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Introduction

e Meta-learning

e Information about relation between tasks/domains and
learning strategies
e Finding proper model

e Data streams

e Real world problems
e Continuous data

e Concept drift
e Change over time
e Recurrent concepts
e Seasonal change
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Drift Detection

e Distribution of data is stationary
e Error-rate decreases with increasing number of examples

e Error-rate increases - warning/drift is reported
e warning

Pi +si Z Pmin + 2% Smin
o drift
pi + si > Pmin + 3 * Smin

e where p; is the error-rate and s; is standard deviation

v
o

Vﬁ uAAD a

o0+
siper

s INESCPORTOLA



Outline Introduction Main Work Evaluation Conclusions

Motivation

e Presence of delay

o Between arrival of example and obtaining label
e Unlabeled items are usualy unused

e Could we use just attributes to predict change
o Referees
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Referee

e What is a referee

e A meta-learning model (level 1 classifier)

e Makes decisions about performance of primary (level 0)
classifier

e How it learns
e Examples with new class labels

e false when level 0 prediction is incorrect
e true when level 0 prediction is correct
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Overview of Learning the Referee

Learning Model

Learning Referee
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Method Strategy

e One referee for one concept model
e Before concept drift - ask referees

e After warning level is reached
e Proactive approach

e Select historical (in advance) - does not need class label
e or continue and learn new one

o After concept drift store old model with referee
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Overview of Strategy
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Problems

e Distribution of referee’'s examples = error-rate of level 0
classifier

e Skewness of data
e (Classes were not very discriminative
e Mean of attributes

o Better to start new classifier that use wrong one
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Evaluation

Evaluation - data

e SEA Concepts
e Frequently used benchmark dataset with concept drift
e 3 attributes — 2 relevant (sum > threshold)
e 4 different concepts (thresholds) repeated twice
e 120,000 examples

Concept 1 Concept 2

02 4 6 8 10
2

Concept 4

V uaw@g

INESC: [y

@rORTO]



Outline Introduction Main Work Evaluation Conclusions

Evaluation - data

e Hyperplane

e Represents continuously moving hyperplane in d-dimensional

space

e Recurrence?
e LED data
e Proteins
e STAGGER
e Intrusion
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Evaluation Hypothesis

o After drift detection a new model always takes place
e Referees are asked and older model could be re-used

e Models itself are asked and older model could be re-used
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Evaluation - referees

‘SEA Drift Detection
(using referee advice, 350 examples in warning, 70 % treshold)

37 simple drift detection
—— drift detection with referee advice
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Evaluation - notes

e Re-used models were from similar concepts — difference in
error was not very significant
e Detection was faster
e 4 times re-used and 3 times drift was sooner (183.5 examples
on average)
o Considering all the warning phases, number of examples in
them was decreased by 80 on average (9.25 %)
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Evaluation - true models

‘SEA Concepts Drift Detection
(using true models)

simple drift detection

— re-using true mocels
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Evaluation - notes

e Manually re-used models
e Slower increase of error-rate

e Early warning — learning from examples of previous concept

o Drift times were not better than with referee (except the last
one)
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Evaluation - Hyperplane

Hyperplane Drift Detection
(using referee advice, 350 examples in warning, 70 % treshold)

39 simple dhift detection
—— drift detection with referee advice
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Conclusions

It is not easy task to estimate performance without class
labels - unusable for certain types of data

We worked with only one classifier, ensemble could improve
performance

Pros

e Can detect change faster
e Can improve accuracy

Cons

Conclusions

e Wrong decision can lead to considerable decrease in accuracy

%
%

 LAADO L

Ao INESCRORTOLA




Outline Introduction Main Work Evaluation Conclusions

Thank you for your attention!
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