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ABSTRACT

Motivation: The patterns of sequence similarity and divergence
present within functionally diverse, evolutionarily related proteins
contain implicit information about corresponding biochemical
similarities and differences. A first step toward accessing such
information is to statistically analyze these patterns, which, in turn,
requires that one first identify and accurately align a very large set
of protein sequences. Ideally, the set should include many distantly
related, functionally divergent subgroups. Because it is extremely
difficult, if not impossible for fully automated methods to align such
sequences correctly, researchers often resort to manual curation
based on detailed structural and biochemical information. However,
multiply-aligning vast numbers of sequences in this way is clearly
impractical.
Results: This problem is addressed using Multiply-Aligned Profiles
for Global Alignment of Protein Sequences (MAPGAPS). The
MAPGAPS program uses a set of multiply-aligned profiles both as a
query to detect and classify related sequences and as a template to
multiply-align the sequences. It relies on Karlin–Altschul statistics for
sensitivity and on PSI-BLAST (and other) heuristics for speed. Using
as input a carefully curated multiple-profile alignment for P-loop
GTPases, MAPGAPS correctly aligned weakly conserved sequence
motifs within 33 distantly related GTPases of known structure.
By comparison, the sequence- and structurally based alignment
methods hmmalign and PROMALS3D misaligned at least 11 and 23
of these regions, respectively. When applied to a dataset of 65 million
protein sequences, MAPGAPS identified, classified and aligned (with
comparable accuracy) nearly half a million putative P-loop GTPase
sequences.
Availability: A C++ implementation of MAPGAPS is available at
http://mapgaps.igs.umaryland.edu.
Contact: aneuwald@som.umaryland.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Protein sequence patterns that have been conserved for a billion
years or more contain implicit information regarding structural,
functional and mechanistic features shared by evolutionarily
related proteins. Divergent sequence patterns—i.e., patterns
conserved only within descendent proteins performing a particular
divergent function—likewise contain implicit information regarding

functional distinctions between related proteins. Hence molecular
features responsible for important functional similarities and
differences can be revealed by mapping patterns of similar and
divergent residues to proteins of known structure. With this in mind,
we developed (Neuwald, 2007a; Neuwald et al., 2003) and applied
(Kannan and Neuwald, 2004, 2005; Kannan et al., 2007; Neuwald,
2006, 2007b; Neuwald et al., 2003) a Bayesian approach, termed
CHAIN analysis, for functionally categorizing proteins based on
divergent sequence patterns [reviewed in (Neuwald, 2006)]. These
patterns are interpreted by mapping them to corresponding structural
features (Neuwald, 2007a).

In order to statistically characterize protein functional divergence
in this way, it is important to identify and accurately align a
large number of related protein sequences inasmuch as subtle,
yet statistically significant patterns often become evident only
within vast amounts of data. For this reason, the genomics and
metagenomics initiatives will provide unprecedented statistical
power to extract functional and mechanistic information regarding
major protein classes. Such classes include, for example, eukaryotic
protein kinases (Hanks and Hunter, 1995), glycosyltransferases
(Coutinho et al., 2003), α,β-hydrolase fold enzymes (Holmquist,
2000), the α-family of pyridoxal-phosphate-dependent enzymes
(Christen and Mehta, 2001), members of the haloacid dehalogenase
superfamily (Koonin and Tatusov, 1994), and various subclasses of
phosphate-binding loop (P-loop) NTPases, including ATP binding
cassette (ABC) transporter-related proteins (Davidson and Maloney,
2007), P-loop kinases (Leipe et al., 2003),AAA+ATPases (Neuwald
et al., 1999), DEAD/H helicases (Bork and Koonin, 1993) and
P-loop GTPases (Leipe et al., 2002).

Unfortunately, highly accurate alignment of a vast number
of sequences is often very difficult to achieve due to residue
dissimilarities associated with protein functional divergence, short
insertions and deletions, and larger sequence restructuring events.
Such restructuring events include, for example: (i) the insertion
of one domain within another domain (as occurs, for instance,
in structural maintenance of chromosomes (SMC) proteins, where
a long-coiled coil domain is inserted within an ABC-like ‘head’
domain) (Melby et al., 1998); (ii) the obscuring of a protein
domain at the sequence level through the incorporation of ‘inteins’
(Pietrokovski, 2001)—‘protein introns’ that can break up a domain-
encoding sequence at multiple sites and that can excise themselves to
produce a functional domain; (iii) rare insertions within an otherwise
conserved secondary structural element (such as the insertion of a
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β-hairpin loop within an α-helix of the enhancer binding protein
PspF) (Rappas et al., 2005); and (iv) domain circular permutation (as
occurs in certain P-loop GTPases, such as YjeQ) (Shin et al., 2004).
Moreover, many multiple alignment programs rely on heuristic
procedures that—though helpful in improving the alignment of
small sets of sequences—can have undesirable side effects. For
example, often such methods will multiply align randomly generated
sequences, which is clearly incorrect from both an evolutionary and
a statistical perspective.

Profile-based alignment methods, such as reverse-position-
specific BLAST, a variant of PSI-BLAST (Altschul et al., 1997),
and HMM-aligners, such as the hmmsearch and hmmalign programs
within the HMMer package, improve the alignment process by
using a profile derived from a curated multiple sequence alignment.
Here I build upon these approaches by describing Multiply-Aligned
Profiles for Global Alignment of Protein Sequences (MAPGAPS).
MAPGAPS uses a multiple-profile alignment to ‘map the gaps’
(i.e. the insertions and deletions, both large and small) between
distantly related proteins. The multiple-profile alignment serves both
as a query for detecting and classifying related sequences and as a
template for globally aligning the sequences to each other.

Creating and maintaining multiple-profile alignments and
searching with them in this way has several advantages. In
particular, this facilitates rapid detection and accurate alignment of
up to a million or more related protein sequences, yet is equally
useful and accurate for alignment of small sequence sets. With
each new database release it facilitates rapid realignment and
classification either of specific subgroups of sequences or of all
the members of a major protein class. It allows the incorporation
of detailed structural, biochemical and mechanistic information into
the alignment process, and it allows alignments to be continuously
refined and corrected, as new information comes to light. Here
these and other advantages are illustrated by applying MAPGAPS
to P-loop GTPases.

2 MATERIALS AND METHODS
A MAPGAPS search involves two steps requiring two procedures: (i)
the Multiple Alignment of Profiles (MAP) procedure and (ii) the Global
Alignment of Protein Sequences (GAPS) procedure (Fig. 1). The GAPS
procedure requires two input files (green boxes in Fig. 1), a multiple-profile
alignment, which is created by the MAP procedure, and a protein sequence
database; it can also utilize an optional input file (orange box in Fig. 1)
that specifies a pruning tree (see below). The GAPS procedure uses search
heuristics to detect matching sequences, which it then classifies and multiply
aligns.

2.1 Input files
The MAP procedure requires as input two files (blue boxes in Fig. 1): (i) a
‘template’ alignment and (ii) an array of multiple sequence alignments,
each of which corresponds to a subgroup of (typically closely related)
proteins within a larger set of related proteins. The MAP procedure creates a
multiple-profile alignment by first generating profiles (i.e. position-specific
scoring matrices) corresponding to the input multiple alignments and then
multiply aligns the profiles based on the template alignment. Profiles of
circularly permuted domains can be created by applying a MAPGAPS routine
that converts a permuted alignment into an un-permuted alignment that is
consistent with the template. The template consists of a set of multiply-
aligned consensus sequences—one sequence for each profile with the first
sequence representing the consensus sequence for the template itself.

Fig. 1. Flowchart for a MAPGAPS search.

2.1.1 The template alignment The sequences that make up the template
alignment typically are very difficult to align accurately and, as a result,
require manual curation in the light of sequence motif analysis and of
structural and biochemical information. For the analysis here, Bayesian
methods (Lawrence et al., 1993; Liu et al., 1995, 1999; Neuwald and
Liu, 2004; Neuwald et al., 1995, 1997) were used to identify very weakly
conserved sequence motifs. Bayesian partitioning with pattern selection
(Neuwald, 2007a; Neuwald et al., 2003) was used to identify divergent
sequence patterns characteristic of specific protein subgroups and, at the
same time, assign sequences to subgroups based on those patterns. The
CHAIN program (Neuwald, 2007a) was used to verify the structural locations
of conserved residues by automatically mapping them to available protein
structures. Finally, application of the MAPGAPS program itself was required
to iteratively expand and improve the template alignment.

2.1.2 Subgroup alignments The construction of input multiple sequence
alignments is fairly straightforward because (by design) each of these consists
of sequences that belong to a relatively closely related protein subgroup that
thus can be accurately aligned using standard methods. For the analysis
here, either MUSCLE (Edgar, 2004a and b) or PSI-BLAST (Altschul et al.,
1997) were used. As a starting point for obtaining such alignments, a search
can also be performed using only a template alignment, in which case
MAPGAPS returns a set of multiple alignments, each of which consists
of those sequences whose highest (statistically significant) scores are to
a specific template sequence. For such a search the template consists of
actual sequences rather than consensus sequences. These alignments and
the template alignment can then be edited and used as input for subsequent
searches.

2.1.3 Eliminating irrelevant sequences The MAPGAPS program can
also trap and eliminate related but irrelevant sequences, that is proteins
that do not belong to the category of interest but that share sufficient
sequence similarity to obtain significant alignment scores. This is done
by including, as (optional) input to the MAP procedure, an array of
multiple sequence alignments (purple box in Fig. 1)—one alignment for
each irrelevant subgroup. Because database matches to the corresponding
profiles are simply discarded, these ‘excluded profiles’ are not represented
by consensus sequences in the template alignment. This feature is useful
for eliminating certain subgroups from the output alignment when the goal
is to analyze functionally divergent residues that distinguish one specific
subgroup from another specific subgroup within a larger protein class.

2.2 Search heuristics
Using a brute force approach, a MAPGAPS search would involve computing
an alignment score for each database sequence against each of the profiles.
As a first step in enhancing search speed, MAPGAPS incorporates the search
heuristics used in PSI-BLAST (Altschul et al., 1997). To ensure alignment
of only those regions sharing significant sequence similarity, it relies on the
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Fig. 2. A MAPGAPS search with heuristic pruning and filtering of irrelevant
sequences. Each oval-shaped node represents the profile for a P-loop GTPase
subgroup (root node, gray; non-terminal pruning nodes, blue; terminal nodes,
green) or for an irrelevant subgroup (red nodes). The thinning of line widths
as one goes down the tree denotes pruning of database sequences based on
parent node threshold trigger scores. After the search, the program discards
each significant sequence hit with a highest score against an excluded profile.

gapped-based statistics (Karlin and Altschul, 1990) used in PSI-BLAST. For
additional speed MAPGAPS prunes the search space as follows.

The MAPGAPS program first scores each database sequence against a
profile of the template alignment itself. Only those sequences that attain
an ungapped PSI-BLAST high-scoring segment pair (HSP) (Altschul et al.,
1997) score above a specified cutoff (22 bits by default) (this is termed the
‘threshold trigger score’) are compared against the other profiles. Pruning
of the input sequence set in this way is implemented using a bitwise data
structure for efficient set operations (Neuwald and Green, 1994). As an
additional, optional search heuristic, the profiles can be arranged into a tree,
in which case the template profile serves as the root node and each subgroup
profile serves as either a non-terminal or a terminal (leaf) node (Fig. 2).
The tree structure is specified using a ‘depth-first traversal’ representation,
as described in Appendix 1 (see Supplementary Data A). (If the pruning tree
input file is omitted, then all profiles except the root node are treated as child
nodes of the root.) Only those sequences that obtain threshold trigger scores
against a particular non-terminal profile are searched against the associated
child profiles. In addition, for parent profiles sharing greater similarity to
child profiles—i.e., when searching further down the tree— more stringent
PSI-BLAST word, trigger and extension threshold scores (Altschul et al.,
1990, 1997) are used. Finally, those sequences with significant hits against
the multiple-profile alignment are scored against excluded profiles in order
to filter out irrelevant sequences. Altogether, these various pruning steps
typically provide an additional 10–30-fold speed up without a significant
loss of sensitivity. (Mainly short sequence fragments and members of very
distantly related subgroups not represented in the template alignment escape
detection.)

2.3 Post-search processing
The MAPGAPS program utilizes post-search processing routines to classify
and multiply align matching sequences.

2.3.1 Sequence classification and identification of unclassified sequences
Each database sequence with a significant match to at least one profile is
classified by assigning it to the subgroup represented by its highest scoring
profile. Multiple domains within a single sequence may be classified, of
course, into distinct categories based on the highest profiles scores for each
domain. In some cases, a sequence or domain will be assigned, not to a

Fig. 3. Mapping a family template onto a superfamily template.

specific family or subfamily, but into a superfamily or subclass or even the
class as a whole. Such sequences—or, for that matter any sequences with low,
but significant (highest) profile scores—correspond to protein subgroups that
are not explicitly modeled by a profile. MAPGAPS can flag these sequences
using an option for reporting low scoring, yet significant matches. Once new
protein subgroups are identified in this way, alignments and corresponding
profiles can be created and incorporated into the template alignment.

2.3.2 Linking together local alignments Certain sequences may share
with their highest scoring profile, two or more locally aligned regions
of significant similarity separated by unaligned regions. It is desirable
to join these locally aligned regions together into an alignment that
more fully spans the protein domain that is modeled by the profile. The
GAPS procedure does this by applying the Needleman–Wunsch algorithm
(Needleman and Wunsch, 1970) with the constraint that only those regions of
the dynamic programming matrix corresponding to the previously identified
local alignments are considered and with the penalty for gaps between
local alignments set to zero. This identifies the highest scoring sequence-to-
profile alignment passing through the local alignments and allows overlaps
between locally aligned regions to be resolved. Note that by not imposing a
gap penalty between local alignments, this procedure may allow very large
insertions to occur within a protein domain.

2.3.3 Multiple alignment of detected sequences The multiple-profile
alignment serves as a template for aligning all of the matching database
sequences to each other. This is accomplished by using both the pairwise
alignment of each matching database sequence against its highest scoring
profile and that profile’s alignment against the template alignment: If position
x in a matching sequence aligns with position y in profile Y and if position y
in profile Y aligns with position z in the template alignment, then position x in
the sequence is aligned with position z in the all-inclusive multiple alignment.
In this way, as long as the template alignment is accurate, corresponding
residues that would otherwise be impossible to align using standard methods,
can be aligned correctly and automatically.

This procedure can also be used to align lower-level template alignments
to each other using a higher-level template (Fig. 3). This is implemented
within another MAPGAPS procedure (the ‘convert’ program), which thus
can align various subfamily templates to a common family template,
various families templates to a common superfamily template, etc. Such
output files can then be merged into a single high-level template prior to
a MAPGAPS search. The construction of low-level template alignments
allows MAPGAPS to detect and align only those database sequences
belonging to a specific subgroup within a protein class. In such a search
the family B profile in Figure 3, for example, would then become the root
in Figure 2 and all profiles outside of family B’s subtree would then serve
as excluded profiles.

3 RESULTS
The MAPGAPS program was implemented in C++ and applied to
a set of 33 distantly related proteins containing P-loop GTPase

1871



[19:09 26/6/2009 Bioinformatics-btp342.tex] Page: 1872 1869–1875

A.F.Neuwald

Table 1. The numbers of weakly conserved regions within 33 P-loop GTPases of known structure that are misaligned by various methods

Conserved region Function G-domain
structurea

Typical
patternb

MAPGAPS MUSCLE PROMALS3D
w/ sequences

PROMALS3D
w/ structuresc

hmmalign
local

hmmalign
global

Walker A Phosphate binding β1 to α1 G….GK[ST] 0 13 1 0 1 0
Switch Id Mg++ binding loop2 T 0 >20 4 >20 5 4
Walker B Coordinates Mg++ β3 hhD..G 0 >20 2 2 2 0
β4−strand Interacts with NK.D β4 hhhh[DSN] 0 >20 4 4 5 0
NK.D motif Binds guanine &

ribose
β5, loop8 [NT]K.D 0 >20 3 3 5 0

NK.D-Arge Forms salt-bridge loop8 R 0 7 3 3 2 2
SAK motif Interacts with

guanine & NK.D
β6, loop10,

α5
[SC][AG]K 0 >20 9 6 8 5

Total 0 >120 23 >38 26 11
Shuffledf 0 33 33 ND 33 33

aStructural features are according to (Wittinghofer, 2000).
bThe symbol ‘h’ represents a hydrophobic residue.
cOnly 30 proteins were tested in this case due to a program-imposed limitation.
dThe switch I motif is absent from and thus was not scored for five of the input sequences.
eThis arginine is located just beyond the NK.D motif and is conserved only within Ran, Rab, Ras and Rho GTPases, in which it forms a salt bridge with a conserved acidic residue
in the β6 strand (Neuwald et al., 2003); seven of these GTPases were included in the input sequence set.
f In a separate test, randomly shuffled versions of the input sequences were included in the input set; shown are the number of these shuffled sequences included by each program
in the output alignment (along with the 33 P-loop GTPases sequences).
ND: Not done.

domains of known structure, and the resulting alignment was
compared with those obtained using several other multiple alignment
methods. To illustrate the ability of MAPGAPS to rapidly detect,
classify and align large numbers of sequences, a search for P-loop
GTPases within a set of 65-million sequences was performed.

3.1 Multiply-aligning a small set of sequences
Columns 1–4 of Table 1 describe several short regions of sequence
similarity that are weakly conserved across distantly related
subgroups of P-loop GTPases (Wittinghofer, 2000) and that thus are
particularly difficult to multiply-align correctly. One hundred and
ninty-one profiles of various GTPase subgroups (Leipe et al., 2002)
and a corresponding template alignment were created and used as
input to the MAP procedure. The resulting output files were used by
the GAPS procedure to align a set of 33 distantly related GTPases
of known structure; the same sequences were also aligned using
MUSCLE (version 3.7) (Edgar, 2004a and b), PROMALS3D (Pei
et al., 2008a and b), and the hmmalign program within the HMMER
software package (version 2.3.2) (http://hmmer.janelia.org/). For the
hmmalign program, a profile HMM of the P-loop GTPase class was
constructed using the MAPGAPS template alignment as input to
hmmbuild (a program within the HMMER package for creating an
HMM profile from an input alignment). All programs were run using
their default parameter settings and the results are summarized in
Table 1. (Output alignments are available as Supplementary Data B.)

As shown in column 5 of Table 1, MAPGAPS correctly
aligns all of the short, weakly conserved regions within these
GTPase domains, which is of course not surprising given that
it is informed by a carefully curated multiple-profile alignment.
This comparison nevertheless demonstrates how MAPGAPS can
work around otherwise impossible obstacles hindering accurate
alignment of divergent sequences. As shown in columns 6–10 of
Table 1, unsupervised and less-supervised methods misalign these

regions to varying degrees. MUSCLE, which relies on sequence
data only, fails to correctly align nearly all of these regions.
On the other hand, the sequence-based version of PROMALS3D,
which uses homology to known structures in conjunction with
a progressive alignment procedure, performs significantly better,
but still misaligns 23 regions. The structurally based version of
PROMALS3D performs slightly better still except on the switch I
region, for which it performs dramatically worse—presumably due
to the inherent structural flexibility of this region.

The comparison of MAPGAPS to hmmalign is most appropriate
here inasmuch as both programs rely on a curated multiple alignment
as the query. Indeed, for this test, both hmmalign and MAPGAPS
utilized the same curated template alignment. Nevertheless, the
local alignment version of hmmalign either misaligns or fails to
aligned about as many regions as does the sequence-based version
of PROMALS3D. The global alignment version of hmmalign comes
closest to matching the performance of MAPGAPS—though it
still misaligns 11 sequences corresponding to three distinct regions
within these GTPases: (i) the switch I region; (ii) a loop region
directly following the NK.D motif that, within certain GTPases,
conserves an arginine residue; and (iii) the SAK motif region. Thus
it is worthwhile considering these regions in greater detail.

Presumably hmmalign and other programs misalign the Switch I
region for certain GTPases due to its high structural and sequence
variability: this region merely conserves a single threonine (or rarely
a serine) residue that, in the canonical structural conformation,
precedes the β2 strand by three residues. As a result, there is often
insufficient sequence and structural information to correctly align
this residue except through manual curation.

The arginine following the NK.D motif tends to be misaligned
for two reasons: first, both this arginine and an associated acidic
residue, with which it forms a salt bridge, are conserved within
Ras-, Rab-, Ran- and Rho-related sequences, but not within other
P-loop GTPases. As a result, using a single profile HMM to model

1872



[19:09 26/6/2009 Bioinformatics-btp342.tex] Page: 1873 1869–1875

MAPGAPS

all GTPases only weakly favors an arginine at this position. Second,
within certain of these GTPases a deletion directly precedes this
arginine and an insertion (up to 15-residue in length) directly follows
it (Neuwald et al., 2003). Hence these sequence characteristics make
it extremely difficult to align this arginine correctly without manual
curation of multiply aligned profiles.

Likewise, misalignment of the SAK motif region by hmmalign
or other methods appears due to sequence (and presumably
corresponding functional) divergence. Consider, for example, this
region within human interferon-induced guanylate-binding protein
1 (pdb_id: 2b8w) (Ghosh et al., 2006). In this case, the SAK motif
serine residue—the sidechain OH group of which normally forms a
hydrogen bond with a sidechain oxygen atom of the NK.D aspartate
residue—is replaced by an arginine. This arginine’s Cβ hydrogen
atom, which is structurally analogous to the serine sidechain
OH hydrogen, contacts the sidechain of the NK.D aspartate
just as does the canonical serine—thereby indicating a clear-cut
structural correspondence between these divergent residues. Of
course, when classifying and characterizing proteins based on
functionally divergent sequence features, it is essential to correctly
align dissimilar residues at structurally corresponding locations. This
again requires manual curation of multiply aligned profiles.

The relatively impressive performance of the global version of
hmmalign is muted somewhat by the fact that the high quality of
the input HMM profile was achieved through iterative applications
of the CHAIN and MAPGAPS programs. (The Pfam and SMART
databases lack a curated GTPase profile of comparable quality.) In
particular, during creation of the template alignment, MAPGAPS
was required for gathering distantly related GTPases and for
identifying new subgroups for incorporation into and refinement
of the evolving template alignment, whereas the CHAIN program
was required for classification of subgroups based on statistically
significant divergent sequence patterns. Thus it is difficult to
decouple hmmalign’s performance from important contributions
made by the MAPGAPS program to the construction of the HMM
profile.

It is also important to note in this context that, when the input
set includes randomly shuffled versions of the input sequences,
MUSCLE, PROMALS3D and hmmalign incorporate these into
the output alignment (last row in Table 1). Thus, although these
other methods are able to correctly align certain weakly conserved
regions, this ability appears to be associated with a substantial
loss of specificity. Moreover, for MUSCLE and PROMALS3D
inclusion of these random sequences degrades the alignment quality
of the original GTPase sequences. For MAPGAPS, however,
sequences lacking significant sequence similarity to the query
profiles are excluded from and have no effect upon the output
alignment. Also, unlike these other methods, when a permuted
GTPase sequence (such as YjeQ) (Shin et al., 2004) is added to
the input set, MAPGAPS can correctly align the sequence while
again maintaining the alignment quality of the original sequences
(data not shown).

Taken together, this analysis demonstrates that, given a carefully
curated multiple profile alignment, the MAPGAPS program is
able to correctly align subtly conserved regions and, indeed, even
strikingly divergent, yet structurally related regions that would be
impossible to align using more fully automated methods. It also
demonstrates how MAPGAPS is guaranteed to multiply align a
particular set of protein sequences in precisely the same way,

whether or not additional (related or unrelated) sequences are
included in the input set.

3.2 Identifying and aligning database sequences
Because the MAPGAPS program will align only those sequences
with significant similarity to the ‘query’ multiple-profile alignment
and because it does this in a manner that is independent of
the makeup of the sequence set being searched, it is useful for
identifying, classifying and accurately aligning large numbers of
related sequences within a large database. Such database searches are
also useful for identifying related protein subgroups that currently
are not modeled by the multiple-profile alignment. Such applications
are illustrated here for P-loop GTPases.

3.2.1 Detection, alignment and classification of putative GTPase
domains MAPGAPS was used to search the December 11, 2008
releases of the NCBI nr , env_nr and translated est databases
(containing 7 463 447, 6 028 191 and 51 914 606 sequences,
respectively) against 181 GTPase profiles. (For the est databases
only translated open reading frames ≥100 residues in length were
searched.) The search took about an hour using a dozen grid nodes
(and using a three-level heuristic pruning tree). This identified and
aligned 475 038 putative GTPase domains (403 340 unique domains
in 400 859 sequences). A total of 171 465 of the unique domains
aligned with the entire GTPase domain or nearly so; after purging
this set to remove domains with ≥98% identity, 53 301 nearly fully
aligned GTPase domains remained.

MAPGAPS classified the 403 340 unique domains into the major
GTPase categories represented by the pie chart in Figure 4a and
into 181 subcategories (not shown). In addition, 4369 significant
hits were discarded as irrelevant. Excluded profiles were included for
the following P-loop NTPase subgroups: AAA+ ATPases, helicases,
P-loop kinases, ABC transporters and six other minor categories
of (typically poorly characterized) NTPases. Figure 4b shows a
breakdown of the domain-containing sequences by major taxonomic
groups.

3.2.2 Identifying unclassified subgroups Figure 5 shows a
hypothetical protein sequence aligned against a profile of dynamin-
like domains. This alignment was generated using a MAPGAPS
option for identifying unclassified sequences (based on weak, yet
significant scores against highest scoring profiles). This protein was
detected as two local, overlapping alignments that were trimmed

Fig. 4. Pie charts showing numbers of putative GTPase domains and
sequences identified in a search of available protein sequences. (a) Numbers
of unique domains detected within major subgroups. (b) Numbers of detected
sequences classified by major taxonomic categories.
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>gi_119513324 Cyanobacteria hypothetical protein N9414_13335. 

 QUERY: 1   EPFRLVVVGEFKSGKSTLLNALLGEDVLPVGVTPTTAVITVLRYGEEK 48 
              F +V  G F +GKS L+NALL  ++L       T     + Y E 
 SBJCT: 46  PKFEIVFAGAFSAGKSMLINALLERELLYSAEGHATGTECKIEYAEPN 93 

 QUERY: 49  RATVYFADGKEVEIeyplpll--------------------------- 62 
               V      E EI      l
 SBJCT: 94  NERVVLTFLSEAEIreqasflceklgfkktlninesevinlllqgcet 141 

 QUERY: 63  ------------------------------------------------ 62 

 SBJCT: 142 iiqkeggesrserakqakalillldgyeanrqhihtmnnatysmeqfn 189 

 QUERY: 63  --------------------keveiEYPLPLLKKV-EIVDTPGLNSIN 84 
                                k +e     PLL+    I+DTPG+++ 
 SBJCT: 190 fsnlkeaagyarrgsnsavlkrieyYCNHPLLEDGnVIIDTPGIDAPV 237 

 QUERY: 85  EQHTELTLEFLPRAD--AVLFVL-SADQP-LTESEREFLELIK---DW 125 
             +  +LT + +   D  AV+ VL SA    +T+ E E LE ++ 
 SBJCT: 238 AKDAQLTYDKIQDPDtsAVVCVLkSASAGdMTKEETELLETMRgnsGI 285 

 QUERY: 126 GKKVFFVLNKADLLSEEelEEVVEFVREVLKELLGGDPPVFPVSAKL 172 
              ++F+  N+ D        ++ + + +++ +       V+  S  L 
 SBJCT: 286 RDRIFYTFNRIDETWYN--TQLRQRLDDLINQQFRDTSRVYKTSGLL 330 

Fig. 5. MAPGAPS alignment of a hypothetical protein sequence (SBJCT)
against a dynamin-like GTPase profile consensus sequence (QUERY). This
putative GTPase domain was initially detected as two weakly significant
overlapping local alignments (with E-values of 0.000016 and 0.00014) that
were converted into the global alignment shown; this introduced the long
insertion shown in green. Trimmed-back (previously overlapping) residues
in the query are highlighted in red and crossed out; the corresponding, non-
trimmed-back residues are underlined.

back and patched together into a single global alignment during
post-search processing. It belongs to a putative GTPase family that
currently includes 18 other cyanobacterial hypothetical proteins and
that, of course, was not modeled by the multiple-profile alignment
used as the query in the search. Thus this example illustrates
how MAPGAPS can facilitate the detection of unclassified GTPase
subgroups, for which profiles can then be created.

4 DISCUSSION
The MAPGAPS approach of using manually curated multiply
aligned profiles as a query has a number of advantages over other,
more fully automated alignment methods. For example, unlike
these other methods, it eliminates both unrelated and related, but
irrelevant sequences from the input set automatically, and the
alignment it returns is not influenced by the makeup of the input
set. It also allows the alignment process to be informed by the
implicit biochemical, structural and sequence motif information
that is incorporated into the curated template alignment. This, in
turn, ensures correct alignment of regions that would otherwise
be impossible to multiply-align accurately. Of course, for large,
highly diverse protein classes, such as the P-loop GTPases, it
is non-trivial to construct a comprehensive and perfectly correct
template alignment, as well as a comprehensive set of profiles for
eliminating irrelevant sequences. Nevertheless, lingering alignment
errors and irrelevant sequences eventually will be eliminated through
further refinement of the multiple-profile alignment as additional
information becomes available. Moreover, once constructed, these
input files eliminate the need to repeatedly reconstruct alignments
starting from unaligned sequences, so that eventually a high-quality
alignment of all currently available sequences within a protein class
or of a specific subgroup within that class will be easy to obtain.

Because the amount of time that MAPGAPS requires to multiply
align a set of sequences scales up linearly with the size of the
set, it can detect, classify and accurately align vast numbers
of sequences—up to a million or more in a few hours on a
multiprocessor grid. (This is clearly implied by the analysis here,

even though there were not quite enough GTPases in the current
database to demonstrate this directly.) This approach also lends itself
to further heuristic improvements. For example, using the template
alignment, the positions at which a family profile shares similarity
to a database sequence (when first detected during a search) could
be mapped directly to the corresponding positions in closely related
subfamily profiles. This would allow very rapid alignment of that
sequence against these subfamily profiles.

The MAPGAPS approach has several other applications. It can
be used to benchmark fully automated, multiple alignment methods,
as was illustrated here. It also could be used to identify and
annotate genomic sequences. Because curation of the template
alignment is based on detailed structural analysis and because
MAPGAPS can align protein sequences with high accuracy, it
would be straightforward to incorporate routines to output detailed
and specific structural annotations. In particular, this would allow
functional annotation of specific codons within open reading frames;
such an annotation might state, for example, that a specific codon
corresponds to an arginine finger within a certain class of ATPases.
Such assignments could be validated statistically by requiring that
annotated codons have high posterior probabilities of being correctly
aligned (Yu and Smith, 1999) to key positions within a profile.
Likewise, it would be straightforward to allow Pfam (Finn et al.,
2008) profiles, which are commonly used for genome annotation, to
be multiply aligned and used as input to MAPGAPS in this way.

MAPGAPS also is useful for statistical analysis of protein
functional divergence within the context of CHAIN analysis
(Neuwald, 2006). Indeed, this was the main motivation behind
development of the MAPGAPS program. CHAIN analysis, as
implemented in the CHAIN program (Neuwald, 2007a), identifies
functionally divergent subgroups of proteins based on sequence
patterns that are most strikingly conserved within specific
subgroups, but that are strikingly non-conserved outside of
those subgroups. By accurately aligning vast numbers of protein
sequences, the MAPGAPS program greatly enhances both the
evolutionary scope and the sensitivity of CHAIN analysis. To
illustrate this point, CHAIN analysis of the P-loop GTPase multiple
alignment that is described here recently identified a highly
distinguishing structural feature of Ras-like GTPases (Neuwald,
2009).

However, just as the MAPGAPS output is useful as input to
the CHAIN program, the CHAIN output is useful as input to the
MAPGAPS program. Because the CHAIN program uses rigorous
statistical criteria to define functionally divergent protein subgroups,
it facilitates the construction of statistically meaningful subgroup
alignments, which can be used as input to the MAPGAPS program.
Moreover, because the CHAIN program identifies those residues that
most distinguish a specific subgroup from other, related subgroups
and because it can identify the structural locations of those residues,
it guides curation of the MAPGAPS template alignment. Thus the
MAPGAPS and CHAIN programs can be used synergistically to
construct multiple-profile alignments of various protein classes.
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