
Petr Hliněný, FI MU Brno 1 FI: MA010: Graph Connectivity

2 Graph Connectivity

Graphs are often used to model various interconnecting networks, such as transport, pipe, or
computer networks. In such models, one often needs or wants to get from a place to any
other place. . .

Graphs with this nice property of “accessibility” are connected, and we shall study them now.

2

Brief outline of this lecture

• Connections in a graph, definition, components

• Searching through a graph, search algorithms BFS and DFS

• Higher levels of connectivity, 2-connected graphs, Menger’s theorem

• Eulerian tours and trails, “seven bridges” and the even degree cond.



Petr Hliněný, FI MU Brno 2 FI: MA010: Graph Connectivity

2.1 Graph Connectivity and Components

Definition: A walk of length n in a graph G is a sequence of alternating vertices and
edges

v0, e1, v1, e2, v2, . . . , en, vn ,

such that every its edge ei has the ends vi−1, vi.

This really is a “walk” through the graph, see for instance how an IP packet is routed through
the internet (as it often repeats vertices). 2

Lemma 2.1. Let ∼ be a binary relation on the vertex set V (G) of a graph G, such
that u ∼ v if and only if there exists a walk in G starting in u and ending in v. Then
∼ is an equivalence relation.

Proof. The relation ∼ is reflexive since every vertex itself forms a walk of length 0.
It is also symmetric since any walk can be easily “reversed”, and transitive since two
walks can be concatenated at the common endvertex. 2 2

Definition: The equivalence classes of the above relation ∼ (Lema 2.1) on V (G) are
called the connected components of the graph G.

More generally, by connected components we also mean the subgraphs induced on
these vertex set classes of ∼.



Petr Hliněný, FI MU Brno 3 FI: MA010: Graph Connectivity

Recall a path in a graph— it is a walk without repetition of vertices.

Theorem 2.2. If there exists a walk between vertices u and v in a graph G, then there
also exists a path from u to v in this G. 2

Proof. Let u = v0, e1, v1, . . . , en, vn = v be a walk of length n between u and v in G.
We start building a new walk W from w0 = u which will actually be a path:

– Assume we have built a starting fragment w0, e1, w1, . . . , wi of W (inductively
from i = 0, i.e. w0) where wi = vj for some j ∈ {0, 1, . . . , n}. 2

– Find maximum index k ≥ j such that vk = vj = wi (repeated), and append W

with . . . , wi = vj = vk, ek+1, wi+1 = vk+1, . . .. 2

– It remains to show, by means of a contradiction, that the new vertex wi+1 = vk+1

does not occur in W yet.

– The procedure stops whenever wi = v. 2

2

Proof; a shorter, but nonconstructive alternative.

Among all the walks between u and v in G, we choose the (one of) shortest one as W .
It is clear that if the same vertex were repeated in W , then W could be shortened
further, a contradiction. Hence W is a path in G. 2



Petr Hliněný, FI MU Brno 4 FI: MA010: Graph Connectivity

Definition 2.3. Graph G is connected if G consists of at most one connected com-
ponent. By Theorem 2.2, this means if every two vertices of G are connected by a path.

How many components do you see in this picture?

s s

s

s

ss

s

s

s

s

s s



Petr Hliněný, FI MU Brno 5 FI: MA010: Graph Connectivity

2.2 Graph Searching

We present a very general scheme of searching through a graph. This meta-algorithm
works with the following datastates and structures:

• A vertex: having one of the states . . .

– initial – assigned at the beginning,

– discovered – after we have find it along an edge,

– finished – assigned after processing all incident edges.

• An edge: having one of the states . . .

– initial – assigned at the beginning,

– processed – whenever it has been processed at one of its endvertices. 2

• Stack (depository): is a supplementary data structure (a set) which

– keeps all the discovered vertices until they have been finished.

Remark: Graph search has several variants mostly defined by the way vertices are picked from
the depository. Specific programming tasks can be (are) performed at each vertex or edge of
G while processing them.



Petr Hliněný, FI MU Brno 6 FI: MA010: Graph Connectivity

Algorithm 2.4. Searching through a connected component
This algorithm visits and processes every vertex and edge of a connected graph G.

input < graph G;

state(all vertices and edges of G ) < initial;
stack U = {any vertex v0 of G};
state(v0) = discovered;
while ( U nonempty) {

choose v ∈ U; U = U \ {v};
PROCESS(v);

foreach ( e incident with v) {
if (state(e)==initial) PROCESS(e);

w = the opposite vertex of e = vw;

if (state(w)==initial) {
state(w) = discovered;
U = U∪{w};

}
state(e) = processed;

}
state(v) = finished;

}
G is finished;



Petr Hliněný, FI MU Brno 7 FI: MA010: Graph Connectivity

Implementation variants of graph searching

• DFS depth-first search – the depository U is a “LIFO” stack. 2

• BFS breadth-first search – the depository U is a “FIFO” queue. 2

• Dijkstra’s shortest path algorithm – the depository U always picks the vertex
closest to the starting position v0

(similar, but more general, to BFS, see the next lecture). 2

Example 2.11. An example of a depth-first search run from a vertex a.

s s

s

s

ss

s

s
s

s

a f b

c

d

ef

g

h i

j



Petr Hliněný, FI MU Brno 8 FI: MA010: Graph Connectivity

s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

ff 2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f ff 2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

ff

2

s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f

ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f

f

ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f

f

fff

2

s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f

f

ff

ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f

f

ff

f ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f

f

ff

f f

fff

2



Petr Hliněný, FI MU Brno 9 FI: MA010: Graph Connectivity

Example 2.12. An example of a breadth-first search run from a vertex a.

s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

ff 2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f ff 2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

ff

2

s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f f ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f f f

ff

2

s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f f f

fff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f f f

ff ff

2 s s

s

s

ss

s

s s

s

a f b

c

d

ef

g

h
i

j

f f

f f f

ff f

fff

2



Petr Hliněný, FI MU Brno 10 FI:MA010: Graph Connectivity

2.3 Higher Degrees of Connectivity

Various networking applications are often demanding not only that a graph is con-
nected, but that it will stay connected even after failure of some small number of
nodes (vertices) or links (edges).

This can be studied in theory as “higher levels” of graph connectivity. 2

Definition: A graph G is edge-k-connected, k > 1, if G stays connected even after
removal of any subset of ≤ k − 1 edges. 2

Definition: A graph G is vertex-k-connected, k > 1, if G stays connected even after
removal of any subset of ≤ k − 1 vertices.
Specially, the complete graph Kn is vertex-(n − 1)-connected. 2

Sometimes we speak about a k-connected graph, and then we usually mean it to be
vertex-k-connected. High vertex connectivity is a (much) stronger requirement than
edge connectivity. . .

s s

s

s

s

s s

ss

s s

s s

ss

s ss



Petr Hliněný, FI MU Brno 11 FI:MA010: Graph Connectivity

About 2-connected graphs

Theorem 2.5. A simple graph is 2-connected if, and only if, it can be constructed
from a cycle by “adding ears”; i.e. by iterating the operation which adds a new path
(of arbitrary length, even an edge, but not a parallel edge) between two existing vertices
of a graph.

s s

s

s

ss

s

s

s s

s

s

ss

s

s s

s

ss

s

s s

ss

s



Petr Hliněný, FI MU Brno 12 FI:MA010: Graph Connectivity

Menger’s theorem and related

Theorem 2.6. A graph G is edge-k-connected if, and only if, there exist (at least)
k edge-disjoint paths between any pair of vertices (the paths may share vertices).

A graph G is vertex-k-connected if, and only if, there exist (at least) k internally disjoint
paths between any pair of vertices (the paths may share only their ends).

s s

s

s

s

s s

ss

s s

s s

ss

s ss

2

Some direct corrolaries of the theorem are the following:

Theorem 2.7. Assume G be a 2-connected graph. Then every two edges in G lie on
a common cycle. 2

Theorem 2.8. Assume G be a k-connected graph, k ≥ 2. Then, for every two disjoint
sets U1, U2 ⊂ V (G), |U1| = |U2| = k, there exist k pairwise disjoint paths from the
terminals of U1 to U2.

s
s
s
s
s

s
s

s
s
s

U1 U2



Petr Hliněný, FI MU Brno 13 FI:MA010: Graph Connectivity

2.4 Eulerian Trails

Perhaps the oldest recorded result of graph theory comes from famous Leonarda Eu-
ler— it is the “7 bridges of Königsberg” (Královec, now Kaliningrad) problem.

So what was the problem? The city majors that time wanted to walk through the city
while crossing each of the 7 bridges exactly once. . .



Petr Hliněný, FI MU Brno 14 FI:MA010: Graph Connectivity

This problem led Euler to introduce the following:

Definition: A trail in a graph is a walk which does not repeat edges.
A closed trail (tour) is such a trail that ends in the same vertex it started with. The
opposite is an open trail.

And the oldest graph theory result by Euler reads: 2

Theorem 2.9. A (multi)graph G consists of one closed trail if, and only if, G is
connected and all the vertex degrees in G are even. 2

Corollary 2.10. A (multi)graph G consists of one open trail if, and only if, G is
connected and all the vertex degrees in G but two are even.

Analogous results exist also for digraphs. . .


