ORIGINAL PAPER

Vol. 25 no. 13 2009, pages 1625-1631
doi:10.1093/bioinformatics/btp296

Structural bioinfomatics

Flexible structural protein alignment by a sequence of local

transformations

Jairo Rocha'-*, Joan Segura’, Richard C. Wilson? and Swagata Dasgupta®

"Department of Mathematics and Computer Science, University of the Balearic Islands, Palma, EO7122, Spain,
2Department of Computer Science, University of York, YO1 0 5DD, UK and ®Department of Chemistry, Indian

Institute of Technology, Kharagpur 721 302, India

Received on November 9, 2008; revised on April 23, 2009; accepted on April 29, 2009

Advance Access publication May 5, 2009
Associate Editor: Anna Tramontano

ABSTRACT

Motivation: Throughout evolution, homologous proteins have
common regions that stay semi-rigid relative to each other and other
parts that vary in a more noticeable way. In order to compare the
increasing number of structures in the PDB, flexible geometrical
alignments are needed, that are reliable and easy to use.

Results: We present a protein structure alignment method whose
main feature is the ability to consider different rigid transformations
at different sites, allowing for deformations beyond a global rigid
transformation. The performance of the method is comparable with
that of the best ones from 10 aligners tested, regarding both the
quality of the alignments with respect to hand curated ones, and
the classification ability. An analysis of some structure pairs from the
literature that need to be matched in a flexible fashion are shown.
The use of a series of local transformations can be exported to
other classifiers, and a future golden protein similarity measure could
benefit from it.

Availability: A public server for the program is available at
http://dmi.uib.es/ProtDeform/.

Contact: jairoQuib.es

Supplementary information: All data used, results and examples
are available at http://dmi.uib.es/people/jairo/bio/ProtDeform.
Supplementary data are available at Bioinformatics online.

1 INTRODUCTION

Each time a 3D structure of a protein is determined, it is necessary
to know of other proteins that have similar structures so that
the function of the new protein, if unknown, may be inferred.
The PDB (Kouranov et al., 2006) is growing fast, with rapid
development expected in the next decade as a result of (or as an
input to) proteomics. The need to compare protein structures is
therefore evident. There are already good protein aligners available
to researchers but there is absolutely no consensus on the best one.
Thus, the knowledge of an objective way of comparing protein
structures is lacking.

Several protein structure comparison methods rely on a single
rigid transformation to measure the quality of the superposition of
two structures, for example, Rash (and also Gash) (Standley et al.,
2007) , TM-align (Zhang and Skolnick, 2005) and Structal (Levitt
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and Gerstein, 1998). Others, i.e. Dali (Holm and Sander, 2000)
and Matras (Kawabata and Nishikawa, 2000), whose results are
among the ones in the highest agreement with the standard protein
databases, allow distance distortions not controlled by a single
transformation although the score for a single alignment pair
depends on all others pairs. Some others consider proteins as
flexible objects, i.e. they are designed to allow local changes during
structural comparison; Matt (Menke ef al., 2008) and PPM (Csaba
et al., 2008) are the main representatives of this new generation
of comparison methods that started with SAP (Taylor, 1999) and
FlexProt (Shatsky et al., 2002). Usually, some domain parts are
rigid or semi-rigid like a-helices and S-strands, and other parts
act as articulation points, i.e. turns. The ProtDeform algorithm that
we describe here also considers proteins as flexible objects and
thus belongs to this last generation of algorithms. We find that our
algorithm performs better or similar to the ones mentioned above.

We review the core of each of these systems, specifically their
scoring functions, in order to highlight the main differences between
the existing algorithms and the one we propose. The similarity
scores used by Dali and Matras are alike. Given a pair of sites
that are matched to a corresponding pair in another protein, if d is
the distance difference between the two pairs, Dali’s individual
score is (a—d/g) exp(—(g/b)z), where d is the average distance,
and a and b are defined constant values; and the total score is
the sum (a double sum, in fact) over all possible pairs. Similarly,
Matras sums the likelihood of matching with a difference d (same
value considered by Dali) taking into account the site distances over
the chains considering all site pairs of a protein. A close look over
the likelihood values shows that for large values for d, the values
are low, as in Dali, but in this case the values come from evidence
of occurrence gathered during training. It is clear that there is no
global transformation in any of these two systems but any assigned
site influences the score of the others. Dali’s algorithm is complex
but it is the best among several benchmarks, and new versions have
been made public each year for the past decade. Our aim is to get
a better and simpler algorithm that would be comparable with the
best ones available.

Structal relies on a single rigid transformation that minimizes
RMSD. Gash and TM-align also rely on a single rigid
transformation, but not on the one that minimizes RMSD: their
transformations maximize the sum of individual scores that gives
less importance to outliers. If d is the distance between superposed
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sites, Gash’s individual score has the form exp(—d2 /a), where a is
a defined constant. On the other hand, TM-align’s individual score
has the form 1 /(l—l—al2 /a), where a is a constant for all sites but
depends on the query domain length.

Matt is a protein alignment method which allows flexible
deformations of the protein backbone. Bending and rotations of
the backbone are considered when locating an alignment between
two proteins. This allows Matt to accommodate structural distortion
where the protein shapes become increasingly divergent along the
backbone. Matt uses an initial rigid alignment of multiple fragments
from the proteins. These fragments are then merged, allowing
rotations and bending in the combination. The best alignment pair
of merged fragments are kept. Iterative application of this process
results in a final single merged and aligned structure.

PPM also allows flexible superpositions, and starts with a rigid
alignment of backbone fragments, too. The best fragment pairs under
a certain measure are the nodes of a graph, and the cost among these
nodes measures how well the two pairs of fragments can be aligned.
Using the A* algorithm, a search tree is constructed that increases
the number of compatible pairs on partial pair lists until an optimal
pair list is reached under certain criteria for the allowed bending. The
method outperforms TM-align and Vorolign (Birzele et al., 2006),
this latter one, a method from the same research group.

In general, the use of a single rigid transformation for protein
comparison has gained much popularity among researchers in the
field. There is now some evidence that the gold standards for
classification, e.g. CATH (Orengo et al., 1997) and SCOP (Murzin
et al., 1997), should not be hierarchical, as they do not reflect
the continuum of protein shape. The scores proposed as new gold
standards depend again on a single rigid transformation (Kolodny
et al., 2005; Zhang and Skolnick, 2004). For instance, in the latter
paper cited, the value RMSD/Nygsign, Where Nygsjon is the number
of aligned pairs is proposed as a geometric measure of an alignment.

In this article, we present a method for protein structure alignment
which is, as far as we know, one of the best methods with respect
to CATH and Sisyphus. In other words, when applied on a big
population of protein pairs it is one of the best on the average.
The key difference of our method with respect to most of the above
methods is that it considers a sequence of local rigid transformations
as opposed to a single transformation or to a global influence of
each single assignment. A single transformation helps to measure
how good a site alignment is with respect to all others. However,
since the dynamics of the molecule prevents the consideration of
a single transformation, we opted for considering a transformation
for each site. Thus, each so called local transformation covers a
site neighbourhood, small enough so that it can be different from
others at far away protein places, but big enough so that adjacent
transformations are similar and no large distortions are allowed
without penalty.

The method iterates alternatively between finding a match and a
score matrix that stores the quality of matching of each site in one
protein to each site of the other protein. The process is similar to
the other algorithms, e.g. TM-align and Structal, but the heart of the
scoring mechanism is locally based.

2 METHODS

All formulae and parameters found appropriate for a training set of 939 pairs,
the same pair set used by Holm and Sander (2000), have been used throughout

the testing experiments. On this set, several combinations of parameters or
formulae were tried, and the combination we found the most suited was fixed
for the testing sets and the server’s parameters. We did not use an exhaustive
procedure to get the parameters, so these ones are not optimized in any
way. Usually, we searched for values similar to those that other researchers
reported as useful or near certain values we have some intuitive reason to
believe were worth trying.

To measure the performance of the system, there are three testing sets,
one of 106 difficult pairs from the hand curated Sisyphus database, one of
more than 230000 pairs of CATH proteins, and one of more than 12000
domain pairs from SCOP, as we shall explain later.

In order to describe the algorithm, we present some basic definitions.

2.1 Notation and basic definitions

‘We denote complete protein structures by uppercase letters A, B. Each protein
structure is given with its complete set of x, y,z coordinates for all its atoms.
We reduce this representation to the a-carbon backbone atoms A ={a;}! | =
{(ay;.ay;.az)}, where n is the number of amino acids. They are ordered
following their own order in the protein chain, and each of them is called a
protein site.

Let A={a;}{_, and B={b;}i", be two proteins. A score matrix for
A and B is a nxm-matrix M =(m;;), i=1,...,n, j=1,...,m. Intuitively,
m; j measures a likelihood of matching site a; in A to site b; in B. A matching
or alignment is a partial one-to one order preserving function f:A— B. We
denote by Dom(f) the domain of a matching f, and Nyign, the number of
pairs in f.

Given a site g; in A, we define the neighbourhood VI-A CA as the set of
the N, nearest sites in A to site a;. We use N, =38. As mentioned earlier, we
tried several values for this constant starting with a much lower value on the
training set. However, the computational experiments convinced us that the
neighbourhoods should share a large number of sites.

Given asite a; in A, asite b; in B and a matching f:A — B, we define X{ as
the set of sites in A such that the site and its image are in the neighbourhood of
a; and bj, respectively. More formally, aj GX{J- when a; € ViA NDom( f) and

flak) e V/B . The local transformation T{; is the best rotation and translation
from the B coordinate system to the A coordinate system that minimizes the

following expression

3 lak—Ti(fa)l .

ay eX{i

‘When X{-j has less than three elements, we say that the transformation is not

defined. In words, the transformation Tf; is the best one for the alignment f
restricted to neighbours of the site a; and b;.

2.2 Goals

Ideally, given two proteins, we would like to find a matching f that
maximizes the expression

Z exp(—(| |T,-§(f(ai)) —a;||/do)*)+ gap values
@i.)ef

for dy a fixed constant (we shall discuss details about this constant later).
Intuitively, the formula prefers alignments with a large domain provided that
outlier alignments do not deviate the local transformations. The matching of
a site should also be in a locally rigid agreement with the matching of its
neighbours under a sigmoid function that penalizes distances far from dg A.
The gap values are calculated in such a manner so as to prefer gaps instead
of poor alignments. We also would like to avoid isolated site alignments.
The optimization problem defined above is very tough and we ignore
how to find a solution for it. In the algorithm we describe next, we try
to approximate the optimal solution of the expression above by an iterative
procedure. Starting with an initial distance among protein sites obtained from
a secondary structure matching, we calculate the optimal alignment for that
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distance matrix, and then calculate a new distance matrix from the alignment
and then repeat the procedure for a small number of iterations.

3 ALGORITHM

The algorithm consists of three main steps. First, we initialize a score matrix
based on the first classifier in Matras (Kawabata and Nishikawa, 2000).
Second, this score matrix is used to determine a matching between sites by
using a dynamic programming approach. And third, this matching is used to
compute a set of local transformations. Each transformation maps the local
structure of one protein onto the other. Armed with these transformations,
we then compute a new score matrix which is based on the distance between
the transformed sites. These last two steps are iterated until convergence or
a maximum number of steps is reached. Convergence is reached when the
matching does not change between successive steps. At the end, we compute
a final score for the similarity. These steps are described below.

3.1 [Initialization step

We obtain an initial secondary structure matching between two given proteins
using only the first classifier of Matras (Kawabata and Nishikawa, 2000).
This protein matching system uses three classifiers sequentially to get a
final matching, all three relying on likelihood information obtained during
training.

For completeness, let us summarize the function of each classifier of
Matras. The first classifier assigns secondary structure elements (SSEs)
(e-helices and B-strands) using their geometrical features (relative angles
and distances). The second one uses environmental features such as water
exposure and SSE type to improve the SSE-matching. The final classifier
uses only distance information between amino acid pairs to get the final
matching starting from the output of the previous classifier.

We choose Matras’ first classifier because it uses a branch and bound
search under several geometric constraints that we found robust. However,
our system can read SSE matchings from any other source.

As mentioned, the entry m; ; of the score matrix represents the likelihood
that the site g; is matched to the site b;. Thus, if the SSE A, is matched
to the SSE By by Matras, and a; is in A, and b; is in By, then m; ; should
have a high value. We initialize a score matrix as follows. Assume that a
SSE A, is matched to a SSE By. If they have equal length, we assign a score
of 1 for matching the first site of A, to the first site of By, and so on until
the entry for the last sites is also set to 1. In other words, we consider the
square formed by the sites with the first coordinate in one structure and the
second coordinate in the other structure in the score matrix M, and the square
diagonal is set to 1. Similarly, if the SSE matched pair is not made of SSEs
of the same length, we consider its corresponding rectangle, and set to 1 all
its sub-diagonals at 45° as is exemplified in Figure 1. All the other entries
of the matrix are set to 1.1 of the gap value. In this way, the algorithm in
the next step prefers to match pairs on the sub-diagonals, followed by pairs
outside the sub-diagonals, and then, if the previous ones are not possible, it
introduces gaps. The value of a gap is fixed below.

3.2 Matching update

The algorithm finds the matching f that maximizes the value

Z m; giy+ gap values. )
ieDom(f)

In other words, we find an alignment of the two chains that respects the order
of the chains and maximizes the likelihood values in the score matrix.

We use dynamic programming with a gap value of exp(—(9/dp)?) times
the number of sites not matched; several values were tried for this value
during training; do is defined below. Intuitively, the gap value makes that
two sites that are superposed with a distance among them >9 A be a poorly
aligned pair. We forbid the alignments of site segments of length below 6,
e.g. any matched site has at least four other consecutive sites also matched.

Fig. 1. In this score matrix, the thick lines represent SSE. If the first SSE
on the first domain is matched to the first one on the second domain, and
the same for the second SSEs, then the entries on diagonal segments shown
have a higher likelihood than the other entries.

3.3 Matrix update

Given a matching f, we calculate T{; the local transformation at sites
i and j, and
f
dij=|1T;(bj) —aill.
In this way, we capture the distance from a; to the image of b; after it is
locally transformed. Then, we use the term:

m; j=exp(—(d;;/do)?).

When the transformation T; is not defined we set m; j =0. The value of dg

is 11.5 A2 and defines the range of distance deviations that contribute more
positively to the score. This parameter, or another one with a similar purpose,
appears in the scoring functions of several systems. Rash recommends a
larger value, rey =4 A, probably because for using a global transformation
for the whole protein a wider range of values should be allowed. Dali
uses a much larger one, b=20 A, but there it is used more to define
the neighbourhood of influence of a site. Our value does not depend on
the protein length as in the TM-score (Zhang and Skolnick, 2004) because
the transformations do not have to cover the whole protein.

3.4 Final step

When f is left unchanged or a maximum number of steps Inax is reached,
the process halts. In our test, Imax =5. As with other constants, several tries
where performed during training and it was found that although the value
Imax is primarily responsible for slowing the system, it gives it a certain
robustness.

We found that considering several initial SSE alignments, the system
works better during training: we modified Matras so that the output contains
up to four best SSE alignments and the entire procedure described above is
repeated for each one. Then, the best under the score (1) is considered.

The system is invariant to the order in which the two proteins are written
because our definitions are symmetric.

We now define a score that allows the method to sort the most similar
structures in a database to a query structure. The score is the ratio between
the optimal path value on the score matrix [i.e. the raw score (1)] and its
length (i.e. the sum of protein lengths minus the alignment length). Since the
path length grows as the number of non-matched sites increases, the higher
the raw score and the shorter the length, the better. Intuitively, this ratio
measures the average quality of the alignment over aligned and non-aligned
sites. We found that the score worked well during training when comparing
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matching quality across different proteins against the same query:

> migi+ gap values
ieDom(f)
Score( f)= , )
n'l“"n_Nassign

where Nygsign is the number of matched sites, and m is the query protein
length and 7 is the target protein length.

The output of the algorithm includes the list of aligned pairs (i,f ())ieDom(f)
and, for display purposes, the list of aligned intervals with their associated
transformation ([ig, ix'1, [f (ix).f (ix)], Tk )k in this one, all the amino acids
in the first interval [i,ip] are aligned to their respective amino acids
in the second interval [f(ix),f(ix’)] under the same transformation T} in
homogeneous representation (a 4 x4 matrix, in which the top left 3 x 3 matrix
is the rotation matrix and the fourth column is the translation vector with a
1 in the fourth position).

4 IMPLEMENTATION AND TESTING

The implementation was written in C++-, with scripts in Perl to call
the Matras program and all the needed format translations between
them so that it is naturally slower than other methods that use only
one global transformation. However, this prototype program is not
yet optimized for speed: when all the programs be integrated in one
binary, the program could be faster.

For testing, we use three benchmarks, the difficult hand curated
alignments by Mayr et al. (2007), the classification benchmark
by Sierk and Pearson (2004) and the benchmark at the Fatcat
server. In this way, we measure and compare the quality of the
alignments themselves and the system ability for classification. We
also show some of the now standard alignments that need flexibility,
as discussed by Yuzhen and Godzik (2003).

We tested 10 methods including ours: ProtDeform, SSAP (Taylor
and Orengo, 1989), Dali, FlexProt, Matras, TMalign, Rash, Vorolign
(Birzele et al., 2006), PPM and Matt. The results for FlexProt were
poor and were eliminated from the figures because they may be
caused by simple problems reading the PDB numberings, and also
it does not provide an alignment score. We tried to fix those problems
but finally we do not consider doing it fair with the other methods.

4.1 The Sisyphus benchmark

The Sisyphus database contains manually curated multiple structure
alignments (Andreeva et al., 2007). Mayr et al. (2007) gave some
difficult protein pairs and applied six comparison programs to
them. Alignments were calculated by CE, Dali, Fatcat, Matras,
Cq-match and Sheba for each pair in the set. Then, they evaluated the
comparison methods according to the reference alignments. From
the 125 pairs (available at http://biwww.che.sbg.ac.at/RSA/), we
eliminated the ones with more than one chain, and got a set of
106 pairs.

The agreement to a reference alignment was computed as the
percentage of residues aligned, with a tolerance shift of s positions,
to the reference alignment (/) relative to the length of the reference
alignment (Lyef): Is/Lief. I is the number of identically aligned
residues in the reference and the method alignments; /; is Iy plus
the number of aligned residues that are shifted by one position,
and so on.

Among the 10, the best method is Matt with an average exact
agreement among the 106 pairs of 82%, distinctly higher than the
others, as seen in Figure 2. If the tolerance shift is increased, it
gets above 90%. The second best is ProtDeform, except for exact

0.95
0.90
0.85
-
=
s
o 0.80 -
e
2
<
0.75
0.70 ——DALI MATRAS --FD
PPM —e— RASH #— SSAP
——TMALIGN —= - VOROLIGN MATT
0.65 T T
1 2 3 4 5
TOLERANCE

Fig. 2. Average percentage of agreement to reference alignments for each
tolerance shift allowed.

alignments, case in which the best one is Dali with 80%. The third
is Dali, and then all the others come close to each other. Rash has
a poor performance on exact alignments, then it recovers quickly,
which means that its alignments are not far from the truth.

The average speed of the algorithms on an Intel Centrino Duo
at 1.66 GHz running Linux is summarized in first row of Table 1.
Matras has the best quality to speed ratio in this test.

4.2 The CATH benchmark

The second benchmark is a subset of CATH 2.3 database [which
stands for Class, Architecture, Topology and Homology (Orengo
et al., 1997)], selected by Sierk and Pearson (2004) to obtain a
non-redundant sample of the entire database. A 2771 subset of
CATH domains and 86 prototype domains (available at the FASTA
repository ftp.virginia.edu:/pub/fasta /prot_sci_04) were selected to
test the following algorithms: Dali, Structal, CE, VAST, Matras,
SGM, PRIDE, SSEARCH and PS-Blast. This domain set was
carefully screened in order to be considered as a valid benchmark
for testing protein comparison algorithms. Of the 2771 domains,
1120 belong to the 86 families of the 86 prototypes. Therefore,
when comparing each of the 2771 domains against each of the
86 prototypes, there are a maximum of 1120 correct hits at the
Homology level. The prototypes are part of these 1120 domains.
Also, there is a maximum of 7048 hits at the Topology level,
e.g. 7048 pairs that are topologs.

To test a classifier with this benchmark, it is applied carrying
out a comparison of each of the 86 prototypes versus the 2771
domains. The values returned are examined from the best score to
the worst. For each query, each target considered in this order whose
domains belong to the same Homologous family, a Hit (coverage)
value is increased. Otherwise, an Error value is increased. Then, the
level of coverage by the median query (43 queries performed better,
42 worse) is calculated at the 1st, 3rd, 10th, 30th and 100th error. We
also plot the same curves but when hits are topolog pairs (until the
Topology classification) and errors are non-topolog pairs. The results
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Table 1. The first row shows the speed of the programs in average number of seconds per pair; the other rows show the percentage of queries that get as the
best score a domain of the correct type; second and third rows, in the benchmark based on CATH,; forth and fifth, based on SCOP.

SSAP Dali Matt Rash ProtDefrom PPM Matras TMalign Vorolign
Time (s/pair) 239 219 124 10.4 8.5 3.6 1.1 0.9 0.6
Homology CATH 96.5 91.9 88.4 97.7 96.5 93.0 94.2 84.7 90.6
Topology CATH 100 94.2 90.6 98.8 96.5 95.3 97.7 86.0 94.2
Family SCOP 80.9 83.7 81.1 82.1 81.8 83.7 82.6 77.7 83.9
Fold SCOP 953 96.1 91.1 94.1 94.1 94.3 95.3 89.3 93.8
A Homologs B Topologs
100 100 +— - o ~——rr
{|- =- Dali - m- Dali /
ProtDeform —e— ProtDeform ;
A Matt o Y
1|—v—ssapP —¥—SSA
*— Rach . L ¢ Rash o X A« > we
< PPM 4. FEM 4 /
» Matras b Malims
a e \Joralign s ®— Vorolign
0104, TMalign * o q 910 —*— TMalign * » - > N e
m ¥ lLL-I ’/J Ir.]
* o A by A * s A4 )-‘; o,,‘{
: i - e
) ”,-’ - / ’/’ //
T SSAP ,’/ P
1 S T T + L —— T hj('v 1 e A T
0.6 0.7 0.8 0.9 Rash 1.0 02 03 04 05 06 07 08 098 1.0
Coverage Coverage

Fig. 3. (A) Hits (coverage) against errors for the median query, at the homology level (ProtDeform and Dali coincide). (B) Same as above but considering

the topology level.

are shown in Figure 3 for Homologs and Topologs. This is the
method used by Sierk and Pearson (and displayed in their Figure 2A
and C) to evaluate the other algorithms with the same database and
measure the performance for the individual queries. We keep the
same type of figures so our results can be compared directly with
the ones obtained by Sierk and Pearson (our results for Matras are
better because we use the new version 1.2).

Considering that in many applications it is important to identify
the correct family for a domain query with a very high precision, we
calculate how often each of the methods tested is able to identify a
correct member of the homology/topology level in the first position
of the list. The results are in the second and third rows of Table 1.

We can see in Figure 3 and in the second row of Table 1 that
the new algorithm is, with SSAP and Rash, among the three best
algorithms with respect to CATH at the Homology level. As shown
Figure 3(B), and in the third row of the table, ProtDeform is among
the best four algorithms with Rash, Matras and SSAP at the Topology
level. Rash score has a surprising best agreement with respect to
CATH at both Homology and Topology levels: half of the queries
obtained 93% of coverage for Homology before generating the first
error, and 54% for Topology; it is surprising because Rash was
trained only for topology agreement using as independent measures
of truth both CATH and SCOP classifications. Meanwhile, SSAP
score high agreement maybe due to the use of SSAP for the creation
of the CATH hierarchy; anyway, Rash, in fact, outperforms SSAP if

we consider both levels together. Therefore, the CATH hierarchy
shows certain independence from SSAP since it can be better
reproduced by another program trained using both CATH and SCOP
topology classification. After them, ProtDeform shows a remarkable
coverage of 85% for homology and 52% for topology for half of the
queries before the first error is hit. Altogether, there is in fact a group
of methods that perform well in this test: Rash, SSAP, ProtDeform,
PPM, Dali and Matras.

4.3 The SCOP benchmark

In order to see a different side of the methods being tested for
classification, we consider a benchmark from the Fatcat server
(http://fatcat.burnham.org). It has 15000 domain pairs from SCOP.
We consider each domain that is paired with at least one domain
in the same family and at least one domain not in the same family
and got 12364 pairs with 796 queries. Similarly, at the fold level,
we got 9564 pairs with 1583 queries. Then, we found the percentage
of queries for which a given method finds a domain of the same
family/fold at the top of the list. The results are in rows four and
five in Table 1.

The best methods in this test for both fold and family levels are
Dali, PPM and Matras. Just after them, we find ProtDeform and
Rash. Vorolign, which performs poorly in both the Sisyphus and
CATH benchmark has a surprisingly good performance only at the
family level. SSAP does poorly at the family level, but it is does
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Fig. 4. Comparisons between the ribosomal protein L1 mutant S179C [SCOP code dlad2 , in blue (black)] and the 50S ribosomal protein L1P from
Methanococcus jannaschii [SCOP code dlcjsa , in green and red (gray)]. (A) The superposition of these two proteins according to the best rigid superposition
possible for the matching found. It is apparent that only one domain from each protein is superimposed in this manner. Several local transfomations, however,

allow a much better superposition (B).

very well at the fold level. TMalign is the only one that performs
poorly at all tests.

4.4 Some examples

The similarity between two different proteins could need relative
motion for some parts beyond what traditional RMSD-based
structure alignment tools allow. We show here one example
suggested in Yuzhen and Godzik (2003), where these deformations
can be spotted easily. Additional examples are shown in the
Supplementary Material.

In Figure 4, we can see a good superposition between two proteins
spanning their entire structures. The first one is the ribosomal
protein L1 mutant S179C from Thermus thermophilus (SCOP code
dlad2a, in black) and the second one, the 50S ribosomal protein
L1P from Methanococcus jannaschii (SCOP code dlcjsa, in gray).
Both proteins have two domains and for the matching found, it is
apparent from the superposed protein chains that the alignment is
much better with the deformation being permitted compared with a
rigid transformation which can align only one domain satisfactorily.
The results are very similar to the one in the above cited paper,
where some biological importance is highlighted: researchers have
studied the conformational flexibility of ribosomal protein L1 and
showed that this protein has a small but significant opening of the
cavity between its two domains, which is suspected to be necessary
to accommodate the larger conformational change needed for an
induced fit mechanism upon binding RNA.

5 DISCUSSION

We have investigated the utility of using the ProtDeform algorithm to
automatically find the alignments that expert hands define as most
likely, and to recognize domains with the same CATH homology
and topology. Our algorithm is as good as Dali and Matras for hand
curated alignments, but it is outperformed by Matt; Rash’s accuracy
is relative low for this test. With respect to CATH, ProtDeform is
outperformed by Rash and SSAP; Matt classification ability is rather

low. With respect to SCOP, Dali, Matras and PPM are the best.
Meanwhile, ProtDeform seems to perform well under all criteria.
Overall, we believe that most methods (ProtDeform, Rash, Matt,
Dali, Matras, PPM and SSAP) have great performance. Therefore,
ProtDeform is among the best classifiers and it is superior to more
traditionally single transformation ones like TM-align.

It is clear that our results are valid for the benchmarks used,
which have been carefully screened by other researchers. However,
an objective measure for protein similarity would be useful also to
us, although no one is widely accepted yet. We could propose our
score in Formula (2) as possible gold standard, but we still cannot
argue why this or other related measures should be the one in spite of
the allowed flexibility inherent in them. In fact, we make emphasis
that the measure, if it exists, has not to be simple.

Meanwhile, we could regard our results as an update to the
comparison over the Sisyphus subsets and in Sierk and Pearson’s
comparison paper, adding seven classifiers to both studies. We also
consider that ProtDeform, Rash, Matt, Dali, Matras, PPM and SSAP
are among the best classifiers to date. If Rash could improve the
alignment precision, or Matt, its classification score, any of the two
could become the most reliable ones on both criteria.

We believe that our sequence of local transformations approach
could improve several classifiers. Rash, for instance, could easily
be modified to find a sequence of local transformations for an
alignment, instead of trying to find a single rigid transformation
(although a new training for Rash would be needed). As stated
earlier, our system could be seen roughly as changing, in TM-align
or Structal, the routine that finds a single rigid transformation for a
routine that finds the sequence of local transformations. Our results
show that we already have improved them: see the results for Structal
in Sierk and Pearson (2004). Since we use Matras’ first classifier,
we can also argue that we have outperformed its second and third
classifiers with respect to Sisyphus and CATH.

ProtDeform alignments deform one of the domains in a way that
does not have to resemble a single rigid transformation, so that the
two matching examples shown above have been selected as simple
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although comprehensible from a single shot. It could be that our
deformations are too lenient and sometimes cause alignments that
experts would never allow. We are convinced that more research is
needed based on the local transformation approach that includes the
possibility of reducing the number of neighbours as the iterations
progress, selecting the neighbours according to more information
on secondary structures, sequence proximity, hydrophobicity, etc.,
and adding knowledge-specific strategies to neighbour selection by
analysing the errors with experts.
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