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Introduction

• Meta-learning
• Information about relation between tasks/domains and

learning strategies
• Finding proper model

• Data streams
• Real world problems
• Continuous data

• Concept drift
• Change over time

• Recurrent concepts
• Seasonal change
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Drift Detection

• Distribution of data is stationary
• Error-rate decreases with increasing number of examples

• Error-rate increases - warning/drift is reported
• warning

pi + si ≥ pmin + 2 ∗ smin

• drift
pi + si ≥ pmin + 3 ∗ smin

• where pi is the error-rate and si is standard deviation
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Motivation

• Presence of delay
• Between arrival of example and obtaining label
• Unlabeled items are usualy unused

• Could we use just attributes to predict change
• Referees
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Referee

• What is a referee
• A meta-learning model (level 1 classifier)
• Makes decisions about performance of primary (level 0)

classifier

• How it learns
• Examples with new class labels

• false when level 0 prediction is incorrect
• true when level 0 prediction is correct
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Overview of Learning the Referee
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Method Strategy

• One referee for one concept model

• Before concept drift - ask referees
• After warning level is reached
• Proactive approach

• Select historical (in advance) - does not need class label
• or continue and learn new one

• After concept drift store old model with referee
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Overview of Strategy
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Problems

• Distribution of referee’s examples = error-rate of level 0
classifier

• Skewness of data

• Classes were not very discriminative
• Mean of attributes

• Better to start new classifier that use wrong one
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Evaluation - data

• SEA Concepts
• Frequently used benchmark dataset with concept drift
• 3 attributes → 2 relevant (sum > threshold)
• 4 different concepts (thresholds) repeated twice
• 120,000 examples
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Evaluation - data

• Hyperplane
• Represents continuously moving hyperplane in d-dimensional

space
• Recurrence?

• LED data

• Proteins

• STAGGER

• Intrusion
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Evaluation Hypothesis

• After drift detection a new model always takes place

• Referees are asked and older model could be re-used

• Models itself are asked and older model could be re-used
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Evaluation - referees
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Evaluation - notes

• Re-used models were from similar concepts → difference in
error was not very significant

• Detection was faster
• 4 times re-used and 3 times drift was sooner (183.5 examples

on average)
• Considering all the warning phases, number of examples in

them was decreased by 80 on average (9.25 %)
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Evaluation - true models
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Evaluation - notes

• Manually re-used models
• Slower increase of error-rate
• Early warning → learning from examples of previous concept
• Drift times were not better than with referee (except the last

one)
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Evaluation - Hyperplane
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Conclusions

• It is not easy task to estimate performance without class
labels - unusable for certain types of data

• We worked with only one classifier, ensemble could improve
performance

• Pros
• Can detect change faster
• Can improve accuracy

• Cons
• Wrong decision can lead to considerable decrease in accuracy
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Thank you for your attention!
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