

Tracking Recurring Concepts with Meta-Learners

J. Gama¹ P. Kosina²

¹LIAAD-INESC Porto, FEP-University of Porto

²Faculty of Informatics, Masaryk University, Brno

Fourteenth Portuguese Conference on Artificial Intelligence

э.

0	TT	ы	ın	e

Introduction

Main Work

Evaluation

Conclusions

Introduction

Main Work

Evaluation

Conclusions

æ

・ロト ・四ト ・モト ・モト

Introduction

- Meta-learning
 - Information about relation between tasks/domains and learning strategies
 - Finding proper model
- Data streams
 - Real world problems
 - Continuous data
- Concept drift
 - Change over time
- Recurrent concepts
 - Seasonal change

э

Main Work

Evaluation

Conclusions

Drift Detection

- Distribution of data is stationary
 - Error-rate decreases with increasing number of examples
- Error-rate increases warning/drift is reported
 - warning

$$p_i + s_i \geq p_{min} + 2 * s_{min}$$

• drift

$$p_i + s_i \geq p_{min} + 3 * s_{min}$$

• where p_i is the error-rate and s_i is standard deviation

э

Introduction

Main Work

Evaluation

Conclusions

Motivation

- Presence of delay
 - Between arrival of example and obtaining label
 - Unlabeled items are usualy unused
- Could we use just attributes to predict change
 - Referees

э

<ロト <回ト < 注ト < 注ト

ntroduction

Main Work

Evaluation

Conclusions

Referee

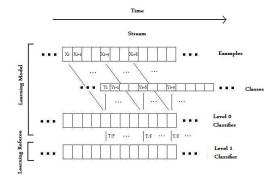
- What is a referee
 - A meta-learning model (level 1 classifier)
 - Makes decisions about performance of primary (level 0) classifier
- How it learns
 - Examples with new class labels
 - false when level 0 prediction is incorrect
 - true when level 0 prediction is correct

э

・ロト ・ 日 ・ ・ ヨ ・

Conclusions

Overview of Learning the Referee



ł

Э

Main Work

Conclusions

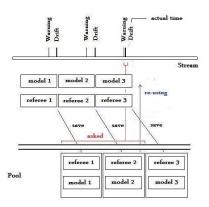
Method Strategy

- One referee for one concept model
- Before concept drift ask referees
 - After warning level is reached
 - Proactive approach
 - Select historical (in advance) does not need class label
 - or continue and learn new one
- · After concept drift store old model with referee

э

Conclusions

Overview of Strategy



æ

・ロト ・聞ト ・ヨト ・ヨト

Evaluation

Conclusions

Problems

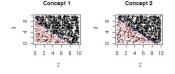
- Distribution of referee's examples = error-rate of level 0 classifier
 - Skewness of data
- Classes were not very discriminative
 - Mean of attributes
- Better to start new classifier that use wrong one

э

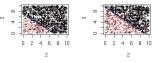
・ロト ・聞ト ・ヨト ・ヨト

Evaluation - data

- SEA Concepts
 - Frequently used benchmark dataset with concept drift
 - 3 attributes → 2 relevant (sum > threshold)
 - 4 different concepts (thresholds) repeated twice
 - 120,000 examples



・ロト ・ 理 ・ ・ ヨ ・ ・



30

Main Work

Evaluation

Conclusions

Evaluation - data

- Hyperplane
 - Represents continuously moving hyperplane in d-dimensional space
 - Recurrence?
- LED data
- Proteins
- STAGGER
- Intrusion

æ

<ロト <回ト < 注ト < 注ト

Introduction

Main Work

Evaluation

Conclusions

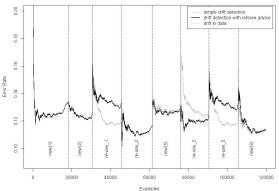
Evaluation Hypothesis

- After drift detection a new model always takes place
- Referees are asked and older model could be re-used
- Models itself are asked and older model could be re-used

э

Conclusions

Evaluation - referees



SEA Drift Detection (using referee advice, 350 examples in warning, 70 % treshold)

・ロト ・四ト ・ヨト ・ヨト

ł

Main Work

Conclusions

Evaluation - notes

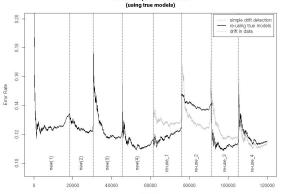
- Re-used models were from similar concepts \rightarrow difference in error was not very significant
- Detection was faster
 - 4 times re-used and 3 times drift was sooner (183.5 examples on average)
 - Considering all the warning phases, number of examples in them was decreased by 80 on average (9.25 %)

3

Conclusions

Evaluation - true models

SEA Concepts Drift Detection



Examples

æ

・ロト ・ 日 ・ ・ 日 ・ ・

Main Work

Evaluation

Conclusions

Evaluation - notes

- Manually re-used models
 - Slower increase of error-rate
 - Early warning \rightarrow learning from examples of previous concept
 - Drift times were not better than with referee (except the last one)

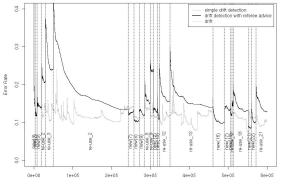
э

・ロト ・聞ト ・ヨト ・ヨト

・ロト ・ 日 ・ ・ ヨ ・

Conclusions

Evaluation - Hyperplane



Hyperplane Drift Detection (using referee advice, 350 examples in warning, 70 % treshold)

Examples

Evaluation

Conclusions

Conclusions

- It is not easy task to estimate performance without class labels unusable for certain types of data
- We worked with only one classifier, ensemble could improve performance
- Pros
 - Can detect change faster
 - Can improve accuracy
- Cons
 - Wrong decision can lead to considerable decrease in accuracy

э.

Evaluation

Conclusions

Thank you for your attention!

æ

・ロト ・四ト ・モト ・モト