
1Elliptic curves cryptography

CHAPTER CHAPTER 8:8: Elliptic Curves CryptographyElliptic Curves Cryptography and and 

factorizationfactorization

Cryptography based on manipulation of points of so called elliptic curves is getting 

momentum and has a tendency to replace the public key cryptography based on 

unfeasibility of the factorization of integers, or on unfeasibility of the computation of  

discrete logarithms.

For example, US-government has recommended to use elliptic curve cryptography.

The main advantage of elliptic curves cryptography is that to achieve a certain level 

of security shorter keys are required than in case of “usual cryptography”. Using 

shorter keys can result in a considerable savings in hardware implementations. 

The second advantage of the elliptic curves cryptography is that quite a few of 

attacks available for cryptography based on factorization and discrete logarithm do 

not work for elliptic curves cryptography.

It is amazing how practical is the elliptic curve cryptography that is based on very 

strangely looking  theoretical concepts.
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Elliptic CurvesElliptic Curves

An elliptic curve E is the graph of the relation defined by the equation

E: y2 = x3 + ax + b

(where a, b will be either rational numbers or integers (and computation may be 
done modulo some  n)) extended by a “point at infinity”, denoted usually as ∞ (or 0) 
that can be regarded as sitting, at the same time, at the very top and very bottom of 
the y-axis.

We will consider mainly only those elliptic curves that have no multiple roots - what 
is equivalent to the condition  4a3+27b2 ≠ 0.

In case coefficients and x, y can be any rational numbers, a graph of an elliptic 
curve has one of the form shown in the following figure that depends on whether 
polynomial x3+ax+b has three or one real root.
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Historical RemarksHistorical Remarks

Elliptic curves are not ellipses and therefore it seems strange that they have such 

a name.

Elliptic curves actually received their names from their relation to so called elliptic 

integrals
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that arise in the computation of the arc-length of ellipses.

It may also seem puzzling why not to consider curves given by more general 

equations .232 baxexxdycxyy
The reason is that if we are working with rational coefficients or mod p, where p>3 

is a prime, then our general equation can be transformed to our special case. In 

other cases, it may be necessary to consider the most general form of  equation.
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Addition of Points on Elliptic Curves (1)Addition of Points on Elliptic Curves (1)

Geometry

On elliptic curves we can define addition of points in such a way that points of the 

corresponding curve with such an addition form an Abelian group.

If the line through two different points P1 and P2 of an elliptic curve E intersects E

in a point Q=(x,y), then we define P1+P2=P3=(x,-y). (This also implies that for any 

point P on E it holds P+∞ = P.)

If the line through two different points P1 and P2 is parallel with y-axis, then we 

define P1+P2=∞.

In case P1=P2, and the tangent to E in P1 intersects E in a point Q=(x,y), then we 

define P1+P1=(x,-y).

It should now be obvious how to define subtraction of two points of an elliptic 

curve.

It is now easy to verify that the above addition of points forms Abelian group with 

∞ as the  identity (null) element.
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If p≠2 Weierstrass equation can be simplified by transformation

to get the equation

for some constants d,e,f and if p≠3 by transformation

to get equation
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An elliptic curve over        where p is a prime is the set of points (x,y)

satisfying so-called Weierstrass equation

for some constants u,v,a,b,c together with a single element 0, called 

the point of infinity.

ELIPTIC CURVES - GENERALITY
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Addition of Points on Elliptic Curves (2)Addition of Points on Elliptic Curves (2)

Formulas

Addition of points P1=(x1,y1) and P2=(x2,y2) of an elliptic curve E: y2=x3+ax+b can 

be easily computed using the following formulas:

P1 + P2 =P3=(x3,y3)

where

x3 = λ2 - x1 – x2

y3 = λ(x1 – x3) – y1 

and 
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All that holds for the case that λ is finite; otherwise P3 = ∞.

Example For curve y2=x3+73 and P1=(2,9), P2=(3,10) we have P1 + P2 = P3= (-4,-3) 

and P3 + P3 = (72,611).
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Elliptic Curves mod Elliptic Curves mod nn

The points on an elliptic curve 

E: y2=x3+ax+b (mod n)

are such pairs (x,y) mod n that satisfy the above equation, along with the point ∞ 

at infinity.

Example Elliptic curve y2=x3+2x+3 (mod 5) has points

(1,1),(1,4),(2,0),(3,1),(3,4),(4,0), ∞.

Example For elliptic curve E: y2=x3+x+6 (mod 11) and its point P=(2,7) holds 

2P=(5,2); 3P=(8,3). Number of points on an elliptic curve (mod p) can be easily 

estimated.

Hasse’s theorem If an elliptic curve E (mod p) has N points then |N-p-1|<2
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The addition of points on an elliptic curve mod n is done by the same formulas as 

given previously, except that instead of rational numbers c/d we deal with cd-1

Example For the curve E: y2=x3+2x+3 it holds (1,4)+(3,1)=(2,0); (1,4)+(2,0)=(?,?).

p
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Elliptic Curve Discrete LogarithmElliptic Curve Discrete Logarithm

Let E be an elliptic curve and  A, B be its points such that B = kA = (A + A + … + A)
- k times - for some k. The task to find such a k is called the discrete logarithm 
problem for elliptic curves.

No efficient algorithm to compute discrete logarithm problem for elliptic curves is 
known and also no good general attacks. Elliptic curves based cryptography is 
based on these facts.

A general procedure for changing a discrete logarithm based cryptographic 
protocols to a cryptographic protocols based on elliptic curves:

 Assign to the message (plaintext) a point on an elliptic curve.

 Change, in the cryptographic protocol, modular multiplication to addition of points 
on an elliptic curve.

 Change, in the cryptographic protocol, exponentiation to multiplication of a point 
on the elliptic curve by an integer.

 To the point of an elliptic curve that results from such a protocol one assigns a 
message (cryptotext).
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Mapping Messages into Points of Elliptic Curves (1)Mapping Messages into Points of Elliptic Curves (1)

Problem and basic ideaProblem and basic idea

The problem of assigning messages to points on an elliptic curve is difficult 

because there are no polynomial-time algorithms to write down points of an 

arbitrary elliptic curve.

Fortunately, there is a fast randomized algorithm, to assign points of any elliptic 

curve to messages, that can fail with probability that can be made arbitrarily small.

Basic idea: Given an elliptic curve E (mod p), the problem is that not to every x

there is an y such that (x,y) is a point of E.

Given a message (number) m we therefore adjoin to m few bits at the end of m and 

adjust them until we get a number x such that x3 + ax + b is a square mod p.
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Mapping Messages into Points of Elliptic Curves (2)Mapping Messages into Points of Elliptic Curves (2)

TechnicalitiesTechnicalities

Let K be a large integer such that a failure rate  of 1/2K is acceptable when trying to 

encode a message by a point.

For j from 0 to K verify whether for x = mK + j, x3 + ax + b (mod p) is a square 

(mod p) of an integer y.

If such an j is found, encoding is done; if not the algorithm fails (with probability 

1/2K because x3 + ax + b is a square approximately half of the time).

In order to recover the message m from the point (x,y), we compute:
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Elliptic Curve Key ExchangeElliptic Curve Key Exchange

Elliptic curve version of the Diffie-Hellman key generation goes as 

follows:

Let Alice and Bob agree on a prime p, on an elliptic curve E (mod p)

and on a point P on E.

 Alice chooses an integer na, computes naP and sends it to Bob.

 Bob chooses an integer nb, computes nbP and sends it to Alice.

 Alice computes na(nbP) and Bob computes nb(naP). This way they 

have the same key.
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Elliptic Curve Version of ElGamal CryptosystemElliptic Curve Version of ElGamal Cryptosystem

Standard version of ElGamal: Bob chooses a prime p, a generator q < p, 

an integer a, computes y = qa (mod p), makes public p,q, y and keeps a secret.

To send a message m Alice chooses a random r, computes:

y1 = qr ; y2 = myr

and sends it to Bob who decrypts by calculating 

Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve

E (mod p), a point P on E, an integer a, computes Q = aP, makes E, p, and Q

public and keeps a secret.

To send a message m Alices expresses m as a point X on E, chooses random r, 

computes

y1 = rP ; y2 = X + rQ

And sends the pair (y1,y2) to Bob who decrypts by calculating X = y2 – ay1.
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Elliptic Curve Digital SignatureElliptic Curve Digital Signature

Eliptic curves version of ElGamal digital signatures has the following form for signing              

(a message) m, an integer, by Alice and to have the signature verified by Bob:

Alice chooses p and an elliptic curve E (mod p), a point P on E and calculates the number of 

points n on E (mod p) – what can be done, and we assume that 0 < m < n. 

Alice then chooses a random integer a and computes Q = aP.  She makes public p, E, P, Q

and keeps secret a.

To sign m Alice does the following:

 Alice chooses a random integer r, 1 ≤ r < n such that gcd(r,n) = 1 and computes                      

R = rP = (x,y).

 Alice computes s = r–1(m – ax) (mod n)

 Alice sends the signed message (m,R,s) to Bob.

Bob verifies the signature as follows:

 Bob declares the signature as valid if xQ + sR = mP

The verification procedure works because

xQ + sR = xaP + r–1(m – ax)(rP) = xaP + (m – ax)P = mP

Warning Observe that actually rr–1 = 1 + tn for some t. For the above verification procedure to 

work we then have to use the fact that nP = ∞ and therefore P + t ∞ = P
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Factoring with Elliptic CurvesFactoring with Elliptic Curves

Basis idea: To factorize an integer n choose an elliptic curve E, a point P on E  and 
compute (modulo n) either iP for i=2,3,4,… or 2j P for j=1,2,….                                
The point is that in doing that one needs to compute gcd(k,n) for various k. If one of 
these values is between 1 and n we have a factor of n.

Factoring of large integers: The above idea can be easily parallelised and 
converted to using an enormous number of computers to factor a single very large 
n. Each computer gets some number of elliptic curves and some points on them 
and multiplies these points by some integers according to the rule for addition  of 
points. If one of computers encounters, during such a computation, a need to 
compute 1 < gcd(k,n) < n ,factorization is finished.

Example: If curve E: y2 = x3 + 4x + 4 (mod 2773) and its point P=(1,3) are used, 
then 2P=(1771,705) and in order to compute 3P one has to compute 
gcd(1770,2773)=59  -- factorization is done.

Example: For elliptic curve E: y2=x3+x-1 (mod 35) and its point P=(1,1) we have 
2P=(2,2); 4P=(0,22); 8P=(16,19) and at the attempt to compute 9P one needs to 
compute gcd(15,35)=5 and factorization is done. The only things that remains to be 
explored is how efficient is this method and when it is more efficient than other 
methods.
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Important Observations (1)Important Observations (1)

 If n = pq for primes p,q, then an elliptic curve E (mod n) can be seen as a pair of 
elliptic curves E (mod p) and E (mod q).

 It follows from the Lagrange theorem that for any elliptic curve E (mod n) and its 

point P there is an k<n such that kP = ∞.

 In case of an elliptic curve E (mod p) for some prime p, the smallest positive 

integer m such that mP = ∞ for some point P divides the number N of points on the 

curve E (mod p). Hence NP = ∞.

If N is a product of small primes, then b! will be a multiple of N for a reasonable 

small b. Therefore, b!P = ∞.

 The number with only small factors is called smooth and if all factors are smaller 
than an b, then it is called b-smooth. 

It can be shown that the density of smooth integers is so large that if we choose a 
random elliptic curve E (mod n) then it is a reasonable chance that n is smooth.
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Practicality of Factoring Using ECC (1)Practicality of Factoring Using ECC (1)

Let us continue to discuss the following key problem for factorization using elliptic 

curves:

Problem: How to choose k such that for a given point P we should try to compute 

points iP or 2iP for all multiples of P smaller than kP?

Idea: If one searches for m-digits factors, one chooses k in such a way that k is a 

multiple of as many as possible of those m-digit numbers  which do not have too 

large prime factors. In such a case one has a good chance that k is a multiple of 

the number of elements of the group of points of the elliptic curve modulo n.

Method 1: One chooses an integer B and takes as k the product of all maximal 

powers of primes smaller than B.

Example: In order to find a 6-digit factor one chooses B=147 and k=27∙34∙53 ∙ 

72∙11∙2∙13∙… ∙139. The following table shows B and the number of elliptic curves 

one has to test:
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Practicality of Factoring Using ECC (2)Practicality of Factoring Using ECC (2)IV054

Digits of to-be-factors 6 9 12 18 24 30

B 147 682 2462 23462 162730 945922

Number of curves 10 24 55 231 833 2594

Computation time by the elliptic curves method depends on the size of factors.
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Elliptic curve factorization Elliptic curve factorization -- detailsdetails

Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be 

expected to be smaller than an F. One should then proceed as follows:                   
Choose an integer parameter r and:

(1) Select, randomly, an elliptic curve

E : y2 = x3 + ax + b

such that gcd(n, 4a2 + 27b2) = 1 and a random point P on E.

(2) Choose integer bounds A,B,M such that

for some primes p1 < p2 < . . . < pl B and apj
, being the

largest exponent such that pj
aj A.

Set j = k = 1

(3) Calculate pj P.

(4) Computing gcd.

• If pj P O (mod n), then set P = pj P and reset

k k + 1

1. If k apj
, then go to step (3).
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Elliptic curve factorization Elliptic curve factorization –– details IIdetails II

2. If k > apj
, then reset j j + 1, k 1. 

If j l, then go to step (3); otherwise go to step (5)

• If pj P O (mod n) and no factor of n was found at the

computation of inverse elements, then go to step (5)

(5) Reset r r − 1. If r > 0 go to step (1); otherwise terminate with ”failure”. 

The ”smoothness bound” B is recommended to be chosen as  B =                                    

and in such a case running time is

2/)ln(lnln FFe
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Elliptic Curves: FAQElliptic Curves: FAQ

 How to choose (randomly) an elliptic curve E and point P on E? An easy way is 

first choose a point P(x,y) and an a and then compute b = y2 - x3 - ax to get the 

curve  E: y2 = x3 + ax + b.

 What happens at the factorization using elliptic curve method, if for a chosen 

curve (E mod n) the corresponding cubic polynomial x3 + ax + b has multiple roots 

(that is if 4a3 + 27b2 = 0) ? No problem, method still works.

 What kind of elliptic curves are really used in cryptography? Elliptic curves over 

fields GF(2n) for n > 150. Dealing with such elliptic curves requires, however, 

slightly different rules.
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FACTORIZATIONFACTORIZATION

Factorization of integers is a very important problem.  

A variety of techniques has been developed to deal with this problem.

So far the fastest classical factorization algorithms work  in time

The fastest quantum algorithm  for factorization works in both quantum 

and classical polynomial time.

In the rest of chapter several factorization methods will be presented 

and discussed.
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1990 A. K. Lenstra+… found factorization for F9 (155 digits) 

Fermat numbers factorizationFermat numbers factorization

Factorization of so-called Fermat numbers 22^i + 1 is a good example to illustrate 

progress that has been made in the area of factorization.

Pierre de Fermat (1601-65) expected that all numbers

Fi = 22^i + 1 i 1

are primes.

This is true for i = 1,…,4. F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

1732 L. Euler found that F5 = 4294967297 = 641 · 6700417
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1880 Landry+LeLasser found that

F6 = 18446744073709551617 = 274177 · 67280421310721

1970 Morrison+Brillhart found factorization for F7 =(39 digits)

F7 = 340282366920938463463374607431768211457 =

= 5704689200685129054721 · 59649589127497217

1980 Brent+Pollard found factorization for F8
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FERMAT TEST
It follows from the Little Fermat Theorem that if p is a prime, then for all 0<b<p, we 

have

Can we say that n is prime if and only if for all 0<b<n, we have

No, there are composed numbers n, so-called Carmichael numbers, such that

for all 0<b<n that are primes with n it holds

Such number is, for example, n=561. 

)(mod11 pbp

?)(mod11 nbn

)(mod11 nbn



24Elliptic curves cryptography

Pollard ρPollard ρ--MethodMethod

A variety of factorization algorithms, of complexity around O(p1/2) where p 

is the smallest prime factor of n, is based on the following idea: 

• A function f is taken that “behaves like a randomizing function” 

and f(x) ≡ f(x mod p) (mod p) for any factor p of n ­ usually f(x) = x2 + 1

• A random x0 is taken and iteration 

xi+1 = f(xi) mod n

is performed (this modulo n computation actually “hides” modulo p 

computation in the following sense: if x’0 = x0 , x’i+1 = f(x’i) mod n, then 

x’i = xi mod p) 

• Since Zp is finite, the shape of the sequence x’i will remind the letter ρ, 

with a tail and a loop. Since f is “random”, the loop modulo n rarely 

synchronizes with the loop modulo p

• The loop is easy to detect by GCD­computations and it can be shown 

that the total length of tail and loop is O(p1/2). 
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Loop DetectionLoop Detection

In order to detect the loop it is enough to perform the following 

computation: 

a x0; b x0;

repeat

a f(a);

b f(f(b));

until a = b

Iteration ends if at = b2t for some t greater than the tail length and a 

multiple of the loop length.
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First Pollard  ρFirst Pollard  ρ--algorithmalgorithm

Input: an integer n with a factor smaller than B

Complexity: O(B1/2) of arithmetic operations

x0 random; a x0; b x0;

do

a f(a) mod n;

b f(f(b) mod n) mod n;

until gcd(a – b, n) ≠ 1

output gcd(a – b, n)

The proof that complexity of the first Pollard­ρ factorization algorithm is given 
by O(n1/4) arithmetic operations is based on the following result: 

Lemma Let x0 be random and f be “random” in Zp, xi+1 = f(xi). The probability 
that all elements of the sequence 

x0, x1, . . . , xt 

are pairwise different when t = 1 + floor((2λp)1/2) is less than e-λ.
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Second Pollard Second Pollard ρρ--algorithmalgorithm

Basic idea 1. Choose an easy to compute f: Zn Zn and x0 Zn.

Example f(x) = x2 + 1

2. Keep computing xi+1 = f(xj), j = 0,1,2,… and gcd(xj - xk, n), k j.

(Observe that if xj xk mod p for a prime factor p of n, then gcd(xj - xk, n) p.) 

Example n = 91, f(x) = x2+1, x0 = 1, x1 = 2, x2 = 5, x3 = 26

gcd(x3 - x2, n) = gcd(26 - 5, 91) = 7

Remark: In the ρ-method, it is important to choose a function f in such a way 

that f maps Zn into Zn in a ”random'' way.

Basic question: How good is the ρ-method?

(How long we expect to have to wait before we get two values xj, xk such that 

gcd(xj - xk, n) 1, if n is not a prime?)
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Basic lemmaBasic lemma

Given: n, f:Zn Zn and x0 Zn

We ask how many iterations are needed to get xj xk mod r where r is a prime 

factor of n.
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Lemma Let S be a set, r = |S|. Given a map f:S S, x0 S, let xj+1 = f(xj), j 0. Let 

> 0, Then the proportion of pairs (f, x0) for which x0, x1,…, xl are 

distinct, where f runs over all mappings from S to S and x0 over all S, is less than e- .

Proof Number of pairs (x0, f) is r r+1. 

How many pairs (x0, f) are there for which x0,…, xl are distinct?

r choices for x0, r-1 for x1, r-2 for x2,…

The values of f for each of the remaining r - l values are arbitrary - there are r r - l

possibilities for those values.

Total number of ways of choosing x0 and f such that x0,…, xl are different is

and the proportion of pairs with such a property is

For we have
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RHORHO--ALGORITHMALGORITHM

A simplification of the basic idea: For each k compute gcd(xk - xj, n) for just one j < k.

Choose f:Zn Zn, x0, compute xk = f(xk-1), k > 0.

If k is an (h +1)-bit integer, i.e. 2h k 2h+1, then compute gcd(xk, x2^h-1).
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Example n = 4087, f(x) = x2 + x + 1, x0 = 2 

x1 = f(2) = 7, gcd(x1 - x0, n) = 1

x2 = f(7) = 57, gcd(x2 - x1, n) = gcd(57 – 7, n) = 1

x3 = f(57) = 3307, gcd(x3 - x1, n) = gcd(3307 - 7, n) = 1

x4 = f(3307) = 2745, gcd(x4 - x3, n) = gcd(2745 - 3307, n) = 1

x5 = f(2746) = 1343, gcd(x5 - x3, n) = gcd(1343 - 3307, n) = 1

x6 = f(1343) = 2626, gcd(x6 - x3, n) = gcd(2626 - 3307, n) = 1

x7 = f(2626) = 3734, gcd(x7 - x3, n) = gcd(3734 - 3307, n) = 61

Disadvantage We likely will not detect the first case such that for some k0 there is a 

j0 < k0 such that gcd(xk0 - xj0, n) > 1. 

This is no real problem! Let k0 has h +1 bits. Set j = 2h+1 -1, k = j + k 0 - j0. k has 

(h+2) bits, gcd(xk - xj, n) > 1

k < 2h+2 = 4 · 2h 4k0.
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RHORHO--ALGORITHMALGORITHM

Theorem Let n be odd + composite and 1 < r < sqrt(n) its factor. If f, x0 are chosen 
randomly, then rho algorithm reveals r in bit operations with high 
probability. More precisely, there is a constant C > 0 such that for any > 0, the 
probability that the rho algorithm fails to find a nontrivial factor of n in
bit operations is less than e - .
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Proof Let C1 be a constant such that gcd(y - z, n) can be computed in C1log3n bit 
operations whenever y, z < n.

Let C2 be a constant such that f(x) mod n can be computed in C2log2n bit 
operations if x < n.

If k0 is the first index for which there exists j0 < k0 with xk0 xj0 mod r, then the rho-
algorithm finds r in k 4k0 steps.

The total number of bit operations is bounded by -> 4k0(C1log3n + C2log2n)

By Lemma the probability that k0 is greater than is less than e - .

If , then the number of bits operations needed to find r is bounded by

If we choose C > 4sqrt(2)(C1 + C2), then we have that r will be found in

bit operations - unless we made uniformed choice of (f, x0) the probability of what is 
at most e - .
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COMMENTS

Pollard ρ-method works fine for integers n with a small 

factor.

Next method, so called Pollard (p-1)-method, works fine for 

n having a prime factor p such that all prime factors of p-1

are small.

When all prime factors of p-1 are smaller than a B, we say 

that p-1 is B-smooth.
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POLLARD ’s  p-1 algorithm

Pollard’s algorithm (to factor n given a bound b).

a := 2;

for j=2 to b do a:= aj mod n;

f:= gcd(a-1,n);                                            f=gcd(2b! -1,n)}

if 1 < f < n then f is a factor of n otherwise failure

Indeed, let p be a prime divisor of n and q < b for every prime  q|(p-1).

(Hence (p-1)|b!).

At the end of the for-loop we  have

a Ξ 2b! (mod n)

and therefore

a Ξ 2b! ( mod p)

By Fermat theorem 2p-1 Ξ 1 (mod p) and since (p-1)|b! we get aΞ2b! Ξ1 (mod p).and 
therefore we have  p|(a-1)

Hence

p | gcd(a-1,n)
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Important Observations (2)Important Observations (2)

Pollard ρ-method works fine for numbers with a small factor.

The p-1 method requires that p-1 is smooth. The elliptic curve method 

requires only that there are enough smooth integers near p and so at 

least one of randomly chosen integers near p is smooth.

This means that the elliptic curves factorization method succeeds 

much more often than p-1 method.

Fermat factorization and Quadratic Sieve method discussed later 

works fine if integer has two factors of almost the same size.

IV054
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Fermat factorizationFermat factorization

If n = pq, p <      , then

Therefore, in order to find a factor of n, we need only to investigate 

the values

x = a2 − n

for a =         + 1,         + 2, . . . , (n − 1)/2

until a perfect square is found.

n
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FERMAT FACTORIZATIONFERMAT FACTORIZATION

Basic idea: Factorization is easy if one finds x, y such that n | (x2 - y 2)

Proof: If n divides (x + y)(x - y) and n does not divide neither x+y nor x-y, then one 
factor of n has to divide x+y and another one x-y. 

Example n = 7429 = 2272 -2102, x = 227, y = 210

x – y = 17 x + y = 437

gcd(17, 7429) = 17 gcd(437, 7429) = 437.

How to find such x and y?

First idea: one tries all t starting with       until           is a square     .

Second idea: One forms a system of (modular) linear equations and determines x
and y from the solutions of such a system.

number of digits of n 50 60 70 80 90 100 110 120

number of equations 3000 4000 7400 15000 30000 51000 120000 245000

IV054
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Method of Quadratic Sieve to factorizeMethod of Quadratic Sieve to factorize an integer an integer nn

Step 1 One finds numbers x such that x2 - n is small and has small factors.

Example

832 – 7429 = -540 = (-1) · 22 · 33 · 5

872 – 7429 = 140 = 22 · 5 · 7 relations

882 – 7429 = 315 =          32 · 5 · 7
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13  2  ,0 1   
2mod03   2         
2mod03   2   1 
2mod0                  1 

Step 2 One multiplies some of the relations if their product is a square.

For example

(872 – 7429)(882 – 7429) = 22 · 32 · 52 · 72 = 2102

Now

(87 · 88)2 (872 - 7429)(882 - 7429) mod 7429 

2272 2102 mod 7429

Hence 7429 divides 2272-2102.

Formation of equations: For the i-th relation one takes a variable i and forms the expression

((-1) · 22 · 33 · 5) 1 · (22 · 5 · 7) 2 · (32 · 5 · 7) 3 = (-1) 1 · 22 1 + 2 2 · 32 1 + 2 2 · 5 1 + 2 + 3 · 7 2 + 3

If this is to form a quadrat the 

following equations have to hold

.
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Method of quadratic sieve to factorizeMethod of quadratic sieve to factorize nn

Problem How to find relations? 

Using the algorithm called Quadratic sieve method. 
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u -3 -2 -1 0 1 2 3

(m + u)2 - n -540 -373 -204 -33 140 315 492

Sieve with 2 -135 -51 35 123

Sieve with 3 -5 -17 -11 35 41

Sieve with 5 -1 7 7

Sieve with 7 1 1

Step 1 One chooses a set of primes that can be factors - a so-called factor basis. 

One chooses an m such that m2 - n is small and considers numbers (m + u)2 - n for 

–k u k for small k.

One then tries to factor all (m + u)2 - n with primes from the factor basis, from the 

smallest to the largest.

In order to factor a 129-digit number from the RSA challenge they used

8 424 486 relations

569 466 equations

544 939 elements in the factor base
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Factorization of a 512Factorization of a 512--bit numberbit number

On August 22, 1999, a team of scientifists from 6 countries found, after 7 

months of computing, using 300 very fast SGI and SUN workstations and 

Pentium II, factors of the so-called RSA-155 number with 512 bits (about 155 

digits).
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RSA-155 was a number from a Challenge list issue by the US company RSA 

Data Security and “represented'' 95% of 512-bit numbers used as the key to 

protect electronic commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on 

a single computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-

129, he estimated that, using knowledge of that time, factorization of RSA-129 

would require 1016 years.
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LARGE NUMBERSLARGE NUMBERS

Hindus named many large numbers - one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand 

grains needed to fill the universe.

Large numbers with special names:

googol - 10100 golplex - 1010^100
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FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits. 

J. Harley factorized: 1010^1000 +1.

One factor: 316,912,650,057,350,374,175,801,344,000,001

1992 E. Crandal, Doenias proved, using a computer that F22, which has more than 

million of digits, is composite (but no factor of F22 is known).

Number was used to develop a theory of the distribution of prime numbers.


