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ABSTRACT

The concept of multiple graph alignment (MGA) has recently
been introduced as a novel method for the structural analysis of
biomolecules. Using approximate graph matching techniques, this
method enables the robust identification of approximately conserved
patterns in biologically related structures. In particular, MGA enables
the characterization of functional protein families independent of
sequence or fold homology. This article first recalls the concept
of MGA and then addresses the problem of computing optimal
alignments from an algorithmic point of view. In this regard, a method
from the field of evolutionary algorithms is proposed and empirically
compared with a hitherto existing heuristic approach. Empirically, it
is shown that the former yields significantly better results than the
latter, albeit at the cost of an increased runtime.
Contact: eyke@mathematik.uni-marburg.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Multiple sequence alignment is an established method for similarity
analysis and the identification of residues that are conserved across
many members of a gene or protein family (Bateman et al., 2004;
Servant et al., 2002; Thompson et al., 1994). However, as this
approach relies on evolutionary conserved sequences in DNA or
protein chains, it is only capable of detecting similarities between
different molecules that are based on heredity. Consequently,
sequence analysis is not optimally suited for the identification of
functional similarities, as functionality is more closely associated
with structural than with sequential features. In fact, it is well
known that structural similarity does not necessarily come along
with sequence similarity (Gibrat et al., 1996).

Focusing on the identification of structural similarities, the
comparison of protein structures and the identification of common
3D patterns and substructures has received considerable attention
in the recent years, and a number of different approaches has
been proposed for this purpose (Jambon et al., 2003; Kinoshita
and Nakamura, 2005; Shasha et al., 2002; Spriggs et al., 2003;
Yan et al., 2004, 2005, 2006; Zhang et al., 2007). In principle,
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approaches of that kind allow one to capture non-homologous
molecules with similar functions as well as evolutionary conserved
functional domains. Restrictively, however, it needs to be mentioned
that many of the existing methods use exact matching techniques,
such as subgraph isomorphism, which makes it difficult to discover
biologically meaningful patterns that are only approximately
conserved. Moreover, most methods are restricted to the comparison
of pairs of graphs, with only a few notable exceptions that are
able to compare multiple graphs simultaneously (Dror et al., 2003;
Leibowitz et al., 2001; Shatsky et al., 2004, 2006). A detailed review
of related work is given in the Supplementary Material.

This work draws on the concept of multiple graph alignment
(MGA), which was first introduced in Weskamp et al. (2007)
as a structural counterpart to multiple sequence alignment. Our
special interest concerns the analysis of protein structures or, more
specifically, protein binding sites, even though graph alignments can
also be used for analyzing other types of biomolecules.1 Weskamp
et al. (2007) proposed a heuristic algorithm which employs a
simple greedy strategy to construct MGAs in an incremental
way. Here, we present an alternative method using evolutionary
algorithms (EAs). As will be shown experimentally, significant
improvements in terms of the quality of alignments can thus be
achieved.

The article is organized as follows: we start with a short
introduction to graph-based modeling of biomolecules in Section 2.
In Section 3, we introduce the concept of a MGA. The problem of
computing an MGA is then addressed in Section 4, where an EA is
proposed for this purpose. Section 5 is devoted to the experimental
evaluation of the approach, and Section 6 concludes the article.

2 MODELING BIOMOLECULES AS GRAPHS
Single biomolecules in bio- and chemoinformatics are often modeled
at an abstract level in terms of a graph G consisting of a set of
(labeled) nodes V and (weighted) edges E. In this article, we are
especially interested in the graph-based modeling of protein binding
sites. Yet, our experiments later on will also include a dataset of
chemical compounds.

1The same term is also used by Berg and Lässig (2004). However, the
problem they consider is actually more related to motif search and frequent
pattern mining, which is quite different from an algorithmic point of view.
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2.1 Modeling chemical compounds
In case of chemical compounds, atoms are represented as nodes
labeled with their corresponding atom type, e.g. using the SYBYL
atom type notation (Gasteiger and Engel, 2003). Edges between
atoms can represent chemical bonds or Euclidean distances. In the
former case, edges are weighted by the bond order. In the latter case,
edge weights represent Euclidean distances, thereby capturing the
inherent geometry of the compound.

2.2 Modeling protein binding sites
The graph-based modeling of protein binding pockets is less
obvious. Our work builds upon Cavbase (Schmitt et al., 2001, 2002),
a database system for the automated detection, extraction and
storage of protein cavities (hypothetical binding pockets) from
experimentally determined protein structures (available through the
PDB). In Cavbase, graphs are used as a first approximation to
describe binding pockets. The database currently contains 113 718
hypothetical binding pockets that have been extracted from 23 780
publicly available protein structures using the Ligsite algorithm of
Hendlich et al. (1997).

To model a binding pocket as a graph, the geometrical
arrangement of the pocket and its physicochemical properties are
first represented by predefined pseudocenters—spatial points that
represent the center of a particular property. The type and the
spatial position of the centers depend on the amino acids that border
the binding pocket and expose their functional groups. They are
derived from the protein structure using a set of predefined rules
(Schmitt et al., 2002). As possible types for pseudocenters, hydrogen
bond donor, acceptor, mixed donor/acceptor, hydrophobic aliphatic,
metal ion, pi (accounts for the hydrophobic character present
above/below amide, guanidinium and carboxylate planes) and
aromatic properties are considered. Pseudocenters can be regarded
as a compressed representation of areas on the cavity surface where
certain protein–ligand interactions are experienced. Consequently,
a set of pseudocenters is an approximate representation of a spatial
distribution of physicochemical properties.

The assigned pseudocenters form the nodes v∈V of the graph
representation, and their properties are modeled in terms of node
labels �(v)∈{P1,P2,...,P7}, where P1 stands for donor, P2 for
acceptor, etc. Two centers are connected by an edge in the
graph representation if their Euclidean distance is below a certain
threshold2 and each edge e∈E is labeled with the respective
distance w(e)∈R. The edges of the graph thus represent geometrical
constraints among points on the protein surface.

3 MULTIPLE GRAPH ALIGNMENT
When comparing protein cavities on a structural level, one has
to deal with the same mutations that also occur on the sequence
level. Corresponding mutations, in conjunction with conformational
variability, strongly affect the spatial structure of a binding site
as well as its physicochemical properties and, therefore, its graph
descriptor. This is even more an issue when it comes to the
comparison of proteins that might share a common function but

2An interaction distance of 11.0 Å is typically enough to capture the geometry
of a binding site, and ignoring larger distances strongly simplifies the graph
representation and hence accelerates the subsequent calculations.

lack a close hereditary relationship. Thus, one cannot expect that
the graph descriptors for two functionally related binding pockets
match exactly. Our approach therefore includes the following types
of edit operations to account for differences between a graph G(V ,E)
and another graph.

(1) Insertion or deletion of a node v∈V : a pseudocenter can
be deleted or inserted due to a mutation in sequence space.
Alternatively, an insertion or deletion in the graph descriptor
can result from a conformational difference that affects the
exposure of a functional group toward the binding pocket.

(2) Change of the label �(v) of a node v∈V : the assigned
physicochemical property of a pseudocenter can change if a
mutation replaces a certain functional group by another type
of group at the same position.

(3) Change of the weight w(e) of an edge e∈E: the distance
between two pseudocenters can change due to conformational
differences.

By assigning a cost value to each of these edit operations, it
becomes possible to define an edit distance for a pair of graph
descriptors. The edit distance of two graphs G1, G2 is defined as the
cost of a cost-minimal sequence of edit operations that transforms
graph G1 into G2. As in sequence analysis, this allows for defining
the concept of an alignment of two (or more) graphs. The latter,
however, also requires the possibility to use dummy nodes ⊥ that
serve as placeholders for deleted nodes. They correspond to the gaps
in sequence alignment (cf. Fig. 1).

Definition 1. (MGA) Let G ={G1(V1,E1), ...,Gm(Vm,Em)} be
a set of node-labeled and edge-weighted graphs. Then A⊆ (V1 ∪
{⊥})×···×(Vm ∪{⊥}) is an alignment of the graphs in G if and
only if the following two properties hold: (i) Each node of each
graph occurs exactly once in the alignment, i.e. for all i=1, ...,m
and for each v∈Vi there exists exactly one a= (a1 ...am)∈A such
that v=ai. (ii) Each tuple of the alignment contains at least one non-
dummy node, i.e. for each a= (a1 ...am)∈A there exists at least one
1≤ i≤m such that ai �=⊥.

Each a∈A corresponds to a vector of mutually assigned nodes
from the graphs G1 ...Gm. Note that, by matching nodes, a mutual
assignment of edges is determined in an implicit way. Once an
MGA has been established, it can be used to derive approximately
conserved patterns. This can be done in different ways, for example,
by extracting highly conserved subgraphs from a ‘fuzzy’ consensus
graph G. This graph contains one node v=v(a) for each a∈A that
summarizes the label distribution of the mutually assigned nodes
from the original graphs. Additionally, a degree of conservation
cons(v) is calculated, which is defined by the relative number of
graphs in which this node is present. The edges of the consensus
graph are defined accordingly [see Weskamp et al. (2007) for
details]. For given thresholds α,β ∈ (0,1], a conserved pattern can
then be defined in terms of the subgraph of G consisting of all
nodes v with cons(v)≥α and maj(v)≥β, where maj(v) is the relative
frequency of the most frequent label in a.

To assess the quality of a given alignment, a scoring function is
used that corresponds to the above-mentioned edit distance (each
graph alignment defines a set of edit operations that have to be
performed to transform one of the aligned graphs into another graph
of the alignment). Our scoring function follows a sum-of-pairs
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Fig. 1. Simple illustration of MGA by an approximate match of three graphs with two types of labels (black and white). Mutual assignments of nodes are
indicated by dashed lines. Note that the second assignment involves a mismatch, since the node in the third graph is black. Likewise, the fourth assignment
involves a dummy (indicated by a box), since a node is missing in the second graph. The rightmost picture is a graphical overlay of the three structures.

scheme, i.e. the score s of a multiple alignment A= (a1 ...an) is
defined by the sum of scores of all induced pairwise alignments.
Moreover, it consists of two parts, a node score (ns) and an edge
score (es):

s(A)=
n∑

i=1

ns(ai)+
∑

1≤i<j≤n

es(ai,aj) . (1)

The ns is defined by the sum of the evaluations of the individual
columns of the alignment, where such an evaluation is defined as
follows:

ns

⎛
⎜⎝

ai
1
...

ai
m

⎞
⎟⎠=

∑
1≤j<k≤m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nsm

nsmm

nsdummy

nsdummy

�(ai
j)=�(ai

k)

�(ai
j) �=�(ai

k)

ai
j =⊥,ai

k �=⊥
ai

j �=⊥,ai
k =⊥

Thus, to evaluate a single vector of mutually assigned nodes, these
nodes are considered in a pairwise manner, and three cases are
distinguished: (i) the labels of two nodes are equal (match), (ii)
the labels differ (mismatch) and (iii) one of the nodes is a dummy.

Comparing two edges is somewhat more difficult than comparing
two nodes, as one cannot expect to observe edges of exactly the
same lengths. We consider two edges as a match if their respective
lengths, a and b, differ by at most a given threshold ε, and as a
mismatch otherwise. The es is then given by
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∣∣∣. The parameters (i.e. nsm, nsmm,

nsdummy, esm, esmm) are constants used to reward or penalize
matches, mismatches and dummies, respectively. Throughout our
experiments in Section 5, we used the parameters recommended by
Weskamp et al. (2007): nsm =1, nsmm =−5, nsd =−2.5, esm =0.2,
esmm =−0.1, ε=0.2.

The problem of calculating an optimal MGA, that is, an
alignment with maximal score for a given set of graphs, is provably

nondeterministic polynomial (NP)-complete. In Weskamp et al.
(2007), simple and effective heuristics for the MGA problem have
been devised that were found to be useful for the problem instances
that were examined. The main idea of these methods is to reduce
the multiple alignment problem to several pairwise problems (i.e.
calculating an optimal graph alignment for only two graphs) in a
first step. To align a pair of graphs, an exact seed solution in the
form of a subgraph isomorphism is computed and then extended
to a complete alignment in a greedy manner. Resorting to the idea
of star alignment, which is well known in sequence analysis, all
pairwise alignments are finally merged into a multiple alignment.

In this article, we elaborate on the use of EAs as an alternative
approach. On the one hand, evolutionary optimization is of course
more expensive from a computational point of view. On the other
hand, the hope is that this approach will be able to improve the
solution quality, i.e. to produce alignments that are better than those
obtained by the simple greedy strategy.

4 AN EA FOR MGA
In this section, we introduce a new algorithm for MGA called
GAVEO (Graph Alignment Via Evolutionary Optimization). To this
end, we resort to the class of evolution strategies. An evolution
strategy is a special type of EA that seeks to optimize a fitness
function, which in our case is given by the sum-of-pairs score (1). To
this end, it simulates the evolution process by repeatedly executing
the following loop (Beyer and Schwefel, 2002):

(1) Initially, a population consisting of µ individuals, each
representing a candidate solution, is generated at random; µ

specifies the population size per generation.

(2) In each generation, λ=ν ·µ offspring individuals are created;
the parameter ν is called selective pressure. To generate
a single offspring, the mating-selection operator chooses
ρ parent individuals at random and submits them to the
recombination operator. This operator generates an offspring
by exchanging the genetic information of these individuals.
The new individual is further modified by the mutation
operator.

(3) The offsprings are evaluated and added to the parent
population. Among the individuals in this temporary
population T , the selection operator chooses the best µ

candidates, which form the population of the next generation.

(4) Steps (2) and (3) are repeated until a stopping criterion is met.
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A: 1 2 . 4 3 5 .
B: 6 1 2 3 4 5 .
C: 4 3 2 . 1 . .
D: . 3 4 . 2 1 .

Fig. 2. Matrix representation of an MGA. Dummies are represented by a
dot. Note that the order of the columns is arbitrary.

4.1 Representation of individuals
Regarding the representation of individuals, note that in our case
candidate solutions correspond to MGAs. Given a fixed numbering
of the nodes of graph Gi from 1 to |Vi| (not to be confused with
the node labeling), an MGA can be represented in a unique way
by a 2D matrix, where the rows correspond to the graphs and the
columns to the aligned nodes (possibly a dummy, indicated by a dot)
of these graphs. Figure 2 shows an example of such a matrix. The
first column indicates a mutual assignment of the first node of graph
A, the sixth node of graph B and the fourth node of graph C, while
there is no matching partner other than a dummy in graph D.

In the course of optimizing an MGA, the graphs can become larger
due to the insertion of dummy nodes. For the matrix representation,
this means that the number of columns is in principle not known and
can only be upper-bounded by |V1|+···+|Vm|. This, however, will
usually be too large a number and may come along with an excessive
increase of the search space. From an optimization point of view, a
small number of columns is hence preferable. On the other hand, by
fixing a too small length of the alignment, flexibility is lost and the
optimal solution is possibly excluded.

To avoid these problems, we make use of an adaptive
representation: starting with a single extra column filled with
dummies, more such columns can be added if required or, when
becoming obsolete, again be removed (see below). Thus, our matrix
scheme is initialized with m rows and nmax +1 columns, where
nmax =max{|V1|,|V2|,...,|Vm|}. For each graph Gi, a permutation
of its nodes is then inserted, with dummies replacing the index
positions j> |Vi|. In passing, we note that dummy columns are of
course excluded from scoring, i.e. the insertion or deletion of dummy
columns has no influence on the fitness.

4.2 Evolutionary operators
Among the proper selection operators for evolution strategies, the
deterministic plus-selection, which selects the µ best individuals
from the union of the µ parents and the λ offsprings, is most
convenient for our purpose. In fact, since the search space of an MGA
problem is extremely large, it would be very unfortunate to loose a
current best solution. This excludes other selection techniques such
as fitness proportional or simulated annealing selection.

As we use a non-standard representation of individuals, namely
a matrix scheme, the commonly used recombination and mutation
operators are not applicable and have to be adapted correspondingly.

4.2.1 Recombination Our recombination operator randomly
selects ρ parent individuals from the current population (according
to a uniform distribution). Then, ρ−1 random numbers ri, i=
1, ...,ρ−1, are generated, where 1≤r1 <r2 < ···<rρ−1 <m, and
an offspring individual is constructed by combining the sub-
matrices consisting, respectively, of the rows {ri−1 +1...ri} from
the i-th parent individual (where r0 =0 and rρ =m by definition).

Simply stitching together complete sub-matrices is not possible,
however, since the nodes are not ordered in a uniform way.
Therefore, in merging step i, the ordering of the ri-th row is used as
a reference. An example illustrating the recombination operator is
given in the Supplementary Material. General experience has shown
that recombination increases the speed of convergence, and this was
also confirmed by our experiments (see Section 5).

4.2.2 Mutation The mutation operator selects one row and two
columns at random and swaps the entries in the corresponding
cells. To enable large mutation steps, we have tried to repeat this
procedure multiple times for each individual. As the optimal number
of repetitions was unknown in the design phase of the algorithm, it
was specified as a strategy component adjusted by a self-adaptation
mechanism (Beyer and Schwefel, 2002). However, our experiments
indicated that a simple mutation operator performing only single
swaps solves the problem most effectively (see Section 5).

4.2.3 Adaptation of alignment length To adapt the length of an
MGA (number of columns in the matrix scheme), it is checked
in randomly chosen intervals whether further dummy columns are
needed or existing ones have become unnecessary. Three cases can
occur: (i) There exists exactly one dummy column, which means that
the current length is still optimal. (ii) There is more than one dummy
column: apparently, a number of dummy columns are obsolete and
can be removed, retaining only a single one. (iii) There is no dummy
column left: the dummy column has been ‘consumed’ by mapping
dummies to real nodes. Therefore, a new dummy column has to be
inserted.

4.3 Combining evolutionary optimization and pairwise
decomposition

The search space of an MGA problem grows exponentially with
the number of graphs, which is of course problematic from an
optimization point of view. One established strategy to reduce
complexity is to decompose a multiple alignment problem into
several pairwise problems and to merge the solutions of these
presumably more simple problems into a complete solution. This
strategy has already been exploited by Weskamp et al. (2007), who
realized the decomposition and merging steps by means of the star
alignment algorithm. In star alignment, a center structure is first
determined, and this structure is aligned with each of the other
m−1 structures. The m−1 pairwise alignments thus obtained are
then merged by using the nodes of the center as pivot elements. As
the quality of an MGA derived in this way critically depends on the
choice of a suitable center structure, one often tries every structure as
a center and takes the best result. In this case, all possible pairwise
alignments are needed, which means that our EA must be called
1
2 (m2 −m) times.

As star alignment is again a purely heuristic aggregation
procedure, the gain in efficiency is likely to come along with
a decrease in solution quality, compared with the original EA
(GAVEO). This is not necessarily the case, however. In fact, a
decomposition essentially produces two opposite effects, a positive
one due to a simplification of the problem and, thereby, a reduction of
the search space, and a negative one due to a potentially suboptimal
aggregation of the partial solutions. For a concrete problem, it is
not clear in advance which among these two effects will prevail.
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Roughly speaking, it is well possible that constructing good pairwise
alignments and aggregating them in an ad hoc way is better than
getting astray in a huge search space of multiple alignments.

5 EXPERIMENTAL RESULTS
GAVEO as outlined in the previous section has a number of
exogenous parameters: µ, the population size; ν, the selective
pressure; ρ, the recombination parameter; τ , the probability to
check for dummy columns; selfadaption, which can assume
values {on,off}, and enables or disables the automatic step-size
control; initialstepsize, which defines the initial step size
for the mutation. If the automatic step-size control is disabled, this
parameter is ignored and a constant step size of 1 is used for the
mutation.

To optimize these parameters, we have applied the sequential
parameter optimization toolbox (SPOT) (Bartz-Beielstein, 2006) in
combination with suitable synthetic datasets. Based on the results,
the following parameter configuration appears to be well-suited for
our problem class: µ=4, ν =15, selfadaption=off, ρ =4
and τ =0.35. As can be seen, a small value for the population size
(only large enough to enable recombination) is enough, probably due
to the fact that local optima do not cause a severe problem. On the
other hand, as the search space is extremely large, a high selective
pressure is necessary to create offsprings with improved fitness. The
self-adaptation mechanism is disabled and, hence, the mutation rate
is set to one (only two cells are swapped by mutation). This appears
reasonable, as most swaps do not yield an improvement and instead
may even produce a deterioration, especially during the final phase
of the optimization. Thus, an improvement obtained by swapping
two cells is likely to be annulled by a second swap in the same
individual. Finally, our experiments suggest that a recombination is
very useful and should therefore be enabled. The probability τ is set
to a relatively high value due to avoiding long times of stagnation
because of an insufficient alignment length.

5.1 Mining molecular fragment data
As a first proof-of-concept, we analyzed our algorithms on a
dataset consisting of 87 compounds that belong to a series of
benzamidine derivatives, selective thrombin inhibitors, that were
taken from a 3D-QSAR study (Böhm et al., 1999). The dataset
is suitable for conducting experiments in a systematic way, as it
is quite homogeneous and relatively small (the graph descriptors
contain 47–100 nodes, where each node corresponds to an atom).
Moreover, as the 87 compounds all share a common core fragment
(which is distributed over two different regions with a variety of
substituents), the dataset contains a clear and unambiguous target
pattern. From this dataset, 100 subsets of 2, 4, 8, 16 and 32
compounds have been selected at random, and for each subset, an
MGA has been calculated using the greedy heuristic (Greedy), our
EA with optimized parametrization (GAVEO) and, as introduced
in Section 4.3, in combination with a pairwise reduction and star
alignment procedure (GAVEO∗).

In a first experiment, we investigated whether or not the expense
(large population, complex mutation and recombination operators)
of an EA is justified at all. To this end, we compared GAVEO with a
simple hill-climbing search, namely a (1+1)-EA. To guarantee a fair
comparison, we fixed the number of function evaluations for both

(a)

(b)

Fig. 3. Results of the experiment on the benzamidine dataset: (a) Runtimes
in seconds (mean and SD) of Greedy, GAVEO and GAVEO∗. (b) Relative
improvements (boxplot) of GAVEO (each left box) and GAVEO∗ (each right
box) as defined in (2) in comparison to Greedy; positive values indicate an
improvement.

algorithms. The results, summarized in the Supplementary Material,
were clearly in favor of GAVEO.

The results of the main experiment, comparing the two
EA-variants with the greedy strategy, are shown in Figure 3. As a
measure of comparison, we derived the relative improvement of the
score (1),

s(A′)−s(A)

min{|s(A′)|,|s(A)|} , (2)

where A′ and A denote, respectively, the alignment produced by
GAVEO (or GAVEO∗) and Greedy. This measure is positive if the
GAVEO solution yields a higher score than the Greedy solution; e.g.
a relative improvement of 1 would mean an increase in score by a
factor of 2 [note that s(A)<0 is possible].

The results, shown in Figure 3, confirm our expectations: both EA
variants significantly outperform Greedy with respect to alignment
quality. The runtimes,3 on the other hand, confirm that the greedy
strategy is still the most efficient among all alternatives. A good
compromise between solution quality and efficiency is achieved
by GAVEO∗: Its runtime is much better than the one of GAVEO,
especially for a larger number of graphs, while the alignment quality
is only slightly worse, as can also be seen in Figure 3. In fact, in

3Intel Core 2 Duo 2.4 GHz, 2 GB memory, Windows XP SP 2 operating
system.
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Table 1. Percentage of alignments in which the benzamidine core fragment
was fully conserved

# graphs 2 4 8 16 32

Greedy 58 38 14 4 2
GAVEO 99 96 95 98 98
GAVEO∗ 99 96 95 95 98

terms of average relative improvement, it loses in the range of only
4–6% (with a tendency to increase with the number of structures).

Regarding the identification of conserved patterns among the
derivatives, we were mainly interested in the retrieval of the
aforementioned benzamidine core fragment, an amide derivative of
benzol, which consists of 25 atoms (11 hydrogens). Upon inspection
of the subgraphs that are highly conserved in the sense of satisfying
α=1 and β ≥0.9 (cf. Section 3), it turned out that the core fragment
was retrieved by GAVEO and GAVEO∗ in nearly all experiments;
see Table 1 for a summary of the results. Since the greedy approach
is prone to local optima, it is probable to miss at least parts of
this fragment, and this probability increases with the number of
structures.

5.2 Mining protein binding pockets
We examined the performance of our algorithms also on a dataset
consisting of 74 structures derived from the Cavbase database. Each
structure represents a protein cavity belonging to the protein family
of thermolysin, bacterial proteases frequently used in structural
protein analysis and annotated with the E.C. number 3.4.24.27
in the ENZYME database. The dataset is suited for our purpose,
as all cavities belong to the same enzyme family and, therefore,
evolutionary-related, highly conserved substructures ought to be
present. On the other hand, with cavities (hypothetical binding
pockets) ranging from about 30 to 90 pseudocenters and not all
of them being real binding pockets, the dataset is also diverse
enough to present a real challenge for graph matching techniques.
Again, we produced 100 graph alignments of size 2, 4, 8, 16 and
32, respectively, for randomly chosen structures, and derived the
relative improvement (2) as a measure of comparison. (A visual
representation of an alignment is shown in the Supplementary
Material.)

The results, summarized in Figure 4, are in agreement with the
previous experiment. In terms of alignment scores, the GAVEO
solutions are never worse and often significantly better than the
Greedy solutions. In terms of runtime, Greedy is still more efficient.
Again, a good compromise between solution quality and efficiency is
achieved by GAVEO∗ (this time losing even less in terms of relative
improvement, namely around 2–3%).

From the relative improvement (2) alone, it is hard to say to
what extent two graph alignments are indeed different. Therefore,
we have developed a visualization tool that aims at conveying the
essential information about an MGA in a compact form. An example
is shown in the Supplementary Material. The visual inspection of
various solutions produced, respectively, by GAVEO and Greedy
for the thermolysin structures clearly confirms that an evolutionary
optimization is able to improve the quality of an MGA.
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Fig. 4. Relative improvements as defined in (2) of GAVEO (each left box)
and GAVEO∗ (each right box) on the thermolysin dataset; positive values
indicate an improvement.

Regarding the discovery of conserved patterns, the highly
conserved part (α=1, β =0.9) includes a metal pseudocenter
surrounded by several acceptor and donor/acceptor centers (a
graphical illustration is shown in the Supplementary Material). As
thermolysin is a bacterial metalloprotease, we obviously captured
the subpart of the cavity hosting the zinc ion of thermolysin.
The surrounding acceptor pseudocenters probably correspond to
residues interacting with the ion. Upon reconciliation with the
corresponding protein structures, we could verify that these acceptor
centers resembled histidine and glutamate residues that form a
coordinate bond with the ion. The zinc ion is essential for the
enzyme activity, as removal of the zinc abolishes enzyme function
(Holmquist and Vallee, 1976). Additionally, we discovered a highly
conserved mapping of acceptor centers in close proximity that
resembled the residue GLU143, a key residue of the active site which
is supposed to act as a ‘proton shuttle’, transferring a proton from
an attacking water molecule to a nitrogen of the cleaved substrate.
Some other conserved donor and acceptor pseudocenters might be
required to form hydrogen bonds with the substrate. In fact, the
underlying residues have been shown to interact with an inhibitor
of the enzyme (Holden and Matthews, 1988). This example shows
that our approach is able to retrieve relevant groups for the enzyme
function and, therefore, nicely demonstrates its usefulness for the
analysis of protein function.

5.3 Similarity-based classification of proteins
In a final study, we investigated the influence of the improved
similarity scores on the classification accuracy on a two-class
dataset. To assess the predictive power of our approach on a real-
world dataset, we compiled a set of 355 protein binding pockets
representing two classes of proteins that each share a certain
prominent cofactor, adenosine-5′-triphosphate (ATP) and nicotine
amide dinucleotide (NADH), respectively. Here, we used Cavbase
to retrieve all known ATP and NADH binding pockets that were
co-crystalized with the respective ligand. Subsequently, we reduced
the set to one cavity per protein, thus representing the enzymes
by a single binding pocket. As protein ligands adopt different
conformations due to their structural flexibility, it is likely that the
ligands in our dataset are bound in completely different ways, hence
the corresponding binding pocket does not necessarily share much
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Table 2. Accuracy of Greedy and GAVEO on the NADH/APT dataset,
determined by means of a leave-one-out cross-validation.

k 1 3 5 7 9

Greedy 76.62 71.83 72.39 71.83 71.27
GAVEO 78.87 76.62 78.03 78.59 76.62

structural similarity. Thus, we had to ensure that we chose binding
pockets with ligands bound in similar conformation. To achieve this,
we used the Kabsch algorithm (Kabsch, 1976) to calculate the root
mean squared deviation (RMSD) between pairs of ligand structures.
Subsequently, we used this measure to sample a sufficiently large
dataset while enforcing similar conformations on the ligands. To
this end, we used an RMSD threshold value of 0.4, which yields a
good tradeoff between dataset size and similarity. The dataset thus
obtained contains 214 NADH-binding proteins and 141ATP-binding
proteins and gives rise to a two-class classification problem.

To test the discriminative power of our approach, we calculated
all possible pairwise alignments in our dataset and thus derived two
similarity matrices based on the obtained similarity scores, one for
the greedy approach and one for GAVEO. We then used a standard
k-nearest neighbor algorithm to make a class prediction for each
protein binding pocket. This approach simply predicts the class
which is prevalent among the k most similar structures. The results
of several leave-one-out cross-validation studies, performed for
different values of k, are summarized in Table 2.

As can be seen, GAVEO again outperforms the greedy strategy,
this time in terms of classification accuracy. Note that the
classification accuracies can also be taken as an indicator of how
well the pairwise similarity scores are in agreement with the class
structure. In this regard, it is noticeable that, in the case of GAVEO,
the accuracy degrees are all comparable and do not strongly depend
on k. For the greedy algorithm, the results are less stable and actually
deteriorate for larger values of k. This suggests that GAVEO does
indeed achieve a better class separation.

To demonstrate that our structure-based approach is able to extract
useful information even in cases of low sequence similarity, we
repeated the experiment with an alternative ATP/NADH dataset.
This dataset includes only proteins with a sequence identity
below 30% (ligand similarity was neglected) and comprises 48
ATP and 48 NADH structures. For k =1 (leave-one-out cross-
validation), GAVEO still achieved a respectable accuracy of 67.69%,
compared with 61.54% of the greedy strategy. As to be expected,
a classification based on sequence alignment completely fails and
yields results not better than random guessing (49.23%).

6 SUMMARY AND CONCLUSIONS
MGA has recently been introduced as a novel method for
analyzing structured data, especially biomolecules. Using robust,
noise-tolerant graph matching techniques, this method is able
to discover approximately conserved patterns in a set of
graph descriptors representing a family of evolutionary-related
biological structures. As the calculation of optimal alignments
is a difficult and computationally complex problem, this article
has proposed GAVEO, an EA for MGA, as an alternative to
an existing greedy strategy. An implementation of this algorithm

along with a user’s guide can be downloaded at www.uni-
marburg.de/fb12/kebi/research/.

Our experiments have shown the high potential of this
approach and give rise to the following main conclusions:
GAVEO significantly outperforms the greedy strategy and produces
alignments that are better both in terms of their scores and in the
sense of revealing conserved substructures in a more reliable way.
The improved alignments also produce better (pairwise) similarity
degrees, which in turn leads to better results in related performance
tasks such as (nearest neighbor) classification.

On the other hand, the evolutionary optimization of graph
alignments is computationally more complex than the greedy
approach. Fortunately, however, a good compromise between
solution quality and runtime can be achieved by a combination
of evolutionary optimization with a star alignment decomposition.
Finally, it is worth mentioning that GAVEO has advantages
regarding space complexity. In fact, its memory requirements are
significantly smaller than those of the greedy algorithm, which needs
to construct and store the product of the input graphs to generate an
initial solution.

The methods introduced so far compare graph structures by
taking the whole molecule, respectively the whole binding pocket,
into account. While this approach is reasonable for structures that
strongly resemble each other, it may fail if this is not the case. In
fact, ligands do not necessarily occupy the whole protein cavity in
which it is bound. Thus, two cavities both hosting the same ligand
may still have larger parts that are not similar to each other and,
therefore, can become difficult to align. In future work, we aim at
extending our methods to cope with such cases. Roughly speaking,
this comes down to developing graph-based counterparts to local or
semi-global sequence alignment.
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