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Chapter 17: Parallel Databases

• Introduction

• I/O Parallelism

• Interquery Parallelism

• Intraquery Parallelism

• Intraoperation Parallelism

• Interoperation Parallelism

• Design of Parallel Systems
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Introduction

• Parallel machines are becoming quite common and affordable

– Prices of microprocessors, memory and disks have
dropped sharply

• Databases are growing increasingly large

– large volumes of transaction data are collected and stored
for later analysis.

– multimedia objects like images are increasingly stored in
databases

• Large-scale parallel database systems increasingly used for:
– processing time-consuming decision-support queries
– providing high throughput for transaction processing
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Parallelism in Databases

• Data can be partitioned across multiple disks for parallel I/O.

• Individual relational operations (e.g., sort, join, aggregation)
can be executed in parallel

– data can be partitioned and each processor can work
independently on its own partition.

• Queries are expressed in high level language (SQL, translated
to relational algebra)

– makes parallelization easier.

• Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts.

• Thus, databases naturally lend themselves to parallelism.
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I/O Parallelism

• Reduce the time required to retrieve relations from disk by
partitioning the relations on multiple disks.

• Horizontal partitioning – tuples of a relation are divided among
many disks such that each tuple resides on one disk.

• Partitioning techniques (number of disks = n):

Round-robin :
Send the ith tuple inserted in the relation to disk i mod n.

Hash partitioning :
– Choose one or more attributes as the partitioning

attributes.
– Choose hash function h with range 0 . . . n − 1.
– Let i denote result of hash function h applied to the

partitioning attribute value of a tuple. Send tuple to disk i.

Database Systems Concepts 17.4 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

I/O Parallelism (Cont.)

• Partitioning techniques (cont.):

Range partitioning :
– Choose an attribute as the partitioning attribute.

– A partitioning vector [v0, v1, . . . , vn−2] is chosen

– Let v be the partitioning attribute value of a tuple. Tuples
such that vi ≤ v < vi+1 go to disk i + 1. Tuples with v < v0

go to disk 0 and tuples with v ≥ vn−2 go to disk n − 1.

E.g., with a partitioning vector [5,11], a tuple with
partitioning attribute value of 2 will go to disk 0, a tuple with
value 8 will go to disk 1, while a tuple with value 20 will go
to disk 2.
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Comparison of Partitioning Techniques

• Evaluate how well partitioning techniques support the following
types of data access:

1. Scanning the entire relation.

2. Locating a tuple associatively – point queries.
– E.g., r.A = 25.

3. Locating all tuples such that the value of a given attribute
lies within a specified range – range queries.
– E.g., 10 ≤ r.A < 25.
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Comparison of Partitioning Techniques (Cont.)

• Round-robin.
– Best suited for sequential scan of entire relation on each

query.
∗ All disks have almost an equal number of tuples; retrieval

work is thus well balanced between disks.

– Range queries are difficult to process
∗ No clustering – tuples are scattered across all disks

Database Systems Concepts 17.7 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

Comparison of Partitioning Techniques (Cont.)

• Hash partitioning.
– Good for sequential access
∗ Assuming hash function is good, and partitioning

attributes form a key, tuples will be equally distributed
between disks
∗ Retrieval work is then well balanced between disks.

– Good for point queries on partitioning attribute
∗ Can lookup single disk, leaving others available for

answering other queries.
∗ Index on partitioning attribute can be local to disk, making

lookup and update more efficient

– No clustering, so difficult to answer range queries
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Comparison of Partitioning Techniques (Cont.)

• Range partitioning.
– Provides data clustering by partitioning attribute value.

– Good for sequential access

– Good for point queries on partitioning attribute: only one
disk needs to be accessed.

– For range queries on partitioning attribute, one to a few
disks may need to be accessed
∗ Remaining disks are available for other queries.
∗ Good if result tuples are from one to a few blocks.
∗ If many blocks are to be fetched, they are still fetched

from one to a few disks, and potential parallelism in disk
access is wasted
· Example of execution skew.
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Partitioning a Relation across Disks

• If a relation contains only a few tuples which will fit into a single
disk block, then assign the relation to a single disk.

• Large relations are preferably partitioned across all the
available disks.

• If a relation consists of m disk blocks and there are n disks
available in the system, then the relation should be allocated
min (m, n) disks.
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Handling of Skew

• The distribution of tuples to disks may be skewed — i.e., some
disks have many tuples, while others may have fewer tuples.

• Types of skew:

– Attribute-value skew.
∗ Some values appear in the partitioning attributes of many

tuples; all the tuples with the same value for the
partitioning attribute end up in the same partition.

∗ Can occur with range-partitioning and hash-partitioning.

– Partition skew.
∗ With range-partitioning, badly chosen partition vector

may assign too many tuples to some partitions and too
few to others.
∗ Less likely with hash-partitioning if a good hash-function

is chosen.
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Handling Skew in Range-Partitioning

• To create a balanced partitioning vector (assuming partitioning
attribute forms a key of the relation):

– Sort the relation on the partitioning attribute.

– Construct the partition vector by scanning the relation in
sorted order as follows.
∗ After every 1/nth of the relation has been read, the value

of the partitioning attribute of the next tuple is added to
the partition vector.

• Alternative technique based on histograms used in practice
(will see later).
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Interquery Parallelism

• Queries/transactions execute in parallel with one another.

• Increases transaction throughput; used primarily to scale up a
transaction processing system to support a larger number of
transactions per second.

• Easiest form of parallelism to support, particularly in a
shared-memory parallel database, because even sequential
database systems support concurrent processing.

• More complicated to implement on shared-disk or
shared-nothing architectures
– Locking and logging must be coordinated by passing

messages between processors.
– Data in a local buffer may have been updated at another

processor.
– Cache-coherency has to be maintained — reads and writes

of data in buffer must find latest version of data.
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Cache Coherency Protocol

• Example of a cache coherency protocol for shared disk
systems:

– Before reading/writing to a page, the page must be locked
in shared/exclusive mode.

– On locking a page, the page must be read from disk

– Before unlocking a page, the page must be written to disk if
it was modified.

• More complex protocols with fewer disk reads/writes exist.

• Cache coherency protocols for shared-nothing systems are
similar. Each database page is assigned a home processor.
Requests to fetch the page or write it to disk are sent to the
home processor.
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Intraquery Parallelism

• Execution of a single query in parallel on multiple
processors/disks; important for speeding up long-running
queries.

• Two complementary forms of intraquery parallelism :
– Intraoperation Parallelism – parallelize the execution of

each individual operation in the query.

– Interoperation Parallelism – execute the different
operations in a query expression in parallel.

the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically
more than the number of operations in a query
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Parallel Processing of Relational Operations

• Our discussion of parallel algorithms assumes:
– read-only queries

– shared-nothing architecture

– n processors, P0, . . . , Pn−1, and n disks D0, . . . , Dn−1,
where disk Di is associated with processor Pi .

• Shared-nothing architectures can be efficiently simulated on
shared-memory and shared-disk systems.

– Algorithms for shared-nothing systems can thus be run on
shared-memory and shared-disk systems.

– However, some optimizations may be possible.
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Parallel Sort
Range-Partitioning Sort

• Choose processors P0, . . . , Pm, where m ≤ n−1 to do sorting.

• Create range-partition vector with m entries, on the sorting
attributes

• Redistribute the relation using range partitioning

– all tuples that lie in the i th range are sent to processor Pi

– Pi stores the tuples it received temporarily on disk Di .

• Each processor Pi sorts its partition of the relation locally.

– Each processors executes same operation (sort) in parallel
with other processors, without any interaction with the
others (data parallelism ).

• Final merge operation is trivial: range-partitioning ensures that,
for 1 ≤ i < j ≤ m, the key values in processor Pi are all less
than the key values in Pj .
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Parallel Sort (Cont.)

Parallel External Sort-Merge

• Assume the relation has already been partitioned among disks
D0, . . . , Dn−1 (in whatever manner).

• Each processor Pi locally sorts the data on disk Di .

• The sorted runs on each processor are then merged to get the
final sorted output.

• Parallelize the merging of sorted runs as follows:

– The sorted partitions at each processor Pi are
range-partitioned across the processors P0, . . . , Pm−1.

– Each processor Pi performs a merge on the streams as
they are received, to get a single sorted run.

– The sorted runs on processors P0, . . . , Pm−1 are
concatenated to get the final result.
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Parallel Join

• The join operation requires pairs of tuples to be tested to see if
they satisfy the join condition, and if they do, the pair is added
to the join output.

• Parallel join algorithms attempt to split the pairs to be tested
over several processors. Each processor then computes part
of the join locally.

• In a final step, the results from each processor can be
collected together to produce the final result.
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Partitioned Join

• For equi-joins and natural joins, it is possible to partition the
two input relations across the processors, and compute the
join locally at each processor.

• Let r and s be the input relations, and we want to compute
r 1r.A=s.B s.

• r and s each are partitioned into n partitions, denoted
r0, r1, . . . , rn−1 and s0, s1, . . . , sn−1.

• Can use either range partitioning or hash partitioning.

• r and s must be partitioned on their join attributes (r.A and
s.B), using the same range-partitioning vector or hash function.

• Partitions ri and si are sent to processor Pi ,

• Each processor Pi locally computes ri 1ri .A=si .B si . Any of the
standard join methods can be used.
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Partitioned Join (Cont.)
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Fragment-and-Replicate Join

• Partitioning not possible for some join conditions

– e.g., non-equijoin conditions, such as r.A > s.B.

• For joins were partitioning is not applicable, parallelization can
be accomplished by fragment and replicate technique.

• Special case – asymmetric fragment-and-replicate:

– One of the relations, say r , is partitioned; any partitioning
technique can be used.

– The other relation, s, is replicated across all the processors.

– Processor Pi then locally computes the join of ri with all of s
using any join technique.

Database Systems Concepts 17.22 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

Depiction of Fragment-and-Replicate Joins
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Fragment-and-Replicate Join (Cont.)

• General case: reduces the sizes of the relations at each
processor.

– r is partitioned into n partitions, r0, r1, . . . , rn−1; s is
partitioned into m partitions, s0, s1, . . . , sm−1.

– Any partitioning technique may be used.

– There must be at least m ∗ n processors.

– Label the processors as
P0,0, P0,1, . . . , P0,m−1, P1,0, . . . , Pn−1,m−1.

– Pi,j computes the join of ri with sj . In order to do so, ri is
replicated to Pi,0, Pi,1, . . . , Pi,m−1, while si is replicated to
P0,i , P1,i , . . . , Pn−1,i .

– Any join technique can be used at each processor Pi,j .

Database Systems Concepts 17.24 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

Fragment-and-Replicate Join (Cont.)

• Both versions of fragment-and-replicate work with any join
condition, since every tuple in r can be tested with every tuple
in s.

• Usually has a higher cost than partitioning, since one of the
relations (for asymmetric fragment-and-replicate) or both
relations (for general fragment-and-replicate) have to be
replicated.

• Sometimes asymmetric fragment-and-replicate is preferable
even though partitioning could be used.

– E.g., say s is small and r is large, and already partitioned. It
may be cheaper to replicate s across all processors, rather
than repartition r and s on the join attributes.
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Partitioned Parallel Hash-Join

Also assume s is smaller than r and therefore s is chosen as the
build relation.

• A hash function h1 takes the join attribute value of each tuple in
s and maps this tuple to one of the n processors.

• Each processor Pi reads the tuples of s that are on its disk Di ,
and sends each tuple to the appropriate processor based on
hash function h1. Let si denote the tuples of relation s that are
sent to processor Pi .

• As tuples of relation s are received at the destination
processors, they are partitioned further using another hash
function, h2, which is used to compute the hash-join locally.
(Cont.)
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Partitioned Parallel Hash-Join (Cont.)

• Once the tuples of s have been distributed, the larger relation r
is redistributed across the m processors using the hash
function h1. Let ri denote the tuples of relation r that are sent to
processor Pi .

• As the r tuples are received at the destination processors, they
are repartitioned using the function h2 (just as the probe
relation is partitioned in the sequential hash-join algorithm).

• Each processor Pi executes the build and probe phases of the
hash-join algorithm on the local partitions ri and si of r and s to
produce a partition of the final result of the hash-join.

• Note: Hash-join optimizations can be applied to the parallel
case; e.g., the hybrid hash-join algorithm can be used to cache
some of the incoming tuples in memory and avoid the cost of
writing them and reading them back in.
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Parallel Nested-Loop Join

• Assume that

– relation s is much smaller than relation r and that r is stored
by partitioning.

– there is an index on a join attribute of relation r at each of
the partitions of relation r .

• Use asymmetric fragment-and-replicate, with relation s being
replicated, and using the existing partitioning of relation r .

• Each processor Pj where a partition of relation s is stored
reads the tuples of relation s stored in Dj , and replicates the
tuples to every other processor Pi . At the end of this phase,
relation s is replicated at all sites that store tuples of relation r .

• Each processor Pi performs an indexed nested-loop join of
relation s with the ith partition of relation r .
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Parallel Nested-Loop Join (Cont.)

• The indexed nested-loop join can actually be overlapped with
the distribution of tuples of relation s, to reduce the cost of
writing the tuples of relation s to disk and reading them back.

• However, the replication of relation s must be synchronized
with the join so that there is enough space in in-memory
buffers at each processor Pi to hold the tuples of relation s that
have been received but not yet used in the join.
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Other Relational Operations

Parallelizing the evaluation of other relational operations:
Selection Example: σθ(r )

• θ is of the form ai = v where ai is an attribute and v a value.

– If r is partitioned on ai , the selection is performed at a
single processor.

• θ is of the form l ≤ ai ≤ u (i.e., θ is a range selection, and the
relation has been range-partitioned on ai )

– Selection is performed at each processor whose partition
overlaps with the specified range of values.

• All other cases: the selection is performed in parallel at all the
processors.
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Other Relational Operations (Cont.)

Duplicate elimination

• Perform by using either of the parallel sort techniques; with the
optimization of eliminating duplicates as soon as they are
found during sorting.

• Can also partition the tuples (using either range- or
hash-partitioning) and perform duplicate elimination locally at
each processor.

Projection
• Projection without duplicate elimination can be performed as

tuples are read in from disk in parallel.

• If duplicate elimination is required, any of the above duplicate
elimination techniques can be used.
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Other Relational Operations (Cont.)

Grouping/Aggregation

• Partition the relation on the grouping attributes and then
compute the aggregate values locally at each processor.

• Can reduce cost of transferring tuples during partitioning by
partly computing aggregate values before partitioning.

• Consider the sum aggregation operation:
– Perform aggregation operation at each processor Pi on

those tuples stored on disk Di ; results in tuples with partial
sums at each processor.

– Result of the local aggregation is partitioned on the
grouping attributes, and the aggregation performed again at
each processor Pi to get the final result.

• Fewer tuples need to be sent to other processors during
partitioning.

Database Systems Concepts 17.32 Silberschatz, Korth and Sudarshan c©1997



'
&

$
%

Cost of Parallel Evaluation of Operations

• If there is no skew in the partitioning, and there is no overhead
due to the parallel evaluation, expected speed-up will be 1/n

• If skew and overheads are also to be taken into account, the
time taken by a parallel operation can be estimated as

Tpart + Tasm + max(T0, T1, . . . , Tn−1)

– Tpart is the time for partitioning the relations

– Tasm is the time for assembling the results

– Ti is the time taken for the operation at processor Pi ; this
needs to be estimated taking into account the skew, and the
time wasted in contentions.
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Handling Skew

One way to handle skew in joins with range-partitioning

• construct and store a frequency table (or histogram) of the
attribute values for each attribute of each relation.

• Construct a load-balanced range-partition vector using the
histogram
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Interoperation Parallelism

Pipelined Parallelism

• Consider a join of four relations: r1 1 r2 1 r3 1 r4

• Set up a pipeline that computes the three joins in parallel.

• Let processor P1 be assigned the computation of
temp1 ← r1 1 r2 and let P2 be assigned the computation of
r3 1 temp1.

• As P1 computes tuples in r1 1 r2, it makes these tuples
available to processor P2.

• Thus, P2 has available to it some of the tuples in r1 1 r2

before P1 has finished its computation. P2 can use those
tuples to begin computation of temp1 1 r3 even before r1 1 r2

is fully computed by P1.

• As P2 computes tuples in (r1 1 r2) 1 r3, it makes these tuples
available to P3, which computes the join of these tuples with r4.
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Factors Limiting Utility of Pipeline Parallelism

• Pipelined parallelism is useful because it avoids writing
intermediate results to disk.

• Useful with small number of processors, but does not scale up
well with more processors. One reason is that pipeline chains
do not attain sufficient length.

• Cannot pipeline operators which do not produce output until all
inputs have been accessed (i.e., aggregate and sort).

• Little speedup is obtained for the frequent cases of skew in
which one operator’s execution cost is much higher than the
others.
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Independent Parallelism

• Operations in a query expression that do not depend on each
other can be executed in parallel.

• Consider the join r1 1 r2 1 r3 1 r4.

• Compute temp1 ← r1 1 r2 in parallel with temp2 ← r3 1 r4.

• When these two computations complete, we compute:

temp1 1 temp2

• To get further parallelism, the tuples in temp1 and temp2 can
be pipelined into the computation of temp1 1 temp2, which is
itself carried out using pipelined join.

• Does not provide a high degree of parallelism; less useful in a
highly parallel system, although it is useful with a lower degree
of parallelism.
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Query Optimization

• Query optimization in parallel databases is significantly more
complex than query optimization in sequential databases.
• Cost models are more complicated, since we must take into

account partitioning costs and issues such as skew and
resource contention.
• When scheduling execution tree in parallel system, must

decide:
– How to parallelize each operation and how many

processors to use for it.
– What operations to pipeline, what operations to execute

independently in parallel, and what operations to execute
sequentially, one after the other.

• Determining the amount of resources to allocate for each
operation is a problem. E.g., allocating more processors than
optimal can result in high communication overhead.
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Query Optimization (Cont.)

• Long pipelines should be avoided as the final operation may
wait a lot for inputs, while holding precious resources
• The number of parallel evaluation plans from which to choose

from is much larger than the number of sequential evaluation
plans. Therefore heuristics are needed while optimization
• Two alternative heuristics for choosing parallel plans:

1. No pipelining and inter-operation pipelining; just parallelize
every operation across all processors.
– Finding best plan is now much easier — use standard

optimization technique, but with new cost model

2. First choose most efficient sequential plan and then choose
how best to parallelize the operations in that plan.
– Can explore pipelined parallelism as an option

• Choosing a good physical organization (partitioning technique)
is important to speed up queries.
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Design of Parallel Systems

Some issues in the design of parallel systems:

• Parallel loading of data from external sources is needed in
order to handle large volumes of incoming data.

• Resilience to failure of some processors or disks.

– Probability of some disk or processor failing is higher in a
parallel system.

– Operation (perhaps with degraded performance) should be
possible in spite of failure.

– Redundancy achieved by storing extra copy of every data
item at another processor.
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Design of Parallel Systems (Cont.)

• On-line reorganization of data and schema changes must be
supported.

– For example, index construction on terabyte databases can
take hours or days even on a parallel system.
∗ Need to allow other processing

(insertions/deletions/updates) to be performed on relation
even as index is being constructed.
∗ Basic idea: index construction tracks changes and

“catches up” on changes at the end.

– Also need support for on-line repartitioning and schema
changes (executed concurrently with other processing).
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