate_vector function for subspaces, and
it’s different. We create a subspace and see:

sage: V = QQ"3; W = V.span_of_basis([V.0, V.1])
sage: W.coordinate_vector??

def coordinate_vector(self, v):
nnn

# First find the coordinates of v wrt echelon basis.

w = self.echelon_coordinate_vector(v)

# Next use transformation matrix from echelon basis to
# user basis.

T = self.echelon_to_user_matrix()

return T.linear_combination_of_rows(w)

(If you think the implementation is inefficient, please sign up to help optimize linear algebra.)

You may also type help(command name) or help(class) for a manpage-like help file about
a given class.

sage: help(VectorSpace)
Help on class VectorSpace ...

class VectorSpace(__builtin__.object)

| Create a Vector Space.

I
| To create an ambient space over a field with given dimension
| using the calling syntax ...
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When you type q to exit the help system, your session appears just as it was. The help
listing does not clutter up your session, unlike the output of function name? sometimes
does. It’s particularly helpful to type help(module name). For example, vector spaces
are defined in sage.modules.free_module, so type help(sage.modules.free_module)
for documentation about that whole module. When viewing documentation using help you
can search by typing / and in reverse by typing 7.

3.8 Saving and Loading Individual Objects

Suppose you compute a matrix or worse, a complicated space of modular symbols, and would
like to save it for later use. What can you do? There are several approaches that computer
algebra systems take to saving individual objects.

1. Save your Game: Only support saving and loading of complete sessions (e.g., GAP,
Magma).

2. Unified Input/Output: Make every object print in a way that can be read back in
(GP/PARI).

3. Eval: Make it easy to evaluate arbitrary code in the interpreter (e.g., Singular, PARI).

Because Sage uses Python it takes a different approach, which is that every object can be
serialized, i.e., turned into a string from which that object can be recovered. This is in
spirit similar to the unified I/O approach of PARI, except it doesn’t have the drawback that
objects print to screen in too complicated of a way. Also, support for saving and loading is
(in most cases) completely automatic, requiring no extra programming; it’s simply a feature
of Python that was designed into the language from the ground up.

Almost all Sage objects x can be saved in compressed form to disk using save(x, filename)
(or in many cases x.save(filename)). To load the object back in use load(filename).

sage: A = MatrixSpace(QQ,3) (range(9))"2

sage: A

[ 15 18 21]
[ 42 54 66]
[ 69 90 111]

sage: save(A, ’A’)
You should now quit Sage and restart. Then you can get A back:

sage: A = load(’A’)

sage: A

[ 156 18 21]
[ 42 54 66]
[ 69 90 111]
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You can do the same with more complicated objects, e.g., elliptic curves. All data about the
object that is cached is stored with the object. For example,

sage: E = EllipticCurve(’11a’)

sage: v = E.anlist(100000) # takes a while
sage: save(E, ’E’)

sage: quit

The saved version of E takes 153 kilobytes, since it stores the first 100000 a,, with it.

“/tmp$ 1s -1 E.sobj

-rw-r--r-—- 1 was was 153500 2006-01-28 19:23 E.sobj
~/tmp$ sage [...]

sage: E = load(’E’)

sage: v = E.anlist(100000) # instant!

Note: In Python saving and loading is accomplished using the cPickle module. In partic-
ular, a Sage object x can be saved via cPickle.dumps(x, 2). Note the 2!

Sage cannot save and load individual objects created in some other computer algebra systems,
e.g., GAP, Singular, Maxima, etc. They reload in a state marked “invalid”. In GAP,
though many objects print in a form from which they can be reconstructed, many don’t, so
reconstructing from their print representation is purposely not allowed.

sage: a = gap(2)

sage: a.save(’a’)

sage: load(’a’)

Traceback (most recent call last):

ValueError: The session in which this object was defined is no longer
running.

GP/PARI objects can be saved and loaded since their print representation is enough to
reconstruct them.

sage: a = gp(2)
sage: a.save(’a’)
sage: load(’a’)

2

Saved objects can be re-loaded later on computers with different architectures or operating
systems, e.g., you could save a huge matrix on 32-bit OS X and reload it on 64-bit Linux,
find the echelon form, then move it back. Also, in many cases you can even load objects
into version of Sage that are different than they were saved in, as long as the code for that
object isn’t too different. All the attributes of the objects are saved, along with the class
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(but not source code) that defines the object. If that class no longer exists in a new version
of Sage, then the object can’t be reloaded in that newer version. But you could load it in
an old version, get the objects dictionary (with x.__dict__), and save the dictionary, and
load that into the newer version.

3.8.1 Saving as text

You can also save the ASCII text representation of objects to a plain text file by simply
opening a file in write mode and writing the string representation of the object (you can
write many objects this way as well). When you're done writing objects, close the file.

sage: R.<x,y> = PolynomialRing(QQ,2)
sage: f = (x+y)°7

sage: o = open(’file.txt’,’w’)

sage: o.write(str(f))

sage: o.close()

3.9 Saving and Loading Complete Sessions

Sage has very flexible support for saving and loading complete sessions.

The command save_session(sessionname) saves all the variables you've defined in the
current session as a dictionary in the given sessionname. (In the rare case when a variable
does not support saving, it is simply not saved to the dictionary.) The resulting file is an
.sobj file and can be loaded just like any other object that was saved. When you load
the objects saved in a session, you get a dictionary whose keys are the variables names and
whose values are the objects.

You can use the load session(sessionname) command to load the variables defined in
sessionname into the current session. Note that this does not wipe out variables you've
already defined in your current session; instead, the two sessions are merged.

First we start Sage and define some variables.

sage: E = EllipticCurve(’11a’)

sage: M = ModularSymbols(37)

sage: a = 389

sage: t = M.T(2003) .matrix(); t.charpoly().factor()
4= (x - 2004) * (x - 12)72 * (x + 54)~"2

Next we save our session, which saves each of the above variables into a file. Then we view
the file, which is about 3K in size.

sage: save_session(’misc’)
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Saving a

Saving M

Saving t

Saving E

sage: quit

was@form:~/tmp$ 1s -1 misc.sobj

-rw-r--r-- 1 was was 2979 2006-01-28 19:47 misc.sobj

Finally we restart Sage, define an extra variable, and load our saved session.

sage: b = 19

sage: load_session(’misc’)
Loading a

Loading M

Loading E

Loading t

Each saved variable is again available. Moreover, the variable b was not overwritten.

sage: M

Full Modular Symbols space for Gamma_0(37) of weight 2 with sign O

and dimension 5 over Rational Field

sage: E

Elliptic Curve defined by y™2 + y = x"3 - x72 - 10*x - 20 over Rational
Field

sage: b
19
sage: a
389

3.10 The Notebook Interface

The Sage notebook is run by typing
sage: notebook()

on the command line of Sage. This starts the Sage notebook and opens your default web
browser to view it. The server’s state files are stored in $HOME/ . sage/sage_notebook.

Other options include:

sage: notebook("directory")
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which starts a new notebook server using files in the given directory, instead of the default
directory $HOME/ . sage/sage_notebook. This can be useful if you want to have a collection
of worksheets associated with a specific project, or run several separate notebook servers at
the same time.

When you start the notebook, it first creates the following files in
$HOME/ . sage/sage_notebook:

nb.sobj (the notebook SAGE object file)
objects/ (a directory containing SAGE objects)
worksheets/  (a directory containing SAGE worksheets).

After creating the above files, the notebook starts a web server.

A “notebook” is a collection of user accounts, each of which can have any number of
worksheets. When you create a new worksheet, the data that defines it is stored in the
worksheets/username/number directories. In each such directory there is a plain text file
worksheet.txt — if anything ever happens to your worksheets, or Sage, or whatever, that
human-readable file contains everything needed to reconstruct your worksheet.

From within Sage type notebook? for much more about how to start a notebook server.

The following diagram illustrates the architecture of the Sage Notebook:

firefox/safari

javascript
program

|
I sage I SAGE process 1

I web | —————————- > SAGE process 2 (Python processes)
I server pexpect SAGE process 3

|

|

For help on a Sage command, cmd, in the notebook browser box, type cmd? and now hit
<esc> (not <shift-enter>).
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CHAPTER
FOUR

Interfaces

A central facet of Sage is that it supports computation with objects in many different com-
puter algebra systems “under one roof” using a common interface and clean programming
language.

The console and interact methods of an interface do very different things. For example,
using GAP as an example:

1. gap.console(): This opens the GAP console — it transfers control to GAP. Here Sage
is serving as nothing more than a convenient program launcher, similar to the Linux
bash shell.

2. gap.interact(): This is a convenient way to interact with a running GAP instance
that may be “full of” Sage objects. You can import Sage objects into this GAP session
(even from the interactive interface), etc.

4.1 GP/PARI

PARI is a compact, very mature, highly optimized C program whose primary focus is number
theory. There are two very distinct interfaces that you can use in Sage:

e gp — the “Go PARI” interpreter, and

e pari — the PARI C library.

For example, the following are two ways of doing the same thing. They look identical, but
the output is actually different, and what happens behind the scenes is drastically different.

sage: gp(’znprimroot(10007)°)
Mod (5, 10007)

sage: pari(’znprimroot(10007)’)
Mod (5, 10007)
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In the first case a separate copy of the GP interpreter is started as a server, and the string
>znprimroot (10007) ’ is sent to it, evaluated by GP, and the result is assigned to a variable
in GP (which takes up space in the child GP processes memory that won’t be freed). Then
the value of that variable is displayed. In the second case, no separate program is started,
and the string > znprimroot (10007) ’ is evaluated by a certain PARI C library function. The
result is stored in a piece of memory on the Python heap, which is freed when the variable
is no longer referenced. The objects have different types:

sage: type(gp(’znprimroot(10007)°’))
<class ’sage.interfaces.gp.GpElement’>
sage: type(pari(’znprimroot(10007)’))
<type ’sage.libs.pari.gen.gen’>

So which should you use? It depends on what you're doing. The GP interface can do
absolutely anything you could do in the usual GP/PARI command line program, since it
is running that program. In particular, you can load complicated PARI programs and run
them. In contrast, the PARI interface (via the C library) is much more restrictive; first
not all member functions have been implemented. Second, a lot of code, e.g., involving
numerical integration, won’t work via the PARI interface. That said, the PARI interface can
be significantly faster and more robust than the GP one.

Note: If the GP interface runs out of memory evaluating a given input line, it will silently
and automatically double the stack size and retry that input line. Thus your computation
won’t crash if you didn’t correctly anticipate the amount of memory that would be needed.
This is a nice trick the usual GP interpreter doesn’t seem to provide. Regarding the PARI
C library interface, it immediately copies each created object off of the PARI stack, hence
the stack never grows. However, each object must not exceed 100MB in size, or the stack
will overflow when the object is being created. This extra copying does impose a slight
performance penalty.

In summary, Sage uses the PARI C library to provide functionality similar to that provided
by the GP/PARI interpreter, except with different sophisticated memory management and
the Python programming language.

First we create a PARI list from a Python list.

sage: v = pari([1,2,3,4,5])
sage: Vv

[1, 2, 3, 4, 5]

sage: type(v)

<type ’sage.libs.pari.gen.gen’>

Every PARI object is of type py_pari.gen. The PARI type of the underlying object can be
obtained using the type member function.

sage: v.type()
7t _VEC’
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In PARI, to create an elliptic curve we enter el1init([1,2,3,4,5]). Sage is similar, except
that ellinit is a method that can be called on any PARI object, e.g., our t_VEC v.

sage: e = v.ellinit()

sage: e.type()

7t _VEC’

sage: pari(e) [:13]

(1, 2, 3, 4, 5, 9, 11, 29, 35, -183, -3429, -10351, 6128487/10351]

Now that we have an elliptic curve object, we can compute some things about it.

sage: e.elltors()

(1, I, 0]

sage: e.ellglobalred()

[10351, [1, -1, 0, -11, 1]

sage: f = e.ellchangecurve([1,-1,0,-1])
sage: f[:5]

[1, -1, 0, 4, 3]

42 GAP

Sage comes with GAP 4.4.10 for computational discrete mathematics, especially group the-
ory.

Here’s an example of GAP’s IdGroup function, which uses the optional small groups database
that has to be installed separately, as explained below.

sage: G = gap(’Group((1,2,3)(4,5), (3,4))’)

sage: G

Group( [ (1,2,3)(4,5), (3,4) 1)

sage: G.Center()

Group( O )

sage: G.IdGroup() # requires optional database_gap package
[ 120, 34 ]

sage: G.Order()

120

We can do the same computation in Sage without explicitly invoking the GAP interface as
follows:

sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]])
sage: G.center()
Permutation Group with generators [()]
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sage: G.group_id() # requires optional database_gap package
[120, 34]

sage: n = G.order(); n

120

Note: For some GAP functionality, you should install two optional Sage packages. Type
sage -optional for a list and choose the one that looks like gap_packages-x.y.z, then type
sage -i gap_packages-x.y.z. Do the same for database_gap-x.y.z. Some non-GPL’d
GAP packages may be installed by downloading them from the GAP web site [GAPkg], and
unpacking them in SAGE_R00T/local/lib/gap-4.4.10/pkg.

4.3 Singular

Singular provides a massive and mature library for Grobner bases, multivariate polynomial
geds, bases of Riemann-Roch spaces of a plane curve, and factorizations, among other things.
We illustrate multivariate polynomial factorization using the Sage interface to Singular (do
not type the ...):

sage: R1 = singular.ring(0, ’(x,y)’, ’dp’)
sage: Rl

//  characteristic : 0

//  number of vars : 2

// block 1 : ordering dp
// : names Xy
// block 2 : ordering C

sage: f = singular(’9*y~8 - 9%x"2xy~7 - 18%x"3%xy"6 - 18%x"5xy~6 + \
Oxx"B*y~4 + 18%x"7*xy~b + 36%x"8*%y~4 + 9*x710*%y~4 - 18xx"11xy~2 - \
9%x~12%y~3 - 18*x"13%y~2 + 9%x"~16’)

Now that we have defined f, we print it and factor.

sage: f
9%x716-18*x"13*%y " 2-9%x " 12%y " 3+9*x " 10*y~4-18*x"11*y~2+36*x"8*y "4
+18%x " Txy " 5-18%x"bky T 6+9%x " 6xy"4-18*x" 3%y "6-9%x " 2%y " 7+9%y "8
sage: f.parent()

Singular

sage: F = f.factorize(); F

[1]:
_[11=9
_[2]=x"6-2xx"3*%y"2-x" 2%y~ 3+y~4
_[3]=—x"5+y~2

[2]:
1,1,2
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sage: F[1][2]
X"6-2%x" 3%y 2-x"2%y"3+y~4

As with the GAP example in Section [£.2] we can compute the above factorization without
explicitly using the Singular interface (however, behind the scenes Sage uses the Singular
interface for the actual computation). Do not type the .. .:

sage: x, y = QQL’x, y’].gens()
sage: f = 9*y~8 - 9xx"2%y~7 - 18*x"3%y"6 - 18*%x"5xy~6 + 9*xx"6xy 4\
+ 18%x"THy"5 + 364x"8ky~4 + Oxx"10%y~4 - 18%x"11%y"2 - Okx"12%y~3\
.. - 18%x713*%y"2 + 9*x”16
sage: factor(f)
(9) * (=x"5 + y72)72 * (X76 - 2*x"3%y”"2 - x"2%xy"3 + y~4)

4.4 Maxima

Maxima is included with Sage, as is clisp (a version of the Lisp language). An open source
Tk/Tcl-based plotting program used by Maxima, openmath, is also distributed with Sage.
However, the gnuplot package (which Maxima uses by default for plotting) is distributed as a
Sage optional package. Among other things, Maxima does symbolic manipulation. Maxima
can integrate and differentiate functions symbolically, solve 1st order ODEs, most linear 2nd
order ODEs, and has implemented the Laplace transform method for linear ODEs of any
degree. Maxima also knows about a wide range of special functions, has plotting capabilities
via gnuplot, and has methods to solve and manipulate matrices (such as row reduction,
eigenvalues and eigenvectors), and polynomial equations.

We illustrate the Sage/Maxima interface by constructing the matrix whose 4, j entry is i/j,
fori,j=1,...,4.

sage: f = maxima.eval(’ij_entryl[i,j] := i/j’)

sage: A = maxima(’genmatrix(ij_entry,4,4)’); A
matrix([1,1/2,1/3,1/4]1,[2,1,2/3,1/2],(3,3/2,1,3/4]1,[4,2,4/3,1])
sage: A.determinant()

0

sage: A.echelon()
matrix([1,1/2,1/3,1/4],[0,0,0,0],[0,0,0,0],[0,0,0,0])

sage: A.eigenvalues()

((0,4],[3,1]]

sage: A.eigenvectors()
tcfo,41,I03,111,[1,0,0,-41,[0,1,0,-2],[0,0,1,-4/3],[1,2,3,4]]

Here’s another example:
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sage: A = maxima("matrix ([1, O, O], [1, -1, O], [1, 3, -2])")
sage: eigA = A.eigenvectors()

sage: V = VectorSpace(QQ,3)

sage: eigh

(re-2,-1,11,11,1,111,(0,0,11,[0,1,31,[1,1/2,5/6]]

sage: vl = V(sage_eval(repr(eigA[1]))); lambdal = eigA[0] [0] [0]
sage: v2 = V(sage_eval(repr(eigA[2]))); lambda2 = eigA[0] [0] [1]
sage: v3 = V(sage_eval(repr(eigA[3]))); lambda3 = eigA[0] [0] [2]

sage: M = MatrixSpace(QQ,3,3)
sage: AA = M([[1,0,0],[1, - 1,0],[1,3, - 2]11)
sage: bl = vl.base_ring()
sage: AAxvl == bl(lambdal)=*vl
True

sage: b2 = v2.base_ring()
sage: AA*v2 == b2(lambda2)*v2
True

sage: b3 = v3.base_ring()
sage: AA*v3 == b3(lambda3)*v3
True

Finally, we give an example of using Sage to plot using openmath. Many of these were
modified from the Maxima reference manual.

A 2D plot of several functions (do not type the ...):

sage: maxima.plot2d(’ [cos(7*x),cos(23*x)"4,sin(13*x)"3]’,’ [x,0,1]7,\
’ [plot_format,openmath]’) # not tested

A “live” 3D plot which you can move with your mouse (do not type the ...):

sage: maxima.plot3d ("2°(-u"2 + v~2)", "[u, -3, 3]", "[v, -2, 2]",\

cen ’[plot_format, openmath]’) # not tested

sage: maxima.plot3d("atan(-x"2 + y~3/4)", "[x, -4, 41", "[y, -4, 4]1",\
"[grid, 50, 50]",’ [plot_format, openmath]’) # not tested

The next plot is the famous Mdbius strip (do not type the .. .):

sage: maxima.plot3d("[cos(x)*(3 + y*cos(x/2)), sin(x)*(3 + y*cos(x/2)),\
y*sin(x/2)1", "[x, -4, 41", "ly, -4, 4]1",\
’[plot_format, openmath]’) # not tested

The next plot is the famous Klein bottle (do not type the .. .):

sage: maxima("expr_1: 5xcos(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0)\
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. - 10.0")
5*cos (x)*(sin(x/2)*sin(2*y)+cos(x/2)*cos(y)+3.0)-10.0
sage: maxima("expr_2: -5*xsin(x)*(cos(x/2)*cos(y) + sin(x/2)*sin(2*y)+ 3.0)")
-5*sin(x) *(sin(x/2) *sin(2*y)+cos(x/2)*cos(y)+3.0)
sage: maxima("expr_3: 5*(-sin(x/2)*cos(y) + cos(x/2)*sin(2xy))")
5% (cos(x/2)*sin(2*y)-sin(x/2) *cos(y))
sage: maxima.plot3d ("[expr_1, expr_2, expr_3]", "[x, -kpi, %pil",\
"ly, -hpi, %pil", "[’grid, 40, 40]",\
’[plot_format, openmath]’) # not tested
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CHAPTER
FIVE

Programming

5.1 Loading and Attaching Sage files

Next we illustrate how to load programs written in a separate file into Sage. Create a file
called example.sage with the following content:

print "Hello World"
print 273

You can read in and execute example.sage file using the load command.

sage: load "example.sage"
Hello World
8

You can also attach a Sage file to a running session using the attach command:

sage: attach "example.sage"
Hello World
8

Now if you change example.sage and enter one blank line into Sage (i.e., hit “return”), then
the contents of example.sage will be automatically reloaded into Sage.

In particular, attach automatically reloads a file whenever it changes, which is handy when
debugging code, whereas load only loads a file once.

When Sage loads example.sage it converts it to Python, which is then executed by the
Python interpreter. This conversion is minimal; it mainly involves wrapping integer literals
in ZZ(), floating point literals in RR(), replacing ~’s by **’s, and replacing e.g., R.2 by
R.gen(2). The converted version of example.sage is contained in the same directory as
example.sage and is called example.sage.py. This file contains the following code:
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print "Hello World"
print ZZ(2)**ZZ(3)

Integer literals are wrapped and the means “exclusive

or” and ** means “exponentiation”.)

is replaced by a **. (In Python

Note: This preparsing is implemented in sage/misc/interpreter.py.

You can paste multi-line indented code into Sage as long as there are newlines to make new
blocks (this is not necessary in files). However, the best way to enter such code into Sage is
to save it to a file and use attach, as described above.

5.2 Creating Compiled Code

Speed is crucial in mathematical computations. Though Python is a convenient very high-
level language, certain calculations can be several orders of magnitude faster than in Python
if they are implemented using static types in a compiled language. Some aspects of Sage
would have been too slow if it had been written entirely in Python. To deal with this,
Sage supports a compiled “version” of Python called Cython (|[Cyt] and [Pyr]). Cython
is simultaneously similar to both Python and C. Most Python constructions, including list
comprehensions, conditional expressions, code like += are allowed; you can also import code
that you have written in other Python modules. Moreover, you can declare arbitrary C
variables, and arbitrary C library calls can be made directly. The resulting code is converted
to C and compiled using a C compiler.

In order to make your own compiled Sage code, give the file an .spyx extension (in-
stead of .sage). If you are working with the command-line interface, you can attach
and load compiled code exactly like with interpreted code (at the moment, attaching and
loading Cython code is not supported with the notebook interface). The actual com-
pilation is done “behind the scenes” without your having to do anything explicit. See
SAGE_ROO0T/examples/programming/sagex/factorial.spyx for an example of a compiled
implementation of the factorial function that directly uses the GMP C library. To try this
out for yourself, cd to SAGE_RO0T/examples/programming/sagex/, then do the following:

sage: load "factorial.spyx"
sk sk sk sk ok ok ok ok o o ok ok ok sk sk sk ok sk ok o o sk ok sk sk sk sk sk sk sk o sk ok ok sk sk sk sk sk sk ok o ok ok ok sk sk ok

Recompiling factorial.spyx
skt sk skok sk ok ok sk ok ok ok sk sk sksk sk sk ok ok o ok ok sk sk sk sk sk sk sk o ok okok sk sksk sk sk sk ok sk ok ok ok sk ok ok
sage: factorial(50)
30414093201713378043612608166064768844377641568960512000000000000L
sage: time n = factorial(10000)
CPU times: user 0.03 s, sys: 0.00 s, total: 0.03 s
Wall time: 0.03

Here the trailing L indicates a Python long integer (see [7.1.2)).
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Note that Sage will recompile factorial.spyx if you quit and restart Sage. The compiled
shared object library is stored under $HOME/ .sage/temp/hostname/pid/spyx. These files
are deleted when you exit Sage.

NO Sage preparsing is applied to spyx files, e.g., 1/3 will result in 0 in a spyx file instead of
the rational number 1/3. If foo is a function in the Sage library, to use it from a spyx file
import sage.all and use sage.all.foo.

import sage.all
def foo(n):
return sage.all.factorial(n)

5.2.1 Accessing C Functions in Separate Files

It is also easy to access C functions defined in separate *.c files. Here’s an example. Create
files "test.c" and "test.spyx" in the same directory with contents:

The pure C code: "test.c"

int add_one(int n) {
return n + 1;

}
The Cython code: "test.spyx":

cdef extern from "test.c":
int add_one(int n)

def test(n):
return add_one(n)

Then the following works:

sage: attach "test.spyx"
Compiling (...)/test.spyx...
sage: test(10)

11

If an additional library "foo" is needed to compile the C code generated from a Cython file,
add the line "c1lib foo" to the Cython source. Similarly, an additional C file "bar" can be
included in the compilation with the declaration "cfile bar".

5.3 Standalone Python/Sage Scripts

The following standalone Sage script factors integers, polynomials, etc:
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#!/usr/bin/env sage -python

import sys
from sage.all import *

if len(sys.argv) != 2:
print "Usage: %s <n>"Ysys.argv[0]
print "Outputs the prime factorization of n."
sys.exit(1)

print factor(sage_eval(sys.argv[1]))

In order to use this script your SAGE_ROOT must be in your PATH. If the above script is
called factor, here is an example usage:

bash $ ./factor 2006

2 x 17 * B9

bash $ ./factor "32*xx~5-1"

(2xx - 1) * (16*x"4 + 8%x"3 + 4*x"2 + 2*x + 1)

5.4 Data Types

Every object in Sage has a well-defined type. Python has a wide range of basic built-in
types, and the Sage library adds many more. Some built-in Python types include strings,
lists, tuples, ints and floats, as illustrated:

sage: s = "sage"; type(s)
<type ’str’>

sage: s = ’sage’; type(s) # you can use either single or double quotes
<type ’str’>

sage: s = [1,2,3,4]; type(s)
<type ’list’>

sage: s = (1,2,3,4); type(s)
<type ’tuple’>

sage: s = int(2006); type(s)
<type ’int’>

sage: s = float(2006); type(s)
<type ’float’>

To this Sage adds many other types. E.g., vector spaces:

sage: V = VectorSpace(QQ, 1000000); V
Vector space of dimension 1000000 over Rational Field
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sage: type(V)
<class ’sage.modules.free_module.FreeModule_ambient_field’>

Only certain functions can be called on V. In other math software systems, these would be
called using the “functional” notation foo(V,...). In Sage, certain functions are attached
to the type (or class) of V| and are called using an object-oriented syntax like in Java or
C++, e.g., V.foo(...). This helps keep the global namespace from being polluted with tens
of thousands of functions, and means that many different functions with different behavior
can be named foo, without having to use type-checking of arguments (or case statements) to
decide which to call. Also, if you reuse the name of a function, that function is still available
(e.g., if you call something zeta, then want to compute the value of the Riemann-Zeta
function at 0.5, you can still type s=.5; s.zeta()).

sage: zeta = -1
sage: s=.5; s.zeta()
-1.46035450880959

In some very common cases the usual functional notation is also supported for convenience
and because mathematical expressions might look confusing using object-oriented notation.
Here are some examples.

sage: n = 2; n.sqrt()
sqrt(2)

sage: sqrt(2)

sqrt(2)

sage: V = VectorSpace(QQ,2)
sage: V.basis()

[

(1, 0),
(0, 1

]

sage: basis(V)

[

(1, 0),
(0, 1

]

sage: M = MatrixSpace(GF(7), 2); M

Full MatrixSpace of 2 by 2 dense matrices over Finite Field of size 7
sage: A = M([1,2,3,4]); A

[1 2]

[3 4]

sage: A.charpoly(’x’)

X2 + 2xx + 5

sage: charpoly(A, ’x’)

Xx"2 + 2%x + b
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To list all member functions for A, use tab completion. Just type A., then type the [tab]
key on your keyboard, as explained in Section [3.6]

5.5 Lists, Tuples, and Sequence

The list data type stores elements of arbitrary type. Like in C, C++, etc. (but unlike most
standard computer algebra systems), the elements of the list are indexed starting from 0:

sage: v = [2, 3, 5, ’x’, SymmetricGroup(3)]; v

[2, 3, 5, ’x’, Symmetric group of order 3! as a permutation group]
sage: type(v)

<type ’list’>

sage: v[0]
2
sage: v[2]
5

Note: When indexing into a list, it is OK if the index is not a Python int! A Sage Integer
(or Rational, or anything with an __index__ method) will work just fine.

sage: v = [1,2,3]

sage: v[2]

3

sage: n = 2 # SAGE Integer
sage: v[n] # Perfectly OK!
3

sage: v[int(n)] # Also OK.

3

The range function creates a list of Python int’s (not Sage Integers):

sage: range(1l, 15)
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

This is useful when using list comprehensions to construct lists:

sage: L = [factor(n) for n in range(l, 15)]

sage: print L

(1, 2, 3, 272, 5, 2 % 3, 7, 2°3, 372, 2 x5, 11, 272 * 3, 13, 2 x 7]
sage: L[12]

13

sage: type(L[12])

<class ’sage.structure.factorization.Factorization’>

sage: [factor(n) for n in range(1l, 15) if is_odd(n)]

(1, 3, 5, 7, 372, 11, 13]
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For more about how to create lists using list comprehensions, see [PyT].

List slicing is a wonderful feature. If L is a list, then L[m:n] returns the sublist of L obtained
by starting at the mth element and stopping at the (n — 1)st element, as illustrated below.

sage: L = [factor(n) for n in range(l, 20)]
sage: L[4:9]

[6, 2 % 3, 7, 273, 372]

sage: print L[:4]

(1, 2, 3, 2°2]

sage: L[14:4]

(]

sage: L[14:]

[3 x5, 274, 17, 2 * 372, 19]

Tuples are similar to lists, except they are immutable, meaning once they are created they
can’t be changed.

sage: v = (1,2,3,4); v

(1, 2, 3, 4

sage: type(v)

<type ’tuple’>

sage: v[1] =5

Traceback (most recent call last):

TypeError: ’tuple’ object does not support item assignment

Sequences are a third list-oriented Sage type. Unlike lists and tuples, Sequence is not a built—
in Python type. By default, a sequence is mutable, but using the Sequence class method
set_immutable, it can be set to be immutable, as the following example illustrates. All
elements of a sequence have a common parent, called the sequences universe.

sage: v = Sequence([1,2,3,4/5])

sage: Vv

[1, 2, 3, 4/5]

sage: type(v)

<class ’sage.structure.sequence.Sequence’>
sage: type(v[1])

<type ’sage.rings.rational.Rational’>
sage: v.universe()

Rational Field

sage: v.is_immutable()

False

sage: v.set_immutable()

sage: v[0] = 3
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Traceback (most recent call last):
ValueError: object is immutable; please change a copy instead.

Sequences derive from lists and can be used anywhere a list can be used:

sage: v = Sequence([1,2,3,4/5])
sage: isinstance(v, list)

True

sage: list(v)

[1, 2, 3, 4/5]

sage: type(list(v))

<type ’list’>

As another example, basis for vector spaces are immutable sequences, since it’s important
that you don’t change them.

sage: V = QQ"3; B = V.basis(); B

[

(1, 0, 0),
0, 1, 0,
(0, 0, 1)
]

sage: type(B)

<class ’sage.structure.sequence.Sequence’>
sage: B[0] = B[1]

Traceback (most recent call last):

ValueError: object is immutable; please change a copy instead.
sage: B.universe()
Vector space of dimension 3 over Rational Field

5.6 Dictionaries

A dictionary (also sometimes called an associative array) is a mapping from hashable’ objects
(e.g., strings, numbers, and tuples of such; see the Python documentation http://docs.
python.org/tut/node7.html and http://docs.python.org/lib/typesmapping.html for
details) to arbitrary objects

sage: d = {1:5, ’sage’:17, ZZ:GF(7)}
sage: type(d)
<type ’dict’>
sage: d.keys()
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[1, ’sage’, Integer Ring]
sage: d[’sage’]

17

sage: d[zZ]

Finite Field of size 7
sage: d[1]

5

The third key illustrates that the indexes of a dictionary can be complicated, e.g., the ring
of integers.

You can turn the above dictionary into a list with the same data:

sage: d.items()
[(1, 5), (’sage’, 17), (Integer Ring, Finite Field of size 7)]

A common idiom is to iterate through the pairs in a dictionary:
sage: d = {2:4, 3:9, 4:16}
sage: [a*b for a, b in d.iteritems()]

[8, 27, 64]

A dictionary is unordered, as the last output illustrates.

5.7 Sets

Python has a built-in set type. The main feature it offers is very fast lookup of whether an
element is in the set or not, along with standard set-theoretic operations.

sage: X = set([1,19,’a’]); Y = set([1,1,1, 2/3])

sage: X
set([’a’, 1, 19])
sage: Y

set([1, 2/31)

sage: ’a’ in X

True

sage: ’a’ in Y

False

sage: X.intersection(Y)
set ([1])

Sage also has its own set type that is (in some cases) implemented using the built-in Python
set type, but has a little bit of extra Sage-related functionality. Create a Sage set using
Set(...). For example,

5.7. Sets 81



sage: X = Set([1,19,’a’]); Y = Set([1,1,1, 2/3])

sage: X

{’a’, 1, 19}

sage: Y

{1, 2/3}

sage: X.intersection(Y)
{1}

sage: print latex(Y)

\left\{1, \frac{2}{3}\right\}
sage: Set(ZZ)

Set of elements of Integer Ring

5.8 Iterators

Iterators are a recent addition to Python that are particularly useful in mathematics appli-
cations. Here are several examples; see [PyT] for more details. We make an iterator over
the squares of the nonnegative integers up to 10000000.

sage: v = (n”2 for n in xrange(10000000))
sage: v.next()

0
sage: v.next()
1
sage: v.next()
4

We create an iterate over the primes of the form 4p + 1 with p also prime, and look at the
first few values.

sage: w = (4*%p + 1 for p in Primes() if is_prime(4*p+1))

sage: w # in the next line, 0xb0853d6c is a random Ox number
<generator object at 0xb0853d6c>

sage: w.next()

13
sage: w.next()
29
sage: w.next()
53

Certain rings, e.g., finite fields and the integers have iterators associated to them:

sage: [x for x in GF(7)]
(0, 1, 2, 3, 4, 5, 6]
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sage: W = ((x,y) for x in ZZ for y in ZZ)
sage: W.next()

(0, 0)

sage: W.next()

(0, 1)

sage: W.next()

(0, -1)

5.9 Loops, Functions, Control Statements, and Comparisons

We have seen a few examples already of some common uses of for loops. In Python, a for
loop has an indented structure, such as

>>> for i in range(5):
print (i)

D W N~ O

Note the colon at the end of the for statement (there is no “do” or “od” as in GAP or Maple),
and the indentation before the “body” of the loop, namely print(i). This indentation is
important. In Sage, the indentation is automatically put in for you when you hit enter after

(192

a ", as illustrated below.

sage: for i in range(5):
print(i) # now hit enter twice

D W N, O

sage:
The symbol = is used for assignment. The symbol == is used to check for equality:

sage: for i in range(15):
if ged(i,15) == 1:
print (i)
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Keep in mind how indentation determines the block structure for if, for, and while state-
ments:

sage: def legendre(a,p):
is_sqr_modp=-1
for i in range(p):
if al¥p==1"2 Y% p:
is_sqr_modp=1
return is_sqr_modp

sage: legendre(2,7)
1
sage: legendre(3,7)
-1

Of course this is not an efficient implementation of the Legendre symbol! It is meant to
illustrate various aspects of Python/Sage programming. The function kronecker, which
comes with Sage, computes the Legendre symbol efficiently via a C-library call to PARI.

Finally, we note that comparisons, such as ==, != <= >= > < between numbers will
automatically convert both numbers into the same type if possible:

sage: 2 < 3.1; 3.1 <=1

True

False

sage: 2/3 < 3/2; 3/2 < 3/1
True

True

Almost any two objects may be compared; there is no assumption that the objects are
equipped with a total ordering.

sage: 2 < CC(3.1,1)

True

sage: 5 < VectorSpace(QQ,3) # output can be somewhat random
True
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Use bool for symbolic inequalities:

sage: 3.1+2%I<4+3x*I

2xI + 3.10000000000000 < 3*I + 4
sage: bool(3.1+2xI<4+3%I)

False

When comparing objects of different types in Sage, in most cases Sage tries to find a canonical
coercion of both objects to a common parent, and if successful the comparison is performed
between the coerced objects; if not successful the objects are considered not equal. For
testing whether two variables reference the same object use is. For example:

sage: 1 is 2/2

False

sage: 1 is 1
False

sage: 1 == 2/2
True

In the following two lines the first equality is False because there is no canonical morphism
Q — F'5, hence no canonical way to compare the 1 in F5 to the 1 € Q. In contrast, there
is a canonical map Z — F'5, hence the second comparison is True. Note also that the order
doesn’t matter.

sage: GF(5) (1) == QQ(1); QQ(1) == GF(5) (1)
False

False

sage: GF(5) (1)
True

True

sage: ZZ(1) == QQ(1)
True

GF(5) (1)

ZZ(1); Zzz(1)

WARNING: Comparison in Sage is more restrictive than in Magma, which declares the
1 € F5equal to 1 € Q.

sage: magma(’GF(5)!1 eq Rationals()!1’) # optional magma required
true

5.10 Profiling

Section Author: Martin Albrecht (malb@informatik.uni-bremen.de)

“Premature optimization is the root of all evil.” — Donald Knuth
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Sometimes it is useful to check for bottlenecks in code to understand which parts take the
most computational time; this can give a good idea of which parts to optimize. Python and
therefore Sage offers several profiling—as this process is called—options.

The simplest to use is the prun command in the interactive shell. It returns a summary
describing which functions took how much computational time. To profile (the currently
slow! - as of version 1.0) matrix multiplication over finite fields, for example, do:

sage: k,a = GF(2%%x8, ’a’).objgen()

sage: A = Matrix(k,10,10, [k.random_element() for _ in range(10%10)])

sage: prun B = AxA
32893 function calls in 1.100 CPU seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
12127 0.160 0.000 0.160 0.000 :0(isinstance)

2000 0.150 0.000 0.280 0.000 matrix.py:2235(__getitem__)

1000 0.120 0.000 0.370 0.000 finite_field_element.py:392(__mul__)

1903 0.120 0.000 0.200 0.000 finite_field_element.py:47(__init__)

1900 0.090 0.000 0.220 0.000 finite_field_element.py:376(__compat)

900 0.080 0.000 0.260 0.000 finite_field_element.py:380(__add__)
1 0.070 0.070 1.100 1.100 matrix.py:864(__mul__)

21056 0.070 0.000 0.070 0.000 matrix.py:282(ncols)

Here ncalls is the number of calls, tottime is the total time spent in the given function
(and excluding time made in calls to sub-functions), percall is the quotient of tottime
divided by ncalls. cumtime is the total time spent in this and all sub-functions (i.e., from
invocation until exit), percall is the quotient of cumtime divided by primitive calls, and
filename:1lineno(function) provides the respective data of each function. The rule of
thumb here is: The higher the function in that listing the more expensive it is. Thus it is
more interesting for optimization.

As usual, prun? provides details on how to use the profiler and understand the output.

The profiling data may be written to an object as well to allow closer examination:

sage: prun -r A*xA
sage: stats = _
sage: 7stats

Note: entering stats = prun -r AxA displays a syntax error message because prun is an
[Python shell command, not a regular function.
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For a nice graphical representation of profiling data you can use the hotshot profiler, a small
script called hotshot2cachetree and the program kcachegrind (Unix only). The same
example with the hotshot profiler:

sage: k,a = GF(2%*8, ’a’).objgen()

sage: A = Matrix(k,10,10, [k.random_element() for
sage: import hotshot

sage: filename = "pythongrind.prof"

sage: prof = hotshot.Profile(filename, lineevents=1)

o

in range(10%10)])

sage: prof.run("A*A")
<hotshot.Profile instance at 0Ox414cllec>
sage: prof.close()

This results in a file pythongrind.prof in the current working directory. It can now be
converted to the cachegrind format for visualization.

On a system shell type
hotshot2calltree -o cachegrind.out.42 pythongrind.prof

The output file cachegrind.out.42 can now be examined with kcachegrind. Please note
that the naming convention cachegrind.out.XX needs to be obeyed.
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CHAPTER
SIX

Distributed Computing

Sage comes built in with a powerful distributed computing framework called Distributed
Sage (dsage).

6.1 Overview

Distributed Sage is a framework that allows one to do distributed computing from within
Sage. It includes a server, client and workers as well as a set of classes that one can subclass
from to write distributed computation jobs. It is designed to be used mainly for ‘coarsely’
distributed computations, i.e., computations where jobs do not have to communicate much
with each other. This is also sometimes referred to as ‘grid’ computing.

There are 3 parts that make up Distributed Sage:

1. The server is responsible for job distribution, submission and collection. It also in-
cludes a web interface from which you can monitor your jobs and do other administra-
tive tasks.

2. The client is responsible for submitting new jobs to the server and collecting the
results.

3. The workers perform the actual computations.

6.2 Quick Start

Here are a few illustrations of how get up and running with dsage.

6.2.1 Example 1

1. Run dsage.setup(). This will setup the SQLite database and generate a private and
public key to be used for SSL communication. It will also add a default user whose
username defaults to your current username.
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2.

Run d = dsage.start_all(). This command will launch the server, the web server,
2 workers and return an object (d) which is a connection to the server. From here on
your interaction with dsage will be mainly though the d object.

Open up your browser and go to http://localhost:8082 to see the web interface of
dsage. From here you will be able to see the status of your jobs, the workers connected
and other important information about your dsage server.

Let’s begin with a simple example. Type job = d(’2+2’). If you look at the web
interface, you should see that there is a new job in the table. Now one of your workers
will fetch that job, execute it and present you the result. To get at the result, type
job.result. It might not be there yet because for this simple computation, the net-
work communication overhead dominates the computational time. If you want to wait
for your job to finish, you can call job.wait () which will block until the job completes,
at which time you can inspect job.result for the result. You can do any computation
in this way by calling d.

6.2.2 Example 2

In this example we will show you how to use the DistributedFactor class that comes built-
in with dsage. DistributedFactor attempts to factor numbers by using a combination of the
ECM and the QSieve algorithm, as well as trial factorization for small factors.

1.

Rund = dsage.start_all() if you have not started your dsage session yet, otherwise
you can continue to use the previous d instance.

Start the distributed factoring job with factor_job = DistributedFactor(d,
number). You can pick fairly large values, try for example 23 — 1. You can see
whether or not the factoring job is done by looking at the factor_job.done at-
tribute. When it is done, you can look at the prime factors it found by inspecting
factor_job.prime_factors.

6.3 Files

dsage stores a few files in SAGE_ROOT/.sage/dsage:

1.

pubcert.pem and cacert.pem: the public and private keys the server uses for SSL.

. dsage_key.pub and dsage_key: the keys used for authenticating the user.

The directory db/: this contains the dsage database.

*.log files: logs generated by the server and workers.

. the directory tmp_worker_files/: workers store the jobs they have processed here.

90

Chapter 6. Distributed Computing


http://localhost:8082

CHAPTER
SEVEN

Afterword

7.1 Why Python?

7.1.1 Advantages to Python

The primary implementation language of Sage is Python (see [Py]), though code that must
be fast is implemented in a compiled language. Python has several advantages:

e Object saving is well-supported in Python. There is extensive support in Python for
saving (nearly) arbitrary objects to disk files or a database.

e Excellent support for documentation of functions and packages in the source code,
including automatic extraction of documentation and automatic testing of all examples.
The examples are automatically tested regularly and guaranteed to work as indicated.

¢ Memory management: Python now has a well thought out and robust memory
manager and garbage collector that correctly deals with circular references, and allows
for local variables in files.

e Python has many packages available now that might be of great interest to users of
Sage: numerical analysis and linear algebra, 2D and 3D visualization, networking (for
distributed computations and servers, e.g., via twisted), database support, etc.

e Portability: Python is easy to compile from source on most platforms in minutes.

o Exception handling: Python has a sophisticated and well thought out system of
exception handling, whereby programs gracefully recover even if errors occur in code
they call.

e Debugger: Python includes a debugger, so when code fails for some reason, the user
can access an extensive stack trace, inspect the state of all relevant variables, and move
up and down the stack.

e Profiler: There is a Python profiler, which runs code and creates a report detailing
how many times and for how long each function was called.

91



e A Language: Instead of writing a new language for mathematics as was done for

Magma, Maple, Mathematica, Matlab, GP/PARI, GAP, Macaulay 2, Simath, etc., we
use the Python language, which is a popular computer language that is being actively
developed and optimized by hundreds of skilled software engineers. Python is a major
open-source success story with a mature development process (see [PyDev]).

7.1.2 The Pre-Parser: Differences between Sage and Python

Some mathematical aspects of Python can be confusing, so Sage behaves differently from
Python in several ways.

e Notation for exponentiation: ** versus ~. In Python, = means “xor”, not expo-

nentiation, so in Python we have

>>> 278
10

>>> 372
1

>>> 3%%2
9

This use of = may appear odd, and it is inefficient for pure math research, since the
“exclusive or” function is rarely used. For convenience, Sage pre-parses all command
lines before passing them to Python, replacing instances of ~ that are not in strings
with *x*:

sage: 278
256

sage: 372
9

sage: "372"
)3"27

Integer division: The Python expression 2/3 does not behave the way mathemati-
cians might expect. In Python, if m and n are ints, then m/n is also an int, namely the
quotient of m divided by n. Therefore 2/3=0. There has been talk in the Python com-
munity about changing Python so 2/3 returns the floating point number 0.6666. . .,
and making 2//3 return 0.

We deal with this in the Sage interpreter, by wrapping integer literals in ZZ( ) and
making division a constructor for rational numbers. For example:

sage: 2/3
2/3
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sage: (2/3).parent()
Rational Field

sage: 2//3

0

sage: int(2)/int(3)
0

¢ Long integers: Python has native support for arbitrary precision integers, in addition
to C-int’s. These are significantly slower than what GMP provides, and have the
property that they print with an L at the end to distinguish them from int’s (and this
won’t change any time soon). Sage implements arbitrary precision integers using the
GMP C-library, and these print without an L.

Rather than modifying the Python interpreter (as some people have done for internal
projects), we use the Python language exactly as is, and write a pre-parser for IPython
so that the command line behavior of IPython is what a mathematician expects. This
means any existing Python code can be used in Sage. However, one must still obey the
standard Python rules when writing packages that will be imported into Sage.

Note: To install a Python library, for example that you have found on the internet, follow
the directions, but run sage -python instead of python. Very often this means typing sage
-python setup.py install.

7.2 | would like to contribute somehow. How can I?

If you would like to contribute to Sage, your help will be greatly appreciated! It can range
from substantial code contributions to adding to the Sage documentation to reporting bugs.

Browse the Sage web page for information for developers; among other things, you can find a
long list of Sage-related projects ordered by priority and category. The “Sage Programming
Guide” has helpful information, as well, and you can also check out the sage-devel Google

group.

7.3 How do | reference Sage?

If you write a paper using Sage, please reference computations done with Sage by including
[SAGE], SAGE Mathematical Software, Version 2.6, http://www.sagemath.org

in your bibliography (replacing 2.6 by the version of Sage you used). Moreover, please
attempt to track down what components of Sage are used for your computation, e.g., PARI?,
GAP?, Singular? Maxima? and also cite those systems. If you are in doubt about what

software your computation uses, feel free to ask on the sage-devel Google group. See
Section for further discussion of this point.
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If you happen to have just read straight through this tutorial, and have some sense of how
long it took you, please let us know on the sage-devel Google group.

Have fun with Sage!
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APPENDIX
A

Appendix

A.1 Arithmetical binary operator precedence

What is 3°2*4 + 2957 The value (38) is determined by this “operator precedence table”.
The table below is based on the table in §5.14 of the Python Language Reference Manual by
G. Rossum and F. Drake; the operations are listed here in increasing order of precedence.

operator description
or boolean or
and boolean and
not boolean not
in, not in membership
is, is not identity test
<, <=, > >= == I= <> comparison
+, - addition, subtraction
x /h multiplication, division, remainder
*k "

exponentiation

Therefore,
((372)*x4) + (2%5).
and 2%5, and finally add these.

to compute 372%4 + 2,5,

Sage brackets
Thus, first compute 372, which is 9, then compute both (372)%4

the computation

this  way:
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