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Abstract

Adaptive subdivision of triangular meshes is highly desirable
for surface generation algorithms including adaptive displacement
mapping in which a highly detailed model can be constructed from
a coarse triangle mesh and a displacement map. The communica-
tion requirements between the CPU and the graphics pipeline can
be reduced if more detailed and complex surfaces are generated,
as in displacement mapping, by an adaptive tessellation unit which
is part of the graphics pipeline. Generating subdivision surfaces
requires a large amount of memory in which multiple arbitrary ac-
cesses are required to neighbouring vertices to calculate the new
vertices. In this paper we present a meshing scheme and new archi-
tecture for the implementation of adaptive subdivision of triangular
meshes that allows for quick access using a small memory making
it feasible in hardware, while at the same time allowing for new
vertices to be adaptively inserted. The architecutre is regular and
characterized by an efficient data management that minimizes the
data storage and avoids the wait cycles that would be associated
with the multiple data accesses required for traditional subdivision.
This architecture is presented as an improvement for adaptive dis-
placement mapping algorithms, but could also be used for adaptive
subdivision surface generation in hardware.

1 Introduction

A significant rendering bottleneck for high performance graphics
systems is the CPU to graphics processor bus. High quality sur-
faces require the transmission of millions of triangles over this bus
reducing the performamce of the system. Reducing this communi-
cation requirement has recieved significant attention in recent years.
Different attempts to improve the communication problem have
been developed including: compression [5], simplification of the
images complexity [3], interactive multiresolution meshes [6], and
displacement mapping [7].

Displacement Mapping is an effective technique for encoding
the high levels of detail of surface models through the utilization
of coarse triangle meshes together with displacement maps. Ex-
tending the hardware rendering pipeline to be capable of handing
displacement maps as geometric primitives will allow highly de-
tailed models to be constructed without requiring a large amount of
triangles to be passed from the CPU to the graphics pipeline.

The displaced subdivision surface strategy proposed in [8] com-
bines the non-adaptive Loop subdivision scheme [9] with the dis-
placement map representation. The original mesh is simplified and
the displacement map accordingly sampled in order to be sent to the
rendering pipeline. Although in [8] the details for rendering the sur-
face using hardware is not presented, extensions have to be added
to the pipeline to subdivide the coarse mesh according to the Loop
algorithm and afterwards, to apply the displacements to the result-
ing coordinates. A simple and regular hardware implementation
for the Loop subdivision algorithm has been proposed in [2]. This
solution exploits the piecewise polynomial structure of the Loop al-
gorithm with the application of forward difference techniques. This

hardware can be easily extended for other non adaptive subdivision
algorithms which also generate piecewise polynomial surfaces but
it can not be generalized to any adaptive subdivision scheme.

Using Displacement Mapping to generate detailed triangle
meshes can generate a large number of triangles for rendering. To
reduce this number of triangles, an adaptive strategy was presented
in [4]. Each triangle is conditionally subdivided as a function of the
displacement map information. The hardware proposal is based on
the tessellation of individual edges of each triangle by means of the
local information of each edge. Using an adaptive subdivision the
number of triangles to be rendered are reduced, but neighbouring
triangle vertex information is not used in each subdivision step.

Smoother surfaces can be obtained if more than just the local in-
formation is employed for the adaptive subdivision procedure. This
results in the final detailed mesh being obtained in a more coher-
ent manner in accordance with the displacement map surface. This
requires that each triangle to be tessellated uses the information of
the adjoining triangles. In order not to send each triangle more than
once from the CPU to the graphics pipeline, its information should
be maintained in the hardware unit. On the other hand, this infor-
mation has to be stored taking into account that multiple data has to
be accessed simultaneously per subdivision step. In this paper we
present a methodology and an architecture for the implementation
of the adaptive subdivision of surfaces in which neighbour infor-
mation is employed. The solution we propose starts by grouping
the neighbouring triangles in the CPU before sending them only
once to the graphics pipeline. Each group is fully processed in the
new hardware unit before sending the following group. The effi-
cient management of the data we propose permits the simultaneous
access to all the neighbour information required for each partition-
ing step, avoiding wait cycles. This is due to the data distribution
in the memories and to the simple and compact mesh connectivity
specification proposed. The mesh representation strategy, together
with the regular hardware structure developed, makes this solution
interesting not only in the displacement map environment, but also
in any algorithm where an adaptive tessellation using neighbouring
triangle vertices is required.

In the next section, we present the adaptive tessellation algo-
rithm based on neighbour information and the strategy employed to
minimize the storage requirements. In Section 3 we introduce the
methodology we propose for the efficient data management and, in
Section 4, the architectural model we have employed for its im-
plementation. In Section 5 we evaluate the algorithm. Finally, in
Section 6 we present the main conclusions of the work.

2 Adaptive Tessellation based on Neigh-
bour Information

Displacement mapping requires a coarse triangle mesh that approx-
imates the surface to be modeled with a displacement map contain-
ing the finer geometric detail. If the base triangle mesh has a coarser
resolution than the displacement map, the mesh should be retessel-
lated according to the displacement map. To improve the previous
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Figure 2:(a) Generic Structure of the System (b) Grouping algorithm

adaptive tessellation algorithm implemented in hardware [4], not
only local information of each edge to be split should be consid-
ered, but the neighbour information as well. Smoother surfaces can
be obtained using masks such as those employed in subdivision sur-
faces algorithms [10], Loop [9] and modified Butterfly [11].

For the example in Figure 1(a) these algorithms split the edge
between verticesa andb (vertexV ab) taking into account not only
the information of the extreme verticesa andb but also the infor-
mation of verticesc; d; � � � l. The utilization of these subdivision al-
gorithms for the adaptive scheme implies the recomputation of the
original displacement map values. This is due to the fact that the
computed coordinates do not lay on the original triangles so the ini-
tial displacement map would not be appropriate for the processed
mesh. If the displacement map is not recomputed, other division
masks could be proposed. Figure 1(b) shows our initial proposal
for the coordinates computation. For the edge between two interior
verticesa andb the coordinate of the new pointV ab inserted in the
edge is computed through the weighted sum of thea andb coordi-
nates. The weights associated witha (d1) andb (d2) are obtained
as a function of the average distance (d) of the neighbour vertices
to the verticesa andb respectively. In case at least one vertex of the
edge is on the border of the mesh we propose the utilization of the
current working edge information, that is,d1 = d2 =

1

2
. For ex-

ample, in the figure the vertexk is on the border, so the new vertex
V bk implies computations based on local information.

In this paper the non recomputation of the displacement map was
considered so the new mask was used. In any case, it is important to
note that the methodology and architecture we proposed are generic
and valid for all masks employing the first order neighbour infor-
mation.

Each triangle to be tessellated requires the information of the ad-
joining triangles to be processed. In order not to increase the com-

munication between CPU and graphics pipeline the computation of
the full fine mesh is computed using the new hardware added to the
graphics pipeline. The solution we propose is schematically pre-
sented in Figure 2(a). The neighbour triangles have to be grouped
in the CPU in order to be sent to the graphics pipeline. These groups
of triangles are processed in an adaptive tessellation unit and then
final rendering is performed by a standard graphics pipeline. The
number of triangles in each group has to be determined as a func-
tion of the storage requirements during the tessellation operation.
The utilization of only local information to the edge on the bor-
ders (Figure 1(b)) avoids possible cracking effects in the joining
among groups but, obviously, the number of border edges have to
be minimized in order to reduce the subdivisions in which only lo-
cal information is employed. In the following subsections the pro-
posed grouping algorithm and its connectivity representation are
presented. A detailed analysis can be found in [1].

2.1 Grouping Algorithm

In this section the grouping algorithm to subdivide the full mesh
into small groups is presented. These groups are sent from the CPU
to the graphics pipeline where the adaptive tessellation is processed
(Figure 2(a)). The grouping algorithm we propose reduces the num-
ber of bounding triangles, covers the full mesh in an efficient way
and minimizes the amount of information to be sent. On the other
hand, the mesh representation employed simplifies the storage and
data management in the adaptive tessellation unit. The group con-
struction algorithm is based on the selection of a central vertexv0
and the contiguous concentric triangle strips around this central ver-
tex. The central vertices are selected in such a way that successive
processing groups are contiguous and without holes (non-sent tri-
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angles) between them. The collection of all identified groups con-
stitutes a global group, already sent to the graphics pipeline, char-
acterized by a listB of vertices in the boundary.

The search for each central pointv0 is based on the utilization of
a set of starting points from the listB of vertices in the boundary.
Specifically, each time a new group is computed, two new starting
points are identified: the non-interior common vertices between the
previous global group and the new group. Each starting point is
employed as a seed for the identification of the central point of a
new group. Taking as a reference this starting point each central
point candidatev0 is analyzed in order to build up an adequately
sized group contiguous to the global group.

The basic algorithm [1] is outlined in Figure 2(b). For the first
processing group a random central vertexv0 is selected (line 3).
Then, the group of triangles around this vertex is selected (line 5)
and the list of working starting pointsLstart and the listB of ver-
tices in the boundary of the global group are updated (line 6). To
construct another group a starting point has to be selected (lines 7
and 8) and the next central vertexv0 identified (line 9). This group-
ing process (from lines 4 to 10) is repeated whileever there are still
non processed triangles remaining in the mesh.

2.2 Group Representation

In this subsection the group representation we propose is analyzed.
It is based on the identification of strips of triangles around the cen-
tral vertexv0 and the identification of their connectivity. For ex-
ample we will look at the group of triangles of Figure 3(a). The
central vertexv0 = 1 is surrounded by a first strip of triangles de-
fined by the listsf1g andf2; 3; � � � ; 9; 10g meanwhile the second
strip is defined by the interior listf2; 3; � � � ; 9; 10g and the exterior
f11; 12; � � � ; 24; 25g and so on. These lists are indicated in consec-

utive rows of theV ertex list of Figure 3(b) where the number of
elements in each row is stored in theLevel Counter list. In order
to specify the vertex connectivity two additional lists are included:
Child, that specifies the connectivity among rows of vertices, and
Sibling, that specifies the connectivity inside a row.

In the i-th row of theChild list the connectivity between thei-
th andi+ 1-th rows of theV ertex list is specified. Specifically, it
stores the number of vertices of thei+ 1-th row that are connected
to each vertex of thei-th row. Note that two contiguous vertices
of thei-th row are connected to two contiguous groups of children
of i + 1-th row with a common child between them. To clarify
let us considerer the example of Figure 3. The connectivity among
f2; 3; � � � ; 9; 10g andf11; 12; � � � ; 25g (second and third rows in
V ertex list) is given by children =f5; 3; 1; 3; 3; 2; 2; 3; 1g (second
line in Child list). This means that the vertex2 (second row of
V ertex list) is connected with the first five points in the third row
(11; 12; 13; 14; 15), the following vertex3, with three children, is
connected to the last child of vertex2 (vertex15) and another two
children (16 and17). The following vertex,4, with one child, is
connected to vertex17, and so on.

To complete the description, the connectivity among vertices in
the same row of theV ertex list has to be specified. It is enough to
indicate the connectivity of each vertex with the following vertices
on the row (connectivity with the previous points can be easily de-
duced). This information is stored in theSibling list. If the i-th
vertex of a row has connectivity1 this indicates that it is connected
to thei+1-th vertex of the same row. In the same way, a connectiv-
ity 0 indicates that the vertex is non-connected to the following ver-
tices. On the other hand, a connectivity valuej > 1 indicates that
the i-th vertex is connected to the non contiguousi + j-th vertex.
If the i-th vertex has connectivities1; j1; j2; � � � jn with jr 6= 0; 1
(r = 1; � � � n) then it is connected to thefi+1; i+j1; � � � ; i+jng-th

35



0

1 1 1 1 1 1 1

2 1 2 2 2 1 2 2 2 2 2 2 2 2

48

1

47 49

2 3 4 5 6 7 8 9 10 5950 53 55 58

57565451

Figure 5: Detailed example of vertex classification procedure

Test
Ordering 

Strip
Memory

From CPU

Processor
Vertex 

Tesellated Mesh

Figure 6:Block diagram of the architecture

vertices of the row. As an example let us consider the connectiv-
ity of the fourth rowf26; 27; � � � ; 45; 46g of theV ertex list. The
sibling connectivities of26; � � � ; 31 is 1, that is, each vertex is con-
nected with the following one. But the connectivity of vertex32 is
1; 2 because it is connected to vertices33 and34.

3 Towards Hardware Implementation of
Adaptive Tessellation

The adaptive tessellation implies conditional subdivision of each
edge [4]. In our new proposal, each new vertex computation implies
the utilization of not only the coordinates of the extreme points of
the edge, but also the corresponding coordinates of the neighbours
of these vertices. So the neighbours information has to be stored in
such a way that it can be efficiently accessed. Moreover and tak-
ing into account that the adaptive tessellation has to be performed
repeatedly over the full mesh, the resulting mesh obtained in each
iteration has to be efficiently stored in order to be reused in the
following iteration. In this section the data storage and manage-
ment we propose to solve this problem is presented. The following
presentation focuses on the way of covering the mesh first and the
storage method employed in order to recompute it follows.

It is important to note that the algorithm we propose is based on
the efficient mesh representation previously presented. According
to this representation, the mesh is traversed through the computa-
tion of the edges of the triangles along each strip before starting
with the following strip [1]. The strings of vertices are computed
sequentially through the analysis of all vertices in each row. For
each vertexv of each string all the childrenc0; � � � ; cchildren�1,
that is, all the connected vertices of the following string of vertices
are analyzed. Firstly, the computations related with the edge con-
necting vertexv and the first childc0 are performed. After this, two
edges have to be analyzed, the edge connecting the root vertexv
with the new childc1 and the edge connecting the childrenc0 and
c1. To clarify let us consider the example of Figure 4(a) where the
adaptive tessellation of the group of Figure 3 is considered. The
vertex1 (first list) and its children (2; 3; 4; 5; � � �) are analyzed first.
After this the second listf2; 3; 4; 5; � � �g is processed starting from
the first vertex2 and its corresponding children (11; 12; 13; 14; 15).
Let us suppose that these edges have been already processed (indi-
cated in the figure with dark lines) and let us consider the com-
putations related with the vertex3 and its corresponding children
(15; 16; 17). The edges to be computed and the order of computa-
tion are detailed in the Figure 4(a). The first edge to be computed
(label I) involves the edges3 � 15. The following pair of edges
to be computed are edge3� 16 (label II) and edge15 � 16 (label

String Edge (3-15) Edge (3-16)
1 1 1
2 2 3 4 2 3 4
3 14 15 16 17 15 16 17
4 31 32 33 33

Table 1: Example of required neighbour information

III). Then, the last pair of edges related with vertex3 are computed:
edge3� 17 (label IV) and16� 17 (label V).

An important characteristic of this way of covering the mesh can
be outlined from this example: the neighbours required to compute
one edge are mostly reused to compute the following edge. For
example, the necessary neighbours to compute the edges3�15 and
3� 16 are indicated in Table 1. Note that four groups of data, from
four consecutive strings of vertices, are required for each edge. For
this specific example new data is not required for the computation
of the second edge. This method of reemploying the data permits,
as shown later, a reduction in the number of accesses to the memory
where the data is stored.

To complete the presentation the tessellated mesh storage
method is analyzed [1]. The new tessellated mesh has to be stored
according to the concentric triangles strips notation previously pre-
sented. The algorithm we propose is basically a vertex classification
in which the vertices are classified in strings. Each time an edge is
processed, the new vertex candidate coordinate is determined and
conditionally inserted. After this, the surrounding vertices are as-
signed to a string. In Figure 4(b) the notation and algorithm we
propose is briefly introduced. The first child of vertex3, that is,
vertex15, is being processed. Once the midpoint, Newvertex1, is
computed a test [4] has to be made in order to determine if the split-
ting is performed. The decision is labeled asi1, wherei1 = 0 if
there is no splitting andi1 = 1 if the edge is split. When the second
child of vertex3 (vertex16) is considered, two new vertices have to
be computed, Newvertex2 with decisioni2 and Newvertex3 with
decisioni3. Once the decisions have been performed a classifica-
tion procedure has to be realized, that is, the vertices that delimit
the concentric triangle strips have to be identified. This requires the
application of simple string classification rules (tabulated in [1])
where each vertex is classified on a string as a function of the pre-
viously computed vertices and their classification. Similar rules are
also applied to compute the sibling and child connectivity.

To clarify the algorithm let us considerer the mesh of Figure 3
and the tessellation indicated in Figure 4(c). The new vertices orig-
inated during the tessellation operation are indicated in small labels.
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Six strips of triangles were identified and marked in different grey
levels. As an example of string classification let us analyze the
processing of the original first string of triangles delimited by lists
f1g and f2; � � � ; 10g of Figure 4(c) detailed in Figure 5. In this
figure the vertices related with the original mesh are indicated in
grey boxes, the new vertices in thinner boxes and the non inserted
vertices with empty boxes. The string identifier1 of each vertex, ob-
tained with the classification rules in [1] is indicated as a number
over the corresponding box. The classification method has an easy
intuitive interpretation: the string identifier of all roots of a vertex
are analyzed so that the minimum value plus one is assigned as its
string identifier. As an example, all the children of the vertex1, of
the string0, are assigned to the string1.

4 Adaptive Tessellation Architecture

Figure 6 shows the block diagram of the architecture for adaptive
tessellation. The architecture has four modules: 1) Memory unit,
2) Vertex processor, 3) Test unit and 4) Ordering strip unit. The
incoming mesh is stored in a Memory unit in order to be processed.
This Memory unit is also employed for the storage of the interme-
diate processed meshes and also for the management of the data. It
provides four consecutive strings of vertices (see Table 1 example)
to the second unit (Vertex processor) in such a way that the wait
cycles of this unit are minimized. The strings of vertices are pro-
cessed by the Vertex processor where the coordinates of the vertex
candidates are obtained. These coordinates are delivered to the Test
unit [4] to decide if each edge is split. The decisions together with
the corresponding coordinates (if the splitting is performed) are in-
troduced in a final unit, the Ordering strip unit, where the vertices
are reordered in strings of concentric vertices. The final mesh is
stored in the first unit in order to be processed again. The recur-
sive processing of the mesh is repeated a given number of iterations
(defined by the user) or until the mesh is fully tessellated accord-
ingly to the displacement map. Due to length constraints in the
following subsections only the structure of the Memory and Order-

1The row number of the vertex in the current mesh group data structure.

ing strip units are briefly introduced although an extended revision
of all modules can be found in [1].

4.1 Memory Unit

To process each edge of the mesh, the Vertex processor requires the
information of all the neighbours around the extreme vertices of the
edge. All edges are processed covering a strip of triangles before
starting with a new strip. This implies that all data of the four con-
tiguous strings of vertices (see Table 1 example) will be required
consecutively before starting with a new strip of triangles. Then,
the data has to be stored in such a way that an easy access to the
strings of vertices could be developed. The architecture we propose
is depicted in Figure 7. Three different memories (Vertex, Child
and Sibling) are employed to store the vertices, the corresponding
children and the sibling information. As an example the data indi-
cated in the figure corresponds to the group example of Figure 3.
In order to optimize the storage utilization we proposem+1 word
memories wherem is the maximum number of vertices connected
to a given one. The information has to be stored in a coherent way
in the three memories.

The best storage would imply that the information associated
with consecutive vertices of a string would be in consecutive po-
sitions of the memory. But this distribution is possible only for the
initial mesh (coming from the CPU) as during the subdivision the
vertices of each string are not obtained in a consecutive way. A set
of memories (indicated as address maps in the figure) to store the
addresses of successive sections corresponding to the same string
is employed. Specifically, the address map of the data correspond-
ing to each stringi of vertices is stored in aString i memory.
The reason for this storage scheme is detailed in the next subsec-
tion. As usual the number of vertices in each string section does
not fit with the word size of the memory, so a mask should be em-
ployed to indicate the part of the word that stores the correct infor-
mation. For example, the string2 of vertices of Figure 7 is stored
in addresses0001 with maskf1111111111g and0010 with mask
f1111100000g. In the vertex memory the information relative to
verticesf11; 12; � � � ; 25g is identified.

Taking into account that the neighbours information can be
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reemployed for successive computations (see Table 1 example) the
memory system can be optimized through the utilization of a sys-
tem of FIFO (first-in-first-out) queues. As four strings of vertices
are involved in each edge computation, four FIFO queues have to
be employed. Specifically, three different sets of four FIFO queues
are required for keeping the vertex (Fv), the children (Fc) and the
siblings (Fs) information. To select the adequate part of the m+1-
word memory (mask information) a set of normalization units (bar-
rel shifters) are employed. The FIFO system, together with the re-
utilization of the data assures an efficient management avoiding any
wait cycles for the Vertex processor [1].

4.2 Ordering Strip Unit

The ordering strip unit performs the vertex strings classification and
computes the children and sibling connectivities accordingly to the
simple rules tabuled in [1]. The strips of triangles are processed
so the new vertices have to be classified and adequately stored in
the memory system. Due to length constrains we will focus the
presentation on the memory information updating procedure.

For the computation of each strip of triangles the strings of ver-
tices of the tessellated system are obtained in sections. This can
be observed in Figure 5 were the computation of consecutive trian-
gles of the strip generates a non complete string of vertices with a
identifier2, that is, the string2 is obtained in sections. Specifically,
the computation of each triangle generates vertices of at most two
strings (together with the already computed root vertices) and, it
can be ensured that the computation of the contiguous triangle of
the same strip will maintain the continuity of, at least, one of the
vertex strings. Then, two FIFO queues can be employed for storing
the one/two strings under construction. Once a string is broken, the
content of the FIFO queue is stored in the memory and the corre-
sponding address map updated. A procedure was developed [1] to
reserve memory positions for storing the addresses of consecutive
strings sections not already computed.

As an example the final memory distribution after computing
all the group (Figure 4(c)) is indicated in Figure 8. The different
sections of strings stored in the vertex memory are indicated with
dashed boxes. According to this storage, the address map mem-
ories are coherently updated in such a way that each stringi of
vertices can be reconstructed by reading the consecutive addresses
(of the vertex memory) indicated in theString i memory. The
same reconstruction operation can be performed over the memories

of children and siblings in order to obtain the Child and Sibling
lists. As an example let us reconstruct the string3 corresponding to
the tessellated mesh. In order to do this the seven addresses indi-
cated in the correspondingString 3 memory have to be accessed.
The stored information corresponding to the consecutive addresses
is: f11; 60; 61; 63; 65; 68g, f86; 87; 33; 34; 35g, f18g, f37; 38g,
f20g, f40; 41; 42g, f75; 74; 76; 23; 77; 79g, which corresponds to
the fourth string of vertices of Figure 4(c).

5 Results

The methodology we propose permits the communication require-
ments between the CPU and the graphics pipeline to be reduced by
performing complex surface generation in hardware. The classifi-
cation unit is mainly compounded of memories and FIFO queues
and simple additional hardware (adders, substractors, minimum
and maximum selectors) for the vertex classification into strings.
This reduces the communication problem with a reasonable in-
crease in hardware requirements. The surface generation possibili-
ties achieved through the introduction of this unit contrast with its
simplificity.

Let us suppose a group withn triangles is to be processed a num-
ber i of iterations. The proposed system ensures that each edge is
computed only once and that the processing rate is one edge per cy-
cle. If the border of the group is not taken into account, each edge
is shared by two triangles which implies, in the first iteration, the
computation ofn�3

2
edges. This is performed inn�3

2
cycles. If all

the triangles are fully subdivided in each iteration,4
i � n triangles

are finally obtained. This leads to the maximum computational rate
of the system given by:

Rmax =
4
i

3

2

�
i�1P
j=0

4j

� triangles=cycle

On the other hand the minimum computational rate is obtained if
no triangles are subdivided in any iteration:

Rmin =
1

3i=2
triangles=cycle

The computational rate values of any group is in the interval
[Rmin; Rmax]. As an example, for3 iterationsRmin = 0:22
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Figure 9: Donut, Volker’s head and Crater images. (a), (d), (g) shows the original coarse meshes, (b) (e), (h) the adaptively subdivided
meshes and (c) (f), (g) final meshes with displacements.

andRmax = 2:03 rates are obtained. Note that theRmin value
corresponds to a non practical case in which no subdivision is per-
formed, which means that the original mesh is very detailed. The
system also has no recursive structure (only for the recomputation
of the groups), so it can be pipelined with a minimum cycle period.

We have implemented our adaptive tessellation solution (Fig-
ure 6) through a software simulation. We have rendered several
models to demonstrate the performance of the solution, the advan-
tages/disadvantages of an adaptive tessellation based on neighbour
information and the repercussions of the grouping strategy. In the
following results3 iterations per mesh were employed.

Three different models have been rendered using the algorithm
and are shown in Figure 9. Specifically, we have worked with a
donut displacement over a flat square plane (Figures 9 (a),(b) and
(c)), the Volker Blanz’s head displacement map over a cylinder
mesh (Figures 9 (d),(e) and (f)) and the Crater Lake also over a
flat square plane (Figures 9 (g),(h) and (i)). In the first column (Fig-
ures 9 (a),(d) and (g)), the original coarse meshes are depicted, in
the second column (Figures 9 (b),(e) and (h)) the meshes subdived
according to the displacement map are shown and on the third col-
umn (Figures 9 (c),(f) and (i)) the final images after applying the
displacements are indicated. While the original meshes, to be sent
from the CPU to the graphics pipeline, have200 triangles the fi-

nal meshes have1242, 4389 and6379 triangles respectively. This
method allows for high quality images to be obtained with very low
transmision requirements. The adaptive structure of the subdivision
can be observed in all images. For example the donut is less subdi-
vided in regions close to the top where no detail is required. Note
that the transition between high and low detailed regions is soft,
resulting in smooth surfaces. The images correspond to the utiliza-
tion of only 2 rings. This size was selected as a tradeoff between
image quality and memory requirements as only slight differences
are obtained using a greater number of rings per group. On the other
hand, improvements are expected for other coordinate computation
schemes alternative to the one proposed in Figure 1(b).

Due to the repercussions on the memory requirements of the
graphics pipeline the number of triangles generated per group has to
be analyzed. In Figure 10 the number of triangles per group when
2 rings are employed is detailed. In Figure 10(a) the number of
original triangles (information sent from the CPU to the pipeline)
per group for the two original meshes employed are indicated. It
can be deduced that the grouping algorithm we propose permits
coverage of the original image with a balanced number of triangles
per group. Obviously, when the number of non sent triangles is
lower (high group number) the possibility of constructing a group
with the full rings is lower, so lower numbers of triangles are ob-
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Figure 10:Number of triangles per group (of 2 rings) (a) Original mesh (b) Subdivided mesh

tained. On the other hand, in Figure 10(b) the number of triangles
generated with the adaptive tessellation procedure are indicated. It
is important to note that these results permit the estimation of the
memory requirements. As we previously mentioned a greater num-
ber of rings would increase the memory size, but without important
quality results.

6 Conclusions

In this paper we have presented the architecture for an additional
unit of the standard graphics pipeline to enable the rendering of
subdivision surfaces in hardware. Our proposal permits the adap-
tive subdivision of each triangle based on the neighbour information
of each edge. The method is based on the grouping of neighbour
triangles in the CPU to be sent once to the graphics pipeline. The ar-
chitecture we propose also permits a quick access to all the required
information so that no wait cycles are required for each subdivision.

To reduce the memory requirements a new mesh grouping
scheme was presented. The grouping process we propose mini-
mizes the number of exterior triangles and ensures a good covering
of the full mesh at the same time. This grouping scheme could also
be employed in other applications as, for example, non adaptive
subdivision surface rendering.

The architecture is simple and regular, and is mainly composed
of a memory and a set of FIFO queues. The efficient memory
storage method employed together with the new mesh codification
proposed, permits the exploitation of the temporal and spatial lo-
cality of the data. The storage is performed in such a way that
all the neighbours information required for computing each edge
subdivision can be accessed simultaneously. As the methodology
and architecture proposed permits an efficient management of ir-
regular meshes the scheme can be easily extended to other applica-
tions in which meshes have to be recursively computed and stored.
The biggest advantage of our proposal is the development of a new
memory scheme for the storage of irregular meshes in which the ac-
cess to multiple neighbour information does not require wait cycles.
This permits the hardware implementation of adaptive subdivision
surface rendering employing neighbouring information.
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