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Abstract hardware can be easily extended for other non adaptive subdivision
algorithms which also generate piecewise polynomial surfaces but
Adaptive subdivision of triangular meshes is highly desirable it can not be generalized to any adaptive subdivision scheme.
for surface generation algorithms including adaptive displacement Using Displacement Mapping to generate detailed triangle
mapping in which a highly detailed model can be constructed from meshes can generate a large number of triangles for rendering. To
a coarse triangle mesh and a displacement map. The communicareduce this number of triangles, an adaptive strategy was presented
tion requirements between the CPU and the graphics pipeline cann [4]. Each triangle is conditionally subdivided as a function of the
be reduced if more detailed and complex surfaces are generatedgisplacement map information. The hardware proposal is based on
as in displacement mapping, by an adaptive tessellation unit whichthe tessellation of individual edges of each triangle by means of the
is part of the graphics pipeline. Generating subdivision surfaces |ocal information of each edge. Using an adaptive subdivision the
requires a large amount of memory in which multiple arbitrary ac- number of triangles to be rendered are reduced, but neighbouring
cesses are required to neighbouring vertices to calculate the newriangle vertex information is not used in each subdivision step.
vertices. In this paper we present a meshing scheme and new archi- Smoother surfaces can be obtained if more than just the local in-
tecture for the implementation of adaptive subdivision of triangular formation is employed for the adaptive subdivision procedure. This
meshes that allows for quick access using a small memory makingresults in the final detailed mesh being obtained in a more coher-
it feasible in hardware, while at the same time allowing for new ent manner in accordance with the displacement map surface. This
vertices to be adaptively inserted. The architecutre is regular andrequires that each triangle to be tessellated uses the information of
characterized by an efficient data management that minimizes thethe adjoining triangles. In order not to send each triangle more than
data storage and avoids the wait cycles that would be associateénce from the CPU to the graphics pipeline, its information should
with the multiple data accesses required for traditional subdivision. pe maintained in the hardware unit. On the other hand, this infor-
This architecture is presented as an improvement for adaptive dismation has to be stored taking into account that multiple data has to
placement mapping algorithms, but could also be used for adaptivehe accessed simultaneously per subdivision step. In this paper we
subdivision surface generation in hardware. present a methodology and an architecture for the implementation
of the adaptive subdivision of surfaces in which neighbour infor-
mation is employed. The solution we propose starts by grouping
the neighbouring triangles in the CPU before sending them only
once to the graphics pipeline. Each group is fully processed in the
new hardware unit before sending the following group. The effi-
cient management of the data we propose permits the simultaneous
access to all the neighbour information required for each partition-
ing step, avoiding wait cycles. This is due to the data distribution
in the memories and to the simple and compact mesh connectivity
specification proposed. The mesh representation strategy, together
with the regular hardware structure developed, makes this solution
interesting not only in the displacement map environment, but also
in any algorithm where an adaptive tessellation using neighbouring

1 Introduction

A significant rendering bottleneck for high performance graphics
systems is the CPU to graphics processor bus. High quality sur-
faces require the transmission of millions of triangles over this bus
reducing the performamce of the system. Reducing this communi-
cation requirement has recieved significant attention in recent years
Different attempts to improve the communication problem have
been developed including: compression [5], simplification of the
images complexity [3], interactive multiresolution meshes [6], and
displacement mapping [7].

Displacement Mapping is an effective technique for encoding ... ; : :
the high lovels of dotail of surface models throuGgI;h the utlization (1andle vertices is required.
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The displaced subdivision surface strategy proposed in [8] com- - ’ . . : '

bines the non-adaptive Loop subdivision scheme [9] with the dis- Section 6 we present the main conclusions of the work.

placement map representation. The original mesh is simplified and

the displacement map accordingly sampled in order to be sentto th : - -

rendering pipeline. Although in [8] the details for rendering the sur- 62 Adaptlve Tess_e”atlon based on NEIQ h-

face using hardware is not presented, extensions have to be added bour Information

to the pipeline to subdivide the coarse mesh according to the Loop

algorithm and afterwards, to apply the displacements to the result-Displacement mapping requires a coarse triangle mesh that approx-

ing coordinates. A simple and regular hardware implementation imates the surface to be modeled with a displacement map contain-

for the Loop subdivision algorithm has been proposed in [2]. This ing the finer geometric detail. If the base triangle mesh has a coarser

solution exploits the piecewise polynomial structure of the Loop al- resolution than the displacement map, the mesh should be retessel-

gorithm with the application of forward difference techniques. This lated according to the displacement map. To improve the previous
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Figure 1: (a) Neighbour information required for vertex insertion. (b) Coordinates computation

Lstart=NULL;

B = NULL;

vo= selecta vertex(mesh);

while (verticesj
build_groupfy);
list updatinggstert, B);
if(Lstert==NULL) v=selecta vertex(B);
else v= selectast vertex(st2t);
vg = find_group.center(v);
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Figure 2:(a) Generic Sructure of the System (b) Grouping algorithm

adaptive tessellation algorithm implemented in hardware [4], not munication between CPU and graphics pipeline the computation of
only local information of each edge to be split should be consid- the full fine mesh is computed using the new hardware added to the
ered, but the neighbour information as well. Smoother surfaces cangraphics pipeline. The solution we propose is schematically pre-
be obtained using masks such as those employed in subdivision sursented in Figure 2(a). The neighbour triangles have to be grouped
faces algorithms [10], Loop [9] and modified Butterfly [11]. inthe CPU in order to be sent to the graphics pipeline. These groups
For the example in Figure 1(a) these algorithms split the edge of triangles are processed in an adaptive tessellation unit and then
between vertices andb (vertexV ab) taking into account not only  final rendering is performed by a standard graphics pipeline. The
the information of the extreme verticasandb but also the infor- number of triangles in each group has to be determined as a func-
mation of verticeg, d, - - - [. The utilization of these subdivision al-  tion of the storage requirements during the tessellation operation.
gorithms for the adaptive scheme implies the recomputation of the The utilization of only local information to the edge on the bor-
original displacement map values. This is due to the fact that the ders (Figure 1(b)) avoids possible cracking effects in the joining
computed coordinates do not lay on the original triangles so the ini-among groups but, obviously, the number of border edges have to
tial displacement map would not be appropriate for the processedbe minimized in order to reduce the subdivisions in which only lo-
mesh. If the displacement map is not recomputed, other division cal information is employed. In the following subsections the pro-
masks could be proposed. Figure 1(b) shows our initial proposalposed grouping algorithm and its connectivity representation are
for the coordinates computation. For the edge between two interiorpresented. A detailed analysis can be found in [1].
verticesa andb the coordinate of the new poimtab inserted in the
edge is computed through the weighted sum ofdttaad b coordi-
nates. The weights associated witlid,) andb (d») are obtained 2.1 Grouping Algorithm
as a function of the average distandg ¢f the neighbour vertices
to the vertices andb respectively. In case at least one vertex of the In this section the grouping algorithm to subdivide the full mesh
edge is on the border of the mesh we propose the utilization of theinto small groups is presented. These groups are sent from the CPU

current working edge information, that i§, = ds = % For ex- to the graphics pipeline where the adaptive tessellation is processed
ample, in the figure the vertexis on the border, so the new vertex (Figure 2(a)). The grouping algorithm we propose reduces the num-
Vbk implies computations based on local information. ber of bounding triangles, covers the full mesh in an efficient way

In this paper the non recomputation of the displacement map wasand minimizes the amount of information to be sent. On the other
considered so the new mask was used. In any case, itis important tdhand, the mesh representation employed simplifies the storage and
note that the methodology and architecture we proposed are generidata management in the adaptive tessellation unit. The group con-
and valid for all masks employing the first order neighbour infor- struction algorithm is based on the selection of a central vestex
mation. and the contiguous concentric triangle strips around this central ver-

Each triangle to be tessellated requires the information of the ad-tex. The central vertices are selected in such a way that successive
joining triangles to be processed. In order not to increase the com-processing groups are contiguous and without holes (non-sent tri-
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Figure 4:(a) Scheduling example (b) Notation (c) Example of tessellated group

angles) between them. The collection of all identified groups con- utive rows of theVertez list of Figure 3(b) where the number of
stitutes a global group, already sent to the graphics pipeline, char-elements in each row is stored in thevel_Counter list. In order
acterized by a lisB of vertices in the boundary. to specify the vertex connectivity two additional lists are included:
The search for each central poiptis based on the utilization of ~ C'hild, that specifies the connectivity among rows of vertices, and
a set of starting points from the lig of vertices in the boundary.  Sibling, that specifies the connectivity inside a row.
Specifically, each time a new group is computed, two new starting  In the:-th row of theChild list the connectivity between the
points are identified: the non-interior common vertices between theth and: + 1-th rows of theV ertex list is specified. Specifically, it
previous global group and the new group. Each starting point is stores the number of vertices of the- 1-th row that are connected
employed as a seed for the identification of the central point of a to each vertex of the-th row. Note that two contiguous vertices
new group. Taking as a reference this starting point each centralof the:-th row are connected to two contiguous groups of children
point candidatey, is analyzed in order to build up an adequately of ; + 1-th row with a common child between them. To clarify
sized group contiguous to the global group. let us considerer the example of Figure 3. The connectivity among
The basic algorithm [1] is outlined in Figure 2(b). For the first {23 ... 9 10} and{11,12,---,25} (second and third rows in
processing group a random central vertgxs selected (line 3). Vertex list) is given by children <5, 3,1, 3,3,2,2, 3,1} (second
Then, the group of triangles around this vertex is selected (line 5) line in Child list). This means that the vertex(second row of
and the list of working starting points®**"* and the list3 of ver- Verte list) is connected with the first five points in the third row
tices in the boundary of the global group are updated (line 6). To (11,12, 13, 14, 15), the following vertex3, with three children, is
construct another group a starting point has to be selected (lines Tonnected to the last child of vertéx(vertex15) and another two
and 8) and the next central vertexidentified (line 9). This group-  children (16 and17). The following vertex4, with one child, is
ing process (from lines 4 to 10) is repeated whileever there are still connected to vertex7, and so on.

non processed triangles remaining in the mesh. To complete the description, the connectivity among vertices in
the same row of th& ertex list has to be specified. Itis enough to
; indicate the connectivity of each vertex wi e following vertices
2.2 Group Representation dicate th tivity of each vert th the foll t

on the row (connectivity with the previous points can be easily de-
In this subsection the group representation we propose is analyzedduced). This information is stored in th#bling list. If the i-th
Itis based on the identification of strips of triangles around the cen- vertex of a row has connectivitythis indicates that it is connected
tral vertexvo and the identification of their connectivity. For ex- to thei+ 1-th vertex of the same row. In the same way, a connectiv-
ample we will look at the group of triangles of Figure 3(a). The ity 0 indicates that the vertex is non-connected to the following ver-
central vertexvo = 1 is surrounded by a first strip of triangles de- tices. On the other hand, a connectivity valug 1 indicates that
fined by the lists{1} and{2,3,---,9,10} meanwhile the second the:-th vertex is connected to the non contiguaus j-th vertex.
strip is defined by the interior lift2, 3, - - -, 9,10} and the exterior If the i-th vertex has connectivitiek, 71, j2, - - - jn» With 7. # 0,1
{11,12,---,24,25} and so on. These lists are indicated in consec- (r = 1,---n)thenitis connected to thg+1, i+, -+, i+, }-th
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Figure 5: Detailed example of vertex classification procedure
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Figure 6:Block diagram of the architecture

vertices of the row. As an example let us consider the connectiv- String Edge (3-15) Edge (3-16)

ity of the fourth row{26,27, - - -, 45,46} of the Vertex list. The 1 1 1

sibling connectivities 026, - - -, 31 is 1, that is, each vertex is con- 2 2 3 4 2 3 4

nected with the following one. But the connectivity of verxis 3 14 15 16 17| 15 16 17
1,2 because it is connected to vertiGssand34. 4 31 32 33 33

. Table 1: Example of required neighbour information
3 Towards Hardware Implementation of

Adaptive Tessellation

The adaptive tessellation implies conditional subdivision of each Ill). Then, the last pair of edges related with vergeare computed:
edge [4]. In our new proposal, each new vertex computation impliesedge3 — 17 (label IV) and16 — 17 (label V).
the utilization of not only the coordinates of the extreme points of  An important characteristic of this way of covering the mesh can
the edge, but also the corresponding coordinates of the neighbourée outlined from this example: the neighbours required to compute
of these vertices. So the neighbours information has to be stored inone edge are mostly reused to compute the following edge. For
such a way that it can be efficiently accessed. Moreover and tak-example, the necessary neighbours to compute the 8dgésand
ing into account that the adaptive tessellation has to be performed3 — 16 are indicated in Table 1. Note that four groups of data, from
repeatedly over the full mesh, the resulting mesh obtained in eachfour consecutive strings of vertices, are required for each edge. For
iteration has to be efficiently stored in order to be reused in the this specific example new data is not required for the computation
following iteration. In this section the data storage and manage- of the second edge. This method of reemploying the data permits,
ment we propose to solve this problem is presented. The following as shown later, a reduction in the number of accesses to the memory
presentation focuses on the way of covering the mesh first and thewhere the data is stored.
storage method employed in order to recompute it follows. To complete the presentation the tessellated mesh storage
It is important to note that the algorithm we propose is based on method is analyzed [1]. The new tessellated mesh has to be stored
the efficient mesh representation previously presented. Accordingaccording to the concentric triangles strips notation previously pre-
to this representation, the mesh is traversed through the computasented. The algorithm we propose is basically a vertex classification
tion of the edges of the triangles along each strip before startingin which the vertices are classified in strings. Each time an edge is
with the following strip [1]. The strings of vertices are computed processed, the new vertex candidate coordinate is determined and
sequentially through the analysis of all vertices in each row. For conditionally inserted. After this, the surrounding vertices are as-
each vertexv of each string all the childrer, - - -, cchitdren—1, signed to a string. In Figure 4(b) the notation and algorithm we
that is, all the connected vertices of the following string of vertices propose is briefly introduced. The first child of vertgxthat is,
are analyzed. Firstly, the computations related with the edge con-vertex15, is being processed. Once the midpoint, Nesvtex1, is
necting vertex and the first childy, are performed. Afterthis,two  computed a test [4] has to be made in order to determine if the split-
edges have to be analyzed, the edge connecting the root vertex ting is performed. The decision is labelediaswherei; = 0 if
with the new childe; and the edge connecting the childigrand there is no splitting andl = 1 if the edge is split. When the second
c1. To clarify let us consider the example of Figure 4(a) where the child of vertex3 (vertex16) is considered, two new vertices have to
adaptive tessellation of the group of Figure 3 is considered. Thebe computed, Newertex2 with decision, and Newvertex3 with
vertexl1 (first list) and its childrend, 3, 4, 5, - - -) are analyzed first. decisioniz. Once the decisions have been performed a classifica-
After this the second lisf2, 3,4, 5, - - -} is processed starting from  tion procedure has to be realized, that is, the vertices that delimit
the first vertex2 and its corresponding childreil(, 12, 13, 14, 15). the concentric triangle strips have to be identified. This requires the
Let us suppose that these edges have been already processed (indipplication of simple string classification rules (tabulated in [1])
cated in the figure with dark lines) and let us consider the com- where each vertex is classified on a string as a function of the pre-
putations related with the vertexand its corresponding children  viously computed vertices and their classification. Similar rules are
(15,16, 17). The edges to be computed and the order of computa- also applied to compute the sibling and child connectivity.
tion are detailed in the Figure 4(a). The first edge to be computed To clarify the algorithm let us considerer the mesh of Figure 3
(label 1) involves the edge$ — 15. The following pair of edges  and the tessellation indicated in Figure 4(c). The new vertices orig-
to be computed are edge— 16 (label II) and edgd 5 — 16 (label inated during the tessellation operation are indicated in small labels.
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Figure 7:Memory unit architecture

Six strips of triangles were identified and marked in different grey ing strip units are briefly introduced although an extended revision
levels. As an example of string classification let us analyze the of all modules can be found in [1].
processing of the original first string of triangles delimited by lists
1} and{2,---,10} of Figure 4(c) detailed in Figure 5. In this :
f{igare thé vertices}related with the original mesh are indicated in 4.1 Memory Unit
grey boxes, the new vertices in thinner boxes and the non insertedo process each edge of the mesh, the Vertex processor requires the
vertices with empty boxes. The string identffief each vertex, ob- information of all the neighbours around the extreme vertices of the
tained with the classification rules in [1] is indicated as a number edge. All edges are processed covering a strip of triangles before
over the corresponding box. The classification method has an easytarting with a new strip. This implies that all data of the four con-
intuitive interpretation: the string identifier of all roots of a vertex tiguous strings of vertices (see Table 1 example) will be required
are analyzed so that the minimum value plus one is assigned as itgonsecutively before starting with a new strip of triangles. Then,
string identifier. As an example, all the children of the vertenf the data has to be stored in such a way that an easy access to the
the string0, are assigned to the stririg strings of vertices could be developed. The architecture we propose
is depicted in Figure 7. Three different memories (Vertex, Child
. . . and Sibling) are employed to store the vertices, the corresponding
4 Adaptive Tessellation Architecture children and the sibling information. As an example the data indi-
cated in the figure corresponds to the group example of Figure 3.
Figure 6 shows the block diagram of the architecture for adaptive In order to optimize the storage utilization we propese- 1 word
tessellation. The architecture has four modules: 1) Memory unit, memories wheren is the maximum number of vertices connected
2) Vertex processor, 3) Test unit and 4) Ordering strip unit. The to a given one. The information has to be stored in a coherent way
incoming mesh is stored in a Memory unit in order to be processed.in the three memories.
This Memory unit is also employed for the storage of the interme-  The best storage would imply that the information associated
diate processed meshes and also for the management of the data. With consecutive vertices of a string would be in consecutive po-
provides four consecutive strings of vertices (see Table 1 example)sitions of the memory. But this distribution is possible only for the
to the second unit (Vertex processor) in such a way that the waitinitial mesh (coming from the CPU) as during the subdivision the
cycles of this unit are minimized. The strings of vertices are pro- vertices of each string are not obtained in a consecutive way. A set
cessed by the Vertex processor where the coordinates of the verteof memories (indicated as address maps in the figure) to store the
candidates are obtained. These coordinates are delivered to the Testddresses of successive sections corresponding to the same string
unit [4] to decide if each edge is split. The decisions together with is employed. Specifically, the address map of the data correspond-
the corresponding coordinates (if the splitting is performed) are in- ing to each string of vertices is stored in &tring ¢ memory.
troduced in a final unit, the Ordering strip unit, where the vertices The reason for this storage scheme is detailed in the next subsec-
are reordered in strings of concentric vertices. The final mesh istion. As usual the number of vertices in each string section does
stored in the first unit in order to be processed again. The recur-not fit with the word size of the memory, so a mask should be em-
sive processing of the mesh is repeated a given number of iterationgloyed to indicate the part of the word that stores the correct infor-
(defined by the user) or until the mesh is fully tessellated accord- mation. For example, the strirgof vertices of Figure 7 is stored
ingly to the displacement map. Due to length constraints in the in addresse8001 with mask{1111111111} and0010 with mask
following subsections only the structure of the Memory and Order- {1111100000}. In the vertex memory the information relative to
vertices{11, 12, ---, 25} is identified.
1The row number of the vertex in the current mesh group data structure.  Taking into account that the neighbours information can be
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Figure 8:Example of storage of a tessellated mesh

reemployed for successive computations (see Table 1 example) thef children and siblings in order to obtain the Child and Sibling
memory system can be optimized through the utilization of a sys- lists. As an example let us reconstruct the stiraprresponding to

tem of FIFO (first-in-first-out) queues. As four strings of vertices the tessellated mesh. In order to do this the seven addresses indi-
are involved in each edge computation, four FIFO queues have tocated in the correspondingiring 3 memory have to be accessed.

be employed. Specifically, three different sets of four FIFO queues The stored information corresponding to the consecutive addresses
are required for keeping the vertex (Fv), the children (Fc) and theis: {11, 60,61, 63, 65,68}, {86, 87, 33,34, 35}, {18}, {37, 38},
siblings (Fs) information. To select the adequate part of the m+1- {20}, {40, 41,42}, {75, 74,76, 23,77, 79}, which corresponds to
word memory (mask information) a set of normalization units (bar- the fourth string of vertices of Figure 4(c).

rel shifters) are employed. The FIFO system, together with the re-

utilization of the data assures an efficient management avoiding any,

wait cycles for the Vertex processor [1]. 5 Results

The methodology we propose permits the communication require-

4.2 Ordering Strip Unit ments between the CPU and the graphics pipeline to be reduced by

) ) ) . . performing complex surface generation in hardware. The classifi-
The ordering strip unit performs the vertex strings classification and ¢ation unit is mainly compounded of memories and FIFO queues
computes the children and sibling connectivities accordingly to the and simple additional hardware (adders, substractors, minimum
simple rules tabuled in [1]. The strips of triangles are processed and maximum selectors) for the vertex classification into strings.
so the new vertices have to be classified and adequately stored ifrpjs reduces the communication problem with a reasonable in-
the memory system. Due to length constrains we will focus the crease in hardware requirements. The surface generation possibili-
presentation on the memory information updating procedure. ties achieved through the introduction of this unit contrast with its

For the computation of each strip of triangles the strings of ver- simplificity.

tices of the tessellated system are obtained in sections. This can |etus suppose a group withtriangles is to be processed a num-
be observed in Figure 5 were the computation of consecutive trian-per; of iterations. The proposed system ensures that each edge is
gles of the strip generates a non complete string of vertices with acomputed only once and that the processing rate is one edge per cy-
identifier2, that is, the string is obtained in sections. Specifically, cle. If the border of the group is not taken into account, each edge
the computation of each triangle generates vertices of at most twojs shared by two triangles which implies, in the first iteration, the
strings (together with the already computed root vertices) and, it computation ofﬂT'3 edges. This is performed ;@é cycles. If all
can be ensured that the computation of the contiguous triangle Ofyne riangles are fully subdivided in each iteratigh; » triangles

the same strip will maintain the continuity of, at least, one of the ¢ finally obtained. This leads to the maximum computational rate
vertex strings. Then, two FIFO queues can be employed for storing ¢ the system given by:

the one/two strings under construction. Once a string is broken, the

content of the FIFO queue is stored in the memory and the corre- 4t ]

sponding address map updated. A procedure was developed [1] to Rmaz = Ttrlangles/cyde
reserve memory positions for storing the addresses of consecutive g <Z 4j)

strings sections not already computed. j=0

As an example the final memory distribution after computing
all the group (Figure 4(c)) is indicated in Figure 8. The different
sections of strings stored in the vertex memory are indicated wit
dashed boxes. According to this storage, the address map mem- 1 )
ories are coherently updated in such a way that each strivfg Rmin = %m@ngles/cyde
vertices can be reconstructed by reading the consecutive addresses
(of the vertex memory) indicated in th&tring ¢« memory. The The computational rate values of any group is in the interval
same reconstruction operation can be performed over the memorie$R...in, Rmaz]. AS an example, fo3 iterations R,.i», = 0.22

On the other hand the minimum computational rate is obtained if
p no triangles are subdivided in any iteration:
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Figure 9: Donut, \olker’'s head and Crater images. (a), (d), (g) shows the original coarse meshes, (b) (€), (h) the adaptively subdivided
meshes and (c) (f), (g) final meshes with displacements.

and R,,.. = 2.03 rates are obtained. Note that th&,;,, value nal meshes havi242, 4389 and6379 triangles respectively. This
corresponds to a non practical case in which no subdivision is per-method allows for high quality images to be obtained with very low
formed, which means that the original mesh is very detailed. The transmision requirements. The adaptive structure of the subdivision
system also has no recursive structure (only for the recomputationcan be observed in all images. For example the donut is less subdi-
of the groups), so it can be pipelined with a minimum cycle period. vided in regions close to the top where no detail is required. Note
that the transition between high and low detailed regions is soft,

We have implemented our adaptive tessellation solution (Fig- A . -
ure 6) through a software simulation. We have rendered severall€Sulting in smooth surfaces. The images correspond to the utiliza-
models to demonstrate the performance of the solution, the advan-f[Ion of only 2 rings. This size was selected as a tradeoff between

tages/disadvantages of an adaptive tessellation based on neighbomr‘agﬁtq?nalgy air:]d merrnorty rrﬁqm[)er?ep:ishas onrly f‘“ght g'rf_]fflf]en(;tﬁsr
information and the repercussions of the grouping strategy. In the &r€ Oblained using a greater numboer ot rings per group. e othe
following results3 iterations per mesh were employed. hand, improvements are expected for other coordinate computation

schemes alternative to the one proposed in Figure 1(b).
Three different models have been rendered using the algorithm

and are shown in Figure 9. Specifically, we have worked with a  Due to the repercussions on the memory requirements of the
donut displacement over a flat square plane (Figures 9 (a),(b) andgraphics pipeline the number of triangles generated per group has to
(c)), the Volker Blanz’s head displacement map over a cylinder be analyzed. In Figure 10 the number of triangles per group when
mesh (Figures 9 (d),(e) and (f)) and the Crater Lake also over a2 rings are employed is detailed. In Figure 10(a) the number of
flat square plane (Figures 9 (g),(h) and (i)). In the first column (Fig- original triangles (information sent from the CPU to the pipeline)
ures 9 (a),(d) and (g)), the original coarse meshes are depicted, irper group for the two original meshes employed are indicated. It
the second column (Figures 9 (b),(e) and (h)) the meshes subdived¢an be deduced that the grouping algorithm we propose permits
according to the displacement map are shown and on the third col-coverage of the original image with a balanced number of triangles
umn (Figures 9 (c),(f) and (i)) the final images after applying the per group. Obviously, when the number of non sent triangles is
displacements are indicated. While the original meshes, to be sentower (high group number) the possibility of constructing a group
from the CPU to the graphics pipeline, haa@) triangles the fi- with the full rings is lower, so lower numbers of triangles are ob-
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Figure 10:Number of triangles per group (of 2 rings) (a) Original mesh (b) Subdivided mesh

tained. On the other hand, in Figure 10(b) the number of triangles References
generated with the adaptive tessellation procedure are indicated. It
is important to note that these results permit the estimation of the [1] M. Amor, M. Boo, M. Doggett, J. Hirche, and W. Strasser.
memory requirements. As we previously mentioned a greater num-
ber of rings would increase the memory size, but without important

quality results.

6 Conclusions

In this paper we have presented the architecture for an additional
unit of the standard graphics pipeline to enable the rendering of
subdivision surfaces in hardware. Our proposal permits the adap-
tive subdivision of each triangle based on the neighbour information
of each edge. The method is based on the grouping of neighbour
triangles in the CPU to be sent once to the graphics pipeline. The ar-
chitecture we propose also permits a quick access to all the required
information so that no wait cycles are required for each subdivision.
To reduce the memory requirements a new mesh grouping

scheme was presented. The grouping process we propose mini-

mizes the number of exterior triangles and ensures a good covering
of the full mesh at the same time. This grouping scheme could also [5]
be employed in other applications as, for example, non adaptive

subdivision surface rendering.

The architecture is simple and regular, and is mainly composed
of a memory and a set of FIFO queues. The efficient memory
storage method employed together with the new mesh codification [6]
proposed, permits the exploitation of the temporal and spatial lo-
cality of the data. The storage is performed in such a way that
all the neighbours information required for computing each edge
subdivision can be accessed simultaneously. As the methodology
and architecture proposed permits an efficient management of ir-
regular meshes the scheme can be easily extended to other applica-
tions in which meshes have to be recursively computed and stored.
The biggest advantage of our proposal is the development of a new
memory scheme for the storage of irregular meshes in which the ac-
cess to multiple neighbour information does not require wait cycles.
This permits the hardware implementation of adaptive subdivision

surface rendering employing neighbouring information.
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