Relational Model

Database System Concepts, $5^{\text {th }}$ Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 2: Relational Model

- Structure of Relational Databases
- Fundamental Relational-Algebra-Operations
- Additional Relational-Algebra-Operations
- Extended Relational-Algebra-Operations
- Modification of the Database

Example of a Relation

account_number	branch_name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Basic Structure

- Formally, given sets $D_{1}, D_{2}, \ldots . D_{n}$ a relation r is a subset of

$$
D_{1} \times D_{2} \times \ldots \times D_{n}
$$

Thus, a relation is a set of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each $a_{i} \in D_{i}$

- Example: If
- customer_name = \{Jones, Smith, Curry, Lindsay, ...\}
/* Set of all customer names */
- customer_street $=\{$ Main, North, Park, ...\}/* set of all street names*/
- customer_city = \{Harrison, Rye, Pittsfield, ...\}/* set of all city names */

Then $r=\{\quad$ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield) \}
is a relation over
customer_name x customer_street x customer_city

Attribute Types

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; that is, indivisible
- E.g. the value of an attribute can be an account number, but cannot be a set of account numbers
- Domain is said to be atomic if all its members are atomic
- The special value null is a member of every domain
- The null value causes complications in the definition of many operations
- We shall ignore the effect of null values in our main presentation and consider their effect later

Relation Schema

- $A_{1}, A_{2}, \ldots, A_{n}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema
- Ordering of attributes is important!

Example:
Customer_schema $=$ (customer_name, customer_street, customer_city $)$

- $r(R)$ denotes a relation r on the relation schema R

Example:
customer (Customer_schema)

Relation Instance

- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

Relations are Unordered

■ Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

- Example: account relation with unordered tuples

account_number	branch_name	balance
A-101	Downtown	500
A-215	Mianus	700
A-102	Perryridge	400
A-305	Round Hill	350
A-201	Brighton	900
A-222	Redwood	700
A-217	Brighton	750

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information
account: stores information about accounts
depositor: stores information about which customer owns which account
customer: stores information about customers
- Storing all information as a single relation such as
bank(account_number, balance, customer_name, ..) results in
- repetition of information
- e.g., if two customers own an account (What gets repeated?)
- the need for null values
- e.g., to represent a customer without an account
- Normalization theory (Chapter 7: Relational Database Design) deals with how to design relational schemas

The customer Relation

Customer_name	customer_street	customer_city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

The depositor Relation

customer_name	account_number
Hayes	$\mathrm{A}-102$
Johnson	$\mathrm{A}-101$
Johnson	$\mathrm{A}-201$
Jones	$\mathrm{A}-217$
Lindsay	$\mathrm{A}-222$
Smith	$\mathrm{A}-215$
Turner	$\mathrm{A}-305$

Keys

- Let $\mathrm{K} \subseteq \mathrm{R}$
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation $r(R)$
- by "possible r " we mean a relation r that could exist in the enterprise we are modeling.
- Example: \{customer_name, customer_street\} and \{customer_name\}
are both superkeys of Customer, if no two customers can possibly have the same name
- In real life, an attribute such as customer_id would be used instead of customer_name to uniquely identify customers, but we omit it to keep our examples small, and instead assume customer names are unique.

Keys (Cont.)

- K is a candidate key if K is minimal

Example: \{customer_name\} is a candidate key for Customer, since it is a superkey and no subset of it is a superkey.

- Primary key: a candidate key chosen as the principal means of identifying tuples within a relation
- Should choose an attribute whose value never, or very rarely, changes.
- E.g. email address is unique, but may change

Query Languages

- Language in which user requests information from the database.
- Categories of languages
- Procedural
- Non-procedural, or declarative
- "Pure" languages:
- Relational algebra
- Tuple relational calculus
- Domain relational calculus

■ Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators
- select: σ
- project: П
- union: \cup
- set difference: -
- Cartesian product: \times
- rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.

Select Operation - Example

- Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B \wedge D>5}(r)$

A	B	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

where p is a formula in propositional calculus:
formula := term
term <conj> term (term)
term :=
expr
expr <op> expr (expr)
expr := attribute
constant
<conj> is one of: \wedge (and), \vee (or), \neg (not)
$<o p>$ is one of: $=, \neq,>, \geq,<, \leq$

- Example of selection:
$\sigma_{\text {branch_name }}{ }^{\text {PPerryridge }}$ (account)

Project Operation - Example

- Relation $r . \quad$| A | B | C |
| :---: | :---: | :---: |
| α | 10 | 1 |
| α | 20 | 1 |
| β | 30 | 1 |
| β | 40 | 2 |

A C $\prod_{\mathrm{A}, \mathrm{C}}(r)$ α 1 β 1 β 2 α 1
1

Project Operation

- Notation:

$\prod_{A_{1}, A_{2}, \ldots, A_{k}}(r)$

where A_{1}, A_{2} are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the branch_name attribute of account
$\Pi_{\text {account_number, balance }}$ (account)

Union Operation - Example

- Relations r, s :

A
A
α
α
β

A	B
α	2
β	3

- $r \cup s:$

A	B
α	1
α	2
β	1
β	3

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: $2^{\text {nd }}$ column of r deals with the same type of values as does the $2^{\text {nd }}$ column of s)

- Example: to find all customers with either an account or a loan
$\prod_{\text {customer_name }}($ depositor $) \cup \prod_{\text {customer_name }}$ (borrower)

Set Difference Operation - Example

- Relations r, s :

A	B
α	1
α	2
β	1
r	

A	B
α	2
β	3

s

■ r-s:

A	B
α	1
β	1

Set Difference Operation

- Notation $r-s$
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } t \notin s\}
$$

- Set differences must be taken between compatible relations.
- r and s must have the same arity
- attribute domains of r and s must be compatible

Cartesian-Product Operation - Example

- Relations r, s :

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

- $r \times s$

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

where $t q$ means the concatenation of tuples t and q to produce a single tuple.

- Assume that attributes of $\mathrm{r}(\mathrm{R})$ and $\mathrm{s}(\mathrm{S})$ are disjoint. (That is, $R \cap S=\varnothing$).
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$
- $r \times s$

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

S	C	D	E
	α	10	a
	β	10	a
	β	20	b
	γ	10	b

- $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$

A	B	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- Example of naming a relation:

$$
\rho_{x}(E)
$$

returns the expression E under the name X

- Example of naming a relation and its attributes:

If a relational-algebra expression E has arity n, then

$$
\rho_{x\left(A_{1}, A_{2}, \ldots, A_{n}\right)}(E)
$$

returns the result of expression E under the name X, and with the attributes renamed to $A_{1}, A_{2}, \ldots ., A_{n}$.

Banking Example

branch (branch_name, branch_city, assets)
customer (customer_name, customer_street, customer_city)
account (account_number, branch_name, balance)
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

Example Queries

loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)

- Find all loans of over \$1200

$$
\sigma_{\text {amount }>1200} \text { (Ioan) }
$$

- Find the loan number for each loan of an amount greater than \$1200

$$
\Pi_{\text {loan_number }}\left(\sigma_{\text {amount }>1200}(\text { loan })\right)
$$

- Find the names of all customers who have a loan, an account, or both, from the bank

$$
\Pi_{\text {customer_name }}(\text { borrower }) \cup \Pi_{\text {customer_name }} \text { (depositor) }
$$

Example Queries

```
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)
```

- Find the names of all customers who have a loan at the Perryridge branch.

```
\(\prod_{\text {Customer_name }}\left(\sigma_{\text {branch_name="Perryridge" }}\right.\)
\(\left(\sigma_{\text {borrower.loan_number }}=\right.\) loan.loan_number \((\) borrower \(\times\) loan \(\left.)\right)\) )
```

- Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.
$\Pi_{\text {Customer_name }}\left(\sigma_{\text {branch_name }}=\right.$ "Perryridge"
$\left(\sigma_{\text {borrower.loan_number }}=\right.$ loan.loan_number $($ borrower \times loan $\left.\left.)\right)\right)$ $\Pi_{\text {Customer_name }}$ (depositor)

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.
- Query 1

$$
\begin{aligned}
& \prod_{\text {Customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Perryridge" }(\right. \\
& \left.\left.\sigma_{\text {borrower.loan_number }}=\text { loan.loan_number }(\text { borrower } \times \text { loan })\right)\right)
\end{aligned}
$$

- Query 2

$$
\begin{gathered}
\prod_{\text {Customer_name }}\left(\sigma_{\text {loan.loan_number }}=\right.\text { borrower.loan_number } \\
\left.\left.\left(\sigma_{\text {branch_name }}=\text { "Perryridge" }(\text { loan })\right) \times \text { borrower }\right)\right)
\end{gathered}
$$

Example Queries

account (account_number, branch_name, balance)

- Find the largest account balance
- Strategy:
- Find those balances that are not the largest
- Rename account relation as d so that we can compare each account balance with all others
- Use set difference to find those account balances that were not found in the earlier step.
- The query is:

$$
\begin{aligned}
& \Pi_{\text {balance }}(\text { account })-\Pi_{\text {account.balance }} \\
& \quad\left(\sigma_{\text {account.balance }<\text { d.balance }}\left(\text { account } \times \rho_{d}(\text { account })\right)\right)
\end{aligned}
$$

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
- A relation in the database
- A constant relation
- Let E_{1} and E_{2} be relational-algebra expressions; the following are all relational-algebra expressions:
- $E_{1} \cup E_{2}$
- $E_{1}-E_{2}$
- $E_{1} \times E_{2}$
- $\sigma_{p}\left(E_{1}\right), P$ is a predicate on attributes in E_{1}
- $\Pi_{s}\left(E_{1}\right), S$ is a list consisting of some of the attributes in E_{1}
- $\rho_{x}\left(E_{1}\right), x$ is the new name for the result of E_{1}

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s=\{t \mid t \in r$ and $t \in s\}$
- Assume:
- r, s have the same arity
- attributes of r and s are compatible
- Note: $r \cap s=r-(r-s)$

Set-Intersection Operation - Example

- Relation r, s :

A	B
α	1
α	2
β	1

r

A	B
α	2
β	3

S
$\square \cap s$

A	B
α	2

Natural-Join Operation

- Notation: $\mathrm{r} \bowtie \mathrm{s}$
- Let r and s be relations on schemas R and S respectively. Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
- Consider each pair of tuples t_{r} from r and t_{s} from s.
- If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
- t has the same value as t_{r} on r
- t has the same value as t_{S} on s
- Example:

$$
R=(A, B, C, D)
$$

$$
S=(E, B, D)
$$

- Result schema $=(A, B, C, D, E)$
- $r \bowtie s$ is defined as:

$$
\Pi_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B}=s . B \wedge r . D=s . D(r \times s)\right)
$$

Natural Join Operation - Example

- Relations r, s:

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
r			

B	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	\in
s		

- $\mathrm{r} \bowtie s$

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Division Operation

- Notation: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where
- $R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$
- $S=\left(B_{1}, \ldots, B_{n}\right)$

The result of $r \div s$ is a relation on schema

$$
\begin{aligned}
& R-S=\left(A_{1}, \ldots, A_{m}\right) \\
& r \div s=\left\{t \mid t \in \prod_{R-S}(r) \wedge \forall u \in s(t u \in r)\right\}
\end{aligned}
$$

where $t u$ means the concatenation of tuples t and u to produce a single tuple.

Division Operation - Example

- Relations r, s :
- $r \div s$

A
α
β

Another Division Example

- Relations r, s :

A	B	C	D	E
α	a	α	a	1
α	a	γ	a	1
α	a	γ	b	1
β	a	γ	a	1
β	a	γ	b	3
γ	a	γ	a	1
γ	a	γ	b	1
γ	a	β	b	1

	D E a 1 b 1

- $r \div s$

A	B	C
α	a	γ
γ	a	γ

Division Operation (Cont.)

- Property
- Let $q=r \div s$
- Then q is the largest relation satisfying $q \times s \subseteq r$
- Definition in terms of the basic algebra operation

Let $r(R)$ and $s(S)$ be relations, and let $S \subseteq R$

$$
r \div s=\Pi_{R-S}(r)-\Pi_{R-S}\left(\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)
$$

To see why

- $\Pi_{R-S, S}(r)$ simply reorders attributes of r
- $\left.\quad \Pi_{R-S}\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)$ gives those tuples t in
$\Pi_{R-S}(r)$ such that for some tuple $u \in s, t u \notin r$.

Assignment Operation

- The assignment operation (\leftarrow) provides a convenient way to express complex queries.
- Write query as a sequential program consisting of
- a series of assignments
- followed by an expression whose value is displayed as a result of the query.
- Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$
\begin{aligned}
& \text { temp1 } \leftarrow \Pi_{R-S}(r) \\
& \text { temp } 2 \leftarrow \Pi_{R-S}\left((\text { temp1 x s })-\Pi_{R-S, S}(r)\right) \\
& \text { result }=\text { temp1 }- \text { temp2 }
\end{aligned}
$$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow.
- May use variable in subsequent expressions.

Bank Example Queries

- Find the names of all customers who have a loan and an account at bank.

$$
\Pi_{\text {customer_name }} \text { (borrower) } \cap \prod_{\text {customer_name }} \text { (depositor) }
$$

- Find the name of all customers who have a loan at the bank and the loan amount

$$
\Pi_{\text {customer_name, loan_number, amount }} \text { (borrower } \bowtie \text { loan) }
$$

Bank Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
- Query 1

$$
\begin{gathered}
\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Downtown" }(\text { depositor } \bowtie \text { account })\right) \cap \\
\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\text { "Uptown" }(\text { depositor } \bowtie \text { account })\right)
\end{gathered}
$$

- Query 2

$$
\begin{aligned}
& \Pi_{\text {customer_name, branch_name }}(\text { depositor } \bowtie \text { account }) \\
& \quad \div \rho_{\text {temp(branch_name) }}(\{\text { ("Downtown"), ("Uptown") })
\end{aligned}
$$

Note that Query 2 uses a constant relation.

Bank Example Queries

- Find all customers who have an account at all branches located in Brooklyn city.

$$
\begin{aligned}
& \prod_{\text {customer_name, branch_name }}(\text { depositor } \bowtie \text { account }) \\
& \div \prod_{\text {branch_name }}\left(\sigma_{\text {branch_city }}=\right.\text { "Brooklyn" }
\end{aligned} \text { (branch)) }
$$

Extended Relational-Algebra Operations

- Generalized Projection
- Aggregate Functions
- Outer Join

Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\prod_{F_{1}, F_{2}, \ldots, F_{n}}(E)
$$

- E is any relational-algebra expression
- Each of $F_{1}, F_{2}, \ldots, F_{n}$ are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation credit_info(customer_name, limit, credit_balance), find how much more each person can spend:

$$
\Pi_{\text {customer_name, limit - credit_balance }} \text { (credit_info) }
$$

Aggregate Functions and Operations

- Aggregation function takes a collection of values and returns a single value as a result.
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values
- Aggregate operation in relational G algebra

$$
G_{1}, G_{2}, \ldots, G_{n} G_{F_{1}\left(A_{1}\right), F_{2}\left(A_{2}, \ldots, F_{n}\left(A_{n}\right)\right.}(E)
$$

E is any relational-algebra expression

- $G_{1}, G_{2} \ldots, G_{n}$ is a list of attributes on which to group (can be empty)
- Each F_{i} is an aggregate function
- Each A_{i} is an attribute name

Aggregate Operation - Example

- Relation r

A	B	C
α	α	7
α	β	7
β	β	3
β	β	10

- $G_{\text {sum(}(C)}(r)$

$$
\operatorname{sum}(C)
$$

Aggregate Operation - Example

- Relation account grouped by branch-name:

branch_name	account_number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch_name $G \operatorname{sum}($ balance $)($ account $)$

branch_name	sum(balance)
Perryridge	1300
Brighton	1500
Redwood	700

Aggregate Functions (Cont.)

- Result of aggregation does not have a name
- Can use rename operation to give it a name

$$
\rho_{x(\text { branch_name,sum_balance })}(\underset{\text { branch_name }}{ } G \text { sum(balance) }(\text { account }))
$$

- For convenience, we permit renaming as part of aggregate operation
branch_name G sum(balance) as sum_balance (account)

Outer Join

- An extension of the join operation that avoids loss of information.
- Example of natural join:
loan

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

borrower

Customer_name	loan_number
Jones	L-170
Smith	L- 230
Hayes	L-155

loan \bowtie borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

Outer Join (cont.)

- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
- null signifies that the value is unknown or does not exist
- All comparisons involving null are (roughly speaking) false by definition.
- We shall study precise meaning of comparisons with nulls later

Left Outer Join - Example

- Left Outer Join
loan

loan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

borrower

customer_name	loan_number
Jones	L-170
Smith	L-230
Hayes	L-155

Ioan \triangle borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

Right Outer Join - Example

■ Right Outer Join
loan

Ioan_number	branch_name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

borrower

customer_name	loan_number
Jones	L-170
Smith	L-230
Hayes	L-155

Ioan \bowtie^{-}borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

Full Outer Join - Example

- Full Outer Join

loan
Ioan_number branch_name amount borrower L-170 customer_name loan_number L-230 Downtown 3000 Ledwood 4000 Jones L-170 L-260 Smith L-230 Perryridge 1700 Hayes L-155

loan $\triangle \nwarrow_{-}$borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Modification of the Database

- The content of the database may be modified using the following operations:
- Deletion
- Insertion
- Updating
- All these operations are expressed using the assignment operator.

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$
r \leftarrow r-E
$$

where r is a relation and E is a relational algebra query.

Deletion Examples

- Delete all account records in the Perryridge branch.

$$
\text { account } \leftarrow \text { account }-\sigma_{\text {branch_name }=\text { "Perryridge" }(\text { account }) ~}^{\text {})}
$$

- Delete all loan records with amount in the range of 0 to 50

$$
\text { loan } \leftarrow \text { loan }-\sigma \text { amount } \geq 0 \text { and amount } \leq 50 \text { (Ioan) }
$$

■ Delete all accounts at branches located in Needham.

```
branch (branch_name, branch_city, assets)
account (account_number, branch_name, balance )
depositor (customer_name, account_number)
\(r_{1} \leftarrow \sigma_{\text {branch_city }}=\) "Needham" \((\) account \(\bowtie\) branch \()\)
\(r_{2} \leftarrow \Pi_{\text {account_number, branch_name, balance }}\left(r_{1}\right)\)
\(r_{3} \leftarrow \Pi_{\text {customer_name, account_number }}\left(r_{2} \bowtie\right.\) depositor)
account \(\leftarrow\) account \(-r_{2}\)
depositor \(\leftarrow\) depositor \(-r_{3}\)
```


Insertion

- To insert data into a relation, we either:
- specify a tuple to be inserted
- write a query whose result is a set of tuples to be inserted
- In relational algebra, an insertion is expressed by:

$$
r \leftarrow r \cup E
$$

where r is a relation and E is a relational algebra expression.

- The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

Insertion Examples

- Insert information in the database specifying that Smith has $\$ 1200$ in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup {("A-973","Perryridge", 1200)}
depositor }\leftarrow\mathrm{ depositor }\cup{("Smith", "A-973")
```

- Provide as a gift for all loan customers in the Perryridge branch, a $\$ 200$ savings account. Let the loan number serve as the account number for the new savings account.

```
account (account_number, branch_name, balance )
loan (loan_number, branch_name, amount)
depositor (customer_name, account_number)
borrower (customer_name, loan_number)
    r
    account }\leftarrow\mathrm{ account }\cup\mp@subsup{\prod}{loan_number, branch_name, 200 (r}{1
    depositor }\leftarrow\mathrm{ depositor }\cup\mp@subsup{\prod}{\mathrm{ customer_name, loan_number }}{}(\mp@subsup{r}{1}{}
```


Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$
r \leftarrow \prod_{F_{1}, F_{2}, \ldots, F_{n}}(r)
$$

- Each F_{i} is either
- the $i^{\text {th }}$ attribute of r, if the $i^{\text {th }}$ attribute is not updated, or,
- if the attribute is to be updated F_{i} is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Update Examples

account (account_number, branch_name, balance)

- Make interest payments by increasing all balances by 5 percent.
account $\leftarrow \prod_{\text {account_number, branch_name, balance*1.05 }}$ (account)
- Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent
account $\leftarrow \prod_{\text {account_number, branch_name, balance*1.06 }}\left(\sigma_{\text {balance }}>10000\right.$ (account)) $\cup \prod_{\text {account_number, branch_name, balance }{ }^{*} 1.05}\left(\sigma_{\text {balance }} \leq 10000\right.$ (account) $)$

Views

- In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual relations stored in the database.)
- Consider a person who needs to know a customer's name and loan number, but has no need to see the loan amount. This person should see a relation described, in relational algebra, by
$\Pi_{\text {customer_name, loan_number }}$ (borrower \bowtie loan)
- A view provides a mechanism to hide certain data from the view of certain users.
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

- A view is defined using the create view statement which has the form
create view v as < query expression >
where <query expression> is any legal relational algebra expression. The view name is represented by v.
- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- When a view is created, the query expression is stored in the database; the expression is substituted into queries using the view.
- So view is not the same as creating a new relation by evaluation the query expression.

Example Queries

- A view consisting of branches and their customers
create view all_customer as
$\prod_{\text {branch_name, customer_name }}($ depositor \bowtie account)
\cup
$\prod_{\text {branch_name, customer_name }}$ (borrower \bowtie loan)
- Find all customers of the Perryridge branch
$\Pi_{\text {customer_name }}\left(\sigma_{\text {branch_name }}=\right.$ 'Perryridge' $($ all_customer $\left.)\right)$

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v_{1} is said to depend directly on a view relation v_{2} if v_{2} is used in the expression defining v_{1}
- A view relation v_{1} is said to depend on view relation v_{2} if either v_{1} depends directly to v_{2} or there is a path of dependencies from v_{1} to v_{2}
- A view relation v is said to be recursive if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view v_{1} be defined by an expression e_{1} that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:
repeat
Find any view relation v_{i} in e_{1}
Replace the view relation v_{i} by the expression defining v_{i}
until no more view relations are present in e_{1}
- As long as the view definitions are not recursive, this loop will terminate

Update of a View

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.
- Consider the person who needs to see all loan data in the loan relation except amount. The view given to the person, branch_loan, is defined as:
create view loan_branch as
$\prod_{\text {loan_number, branch_name }}$ (loan)
- Since we allow a view name to appear wherever a relation name is allowed, the user may write:
loan_branch \leftarrow loan_brach $\cup\{(' L-37 ', ~ ' P e r r y r i d g e ')\}$

Update of a View (cont.)

- The previous insertion must be represented by an insertion into the actual relation loan from which the view branch-loan is constructed.
- An insertion into loan requires a value for amount. The insertion can be dealt with by either
- rejecting the insertion and returning an error message to the user;
- inserting the tuple
('L-37', 'Perryridge', null)
into the loan relation.

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form

$$
\{t \mid P(t)\}
$$

- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, $t[A]$ denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., $<, \leq,=, \neq,>, \geq$)
3. Set of connectives: and (\wedge), or (v), not (\neg)
4. Implication $(\Rightarrow): x \Rightarrow y$, if x if true, then y is true

$$
x \Rightarrow y \equiv \neg x \vee y
$$

5. Set of quantifiers:

- $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in t in relation r such that predicate $Q(t)$ is true
- $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

Example Queries

- loan (loan_number, branch_name, amount)
- Find the loan_number, branch_name, and amount for loans of over \$1200

$$
\{t \mid t \in \text { loan } \wedge t[\text { amount }]>1200\}
$$

- Find the loan number for each loan of an amount greater than \$1200 $\{t \mid \exists s \in$ loan (t [loan_number] = s [loan_number] $\wedge s$ [amount] > 1200) $\}$
- Notice that a relation on schema (loan_number) is implicitly defined by the query.
- Relation schema of an expression is determined by either of:
- If $\boldsymbol{t} \in \boldsymbol{r}$ is present in the expression, the resulting schema is of \boldsymbol{r}
- Otherwise the resulting schema is determined by all attributes of \boldsymbol{t} used in the expression.
- Note: If $t[A]$ is used more than once, the attribute A is in the relation schema just once!!!

Example Queries

- depositor (customer_name, account_number)
- borrower (customer_name, loan_number)
- Find the names of all customers having a loan, an account, or both at the bank

```
{t| \existss \in borrower(t[customer_name ] = s [customer_name ])
    \vee \exists u \in d e p o s i t o r ~ ( t ~ [ c u s t o m e r \_ n a m e ~ ] ~ = ~ u ~ [ c u s t o m e r \_ n a m e ~ ] ) \}
```

- Find the names of all customers who have a loan and an account at the bank

$$
\begin{aligned}
& \{t \mid \exists s \in \text { borrower }(t \text { [customer_name] = } s \text { [customer_name] }) \\
& \quad \wedge \exists u \in \text { depositor }(t \text { [customer_name] =u[customer_name] })\}
\end{aligned}
$$

Example Queries

- loan (loan_number, branch_name, amount)
- depositor (customer_name, account_number)
- borrower (customer_name, loan_number)
- Find the names of all customers having a loan at the Perryridge branch
$\{t \mid \exists s \in$ borrower (t [customer_name] = s [customer_name]
$\wedge \exists u \in \operatorname{loan}$ (u [branch_name] = "Perryridge"
$\wedge u[$ loan_number] $=s$ [loan_number])) \}
- Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank
$\{t \mid \exists s \in$ borrower (t [customer_name] = s [customer_name]
$\wedge \exists u \in$ loan (u [branch_name] = "Perryridge"
$\wedge u[$ loan_number] $=s$ [loan_number]))
$\wedge \neg \exists v \in$ depositor (v [customer_name] =
t[customer_name]) \}

Example Queries

- branch (branch_name, branch_city, assets)
- customer (customer_name, customer_street, customer_city)
- account (account_number, branch_name, balance)
- loan (loan_number, branch_name, amount)
- depositor (customer_name, account_number)
- borrower (customer_name, loan_number)
- Find the names of all customers having a loan at the Perryridge branch, and the cities in which they live
$\{t \mid \exists s \in$ loan (s [branch_name] = "Perryridge"
$\wedge \exists u \in$ borrower (u [loan_number] = s [loan_number]
$\wedge t$ [customer_name] $=u$ [customer_name])
$\wedge \exists v \in$ customer (u [customer_name] = v [customer_name]
$\wedge t[$ customer_city $]=v[$ customer_city])) $\}$

Example Queries

- branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)
- Find the names of all customers who have an account at all branches located in Brooklyn:

```
{t|\existsr customer (t [customer_name ] = r[customer_name ]) ^
    ( }\forall\textrm{u}\in\mathrm{ branch (u [branch_city ] = "Brooklyn" }
    \exists s \in depositor (r [customer_name ] = s [customer_name ]
    \wedge\existsw\in account ( w[account_number] = s [account_number]
    ^(w[branch_name ] = u[branch_name ])))
    ))}
```


Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{\mathrm{t} \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P
- NOTE: this is more than just a syntax condition.
- E.g. $\{t \mid t[A]=5 \vee$ true $\}$ is not safe -it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$
\left\{\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

- $x_{1}, x_{2}, \ldots, x_{n}$ represent domain variables
- P represents a formula similar to that of the predicate calculus

Example Queries

- loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)
- Find the loan_number, branch_name, and amount for loans of over \$1200
- $\{<l, b, a>\mid<l, b, a>\in \operatorname{loan} \wedge a>1200\}$
- Find the names of all customers who have a loan of over \$1200
- $\{\langle c\rangle \mid \exists l, b, a(\langle c, l\rangle \in$ borrower $\wedge<l, b, a\rangle \in l o a n \wedge a>1200)\}$
- Find the names of all customers who have a loan at the Perryridge branch and the loan amount:
- $\{<c, a>\mid \exists I(<c, I>\in$ borrower $\wedge \exists b(<I, b, a>\in \operatorname{loan} \wedge$ b = "Perryridge")) $\}$
- $\{<c, a>\mid \exists I(<c, I>\in$ borrower $\wedge<I$, "Perryridge", $a>\in \operatorname{loan})\}$

Example Queries

- branch (branch_name, branch_city, assets) customer (customer_name, customer_street, customer_city) account (account_number, branch_name, balance) loan (loan_number, branch_name, amount) depositor (customer_name, account_number) borrower (customer_name, loan_number)
- Find the names of all customers having a loan, an account, or both at the Perryridge branch:
- $\{<c>\mid \exists I(<c, I>\in$ borrower
$\wedge \exists b, a(<I, b, a>\in$ loan $\wedge b=$ "Perryridge"))
$\vee \exists a(<c, a>\in$ depositor
$\wedge \exists b, n(<a, b, n>\in \operatorname{account} \wedge b=$ "Perryridge"))\}
- Find the names of all customers who have an account at all branches located in Brooklyn:
- $\{<c>\mid \exists \mathrm{s}, t(\langle c, s, t\rangle \in$ customer $) \wedge$

$$
\begin{aligned}
\forall x, y, z & (<x, y, z>\in \text { branch } \wedge y=\text { "Brooklyn" }) \Rightarrow \\
& \exists a, b(<a, x, b>\in \text { account } \wedge<c, a>\in \text { depositor })\}
\end{aligned}
$$

Safety of Expressions

The expression:

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is safe if all of the following hold:

1. All values that appear in tuples of the expression are values from dom (P) (that is, the values appear either in P or in a tuple of a relation mentioned in P).
2. For every "there exists" subformula of the form $\exists x\left(P_{1}(x)\right)$, the subformula is true if and only if there is a value of x in dom $\left(P_{1}\right)$ such that $P_{1}(x)$ is true.
3. For every "for all" subformula of the form $\forall x\left(P_{1}(x)\right)$, the subformula is true if and only if $P_{1}(x)$ is true for all values x from $\operatorname{dom}\left(P_{1}\right)$.
