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In the postgenomic era, metabolomics is expected to be the newest useful omics science for
functional genomics. However, in plant science, the present metabolomics technology cannot be
considered a universal tool to perfectly elucidate perturbations imposed on sample plants although
this is desired by plant physiologists. Despite it being an immature technology, metabolomics has
already been used as a powerful tool for precise phenotyping, particularly for industrial applica-
tion. Metabolomics is the best technology for the analysis of large mutant or transgenic libraries
of model experimental plants, such as Arabidopsis, rice, etc. Here, we review the applications and
technical problems of metabolomics. We also suggest the potential of metabolomics for plant post-
genomic science.
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Metabolomics represents the exhaustive profiling of me-
tabolites contained in organism. Proteomics and transcrip-
tomics are both considered to be a flow of media concerning
genetic information. In contrast, metabolomics should be
thought as being concerned with phenotype (Fig. 1).

Recently, it has been proven that slight changes in the
metabolome can be explained by perturbations imposed on
plants. Perturbations include environmental change, physi-
cal stress, abiotic stress, nutritional stress, mutation, and
transgenic events. Metabolomics is expected to be more
useful if used in conjunction with other omics sciences such
as transcriptomics or proteomics (1, 2). Current metabolom-
ics technology cannnot be considered a universal tool to
perfectly elucidate perturbations imposed on sample plants
although this is desired by plant physiologists. Despite it be-
ing an of such immature technology, metabolomics has al-
ready been used as a powerful tool for precise phenotyping,
particularly for industrial applications. Metabolomics is the
best technology for the analysis of large mutant or trans-
genic libraries of model experimental plants, such as Ara-
bidopsis, rice, etc. In fact, venture business companies for
plant biotechnology are using metabolomics technology to
drive the large-scale exhaustive screening of a T-DNA tag-
ging transgenic line of Arabidopsis to determine the func-
tions of genes with functions that had not been previously
elucidated. Their final goal is to determine the relationship
between useful features and their corresponding genes.
Such relationships would be useful for generating commer-

cially available transgenic plants. Such companies are rush-
ing to submit patents that claim the identification of useful
genes although some black box areas still remain. Mean-
while, it should be realized that metabolomics does not re-
quire genome information. For the most useful commercial
plants, such as wheat, barley, maize, soy bean, potato, their
genomes have not yet been sequenced. Metabolomics can
be applied to such commercial plants without genome infor-
mation. That is one of the most important advantages of me-
tabolomics compared with transcriptomics and proteomics.
However, metabolomics is a complicated interdisciplinary
research field that requires bioscience, analytical chemistry,
organic chemistry, chemometrics, and informatics knowl-
edge (Fig. 2). Metaolomics analysis requires the following
steps: plant cultivation, sampling, extraction, derivatization,
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separation and quantification, data matrix conversion, data
mining, and bioscience feedback. Each step can give rise to
experimental errors. At present a standard method has not
been established and metabolomics is only applicable for
on-demand restricted research subjects. This is the main
reason why metabolomics is not understood or familiar.
Here, we present the technical problems associated with
metabolomics. We also suggest the potential of metabolom-
ics for plant post-genomic science and try to explain metab-
olomics from the viewpoint of the plant scientist.

CLASSIFICATION OF METABOLOMICS

The final goal of metabolomics is an exhaustive profiling
of all metabolites contained in target organisms. However, it
is almost impossible to perform perfect profiling of at least
ten thousand metabolites due to lack of appropriate technol-
ogy (3). This means that current metabolomics studies are
thought of as feasibility studies to indicate the potential of
the actual metabolomics. At the present time, the conven-
tional classification of metabolomics that was proposed by
Fiehn has been accepted world wide (4) (Table 1).

TECHNICAL ELEMENTS OF METABOLOMICS

Metabolomics consists of several complicated technical
elements described in Fig. 2 with each step possibly giving
rise to an experimental error. To establish a robust system,
close collaboration among researchers in the fields con-
cerned with analytical chemistry, organic chemistry, chemo-
metrics, informatics, and bioscience is required. Specific

technical problems in each step are described in the follow-
ing sections.

Plant cultivation Independent variation among sam-
ples is one of the most important problems for metabolom-
ics. It is generally more difficult to maintain uniformity in
plant cultivation than when cultivating microorganisms or
breeding animals. Even if an artificial plant growth chamber
is used to maintain the temperature, light, and humidity, per-
fect control is almost impossible due to slight variations de-
pendent on the position in the chamber. Soil is the most
common matrix for plant cultivation. Precise water control
in the case of using soil is generally difficult due to lotvari-
ance and operational error. Water-deficiency stress can often
occur and such water stress would affect the metabolome.
To minimize condition variance for plant cultivation, large-
scale plantation using a large-volume growth chamber is pre-
ferred (5, 6). However, small-volume growth chambers are
routinely used due to running costs. Great care and know-
how are required to minimize variance. The simplest solu-
tion is periodical rotation of pot position in a chamber. A
soil-less culture system is also useful (7). We employ a new
soil-less cultivation system using a ceramictube through
which water is directly supplied to plant roots for high reso-
lution metabolomics. The ceramic culture system enables us
to maintain exact control of water supply and nutrition. The
reproducibility of metabolomics data has been enhanced in
the case of using the ceramic culture system.

Sampling Sampling is one of the most important steps
to which careful attention should be paid to reduce experi-
mental error. Careless sampling causes significant experi-
mental variance, which might sometimes surpass biological

FIG. 2. General scheme of metabolomics.

Table 1. Classification of metabolomics

Classification Definition

Target compound analysis Quantification of specific metabolites
Metabolite profiling Quantitative or qualitative determination of a group of related compounds or of specific metabolic pathways
Metabolomics Qualitative and quantitative analysis of all metabolites
Metabolic fingerprinting Sample classification by rapid, global analysis
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variance. To maintain variance at a minimum, not only the
growth stage but also the exact time of sampling should be
controlled. In addition, the area and the amount sampled
should also be considered. As expected, great care should
be paid to post-harvest treatment. The analytical method
and instruments should be decided dependent on the char-
acteristics of target metabolites, including the number of
metabolites being examined, and their respective quantities.
The optimum preparation protocol should be developed de-
pending on a case-by-case basis. In the case of target analy-
sis, the preparation of appropriate internal standards is ex-
tremely important and a suitable purification scheme is also
important. Metabolic profiling should cover a wide range of
metabolites. Each metabolite should be considered accord-
ing to its characteristics in the following categories: hy-
drophylic, hydrophobic, small molecule, large molecule,
charged, uncharged and combinations of these. In the case
of metabolic profiling, it is rather difficult to choose an ap-
propriate internal standard for normalization because many
metabolites must be targeted as analytes at the same time.
The efficiency of extraction and fractionation should be
normalized without internal standards through repetition of
preliminary experiments. Among the many steps, the ex-
traction procedure is the most important one. Homogenous
crushing of plant materials is required to maintain the ex-
traction efficiency. A ball mill is a more suitable apparatus
for this purpose than a mixer because plant materials con-
tain a very rigid tissue matrix. We use a ball mill with zir-
conium balls. Target analysis is mainly carried out in the
field of plant secondary metabolism. Metabolic profiling
now mainly focuses on hydrophilic and small molecules
and is primarily used in the field of central primary metabo-
lism. Gas chromatography mass spectrometry (GC-MS) and
capillary electrophoresis mass spectrometry (CE-MS) are
both important technologies for the analysis of hydrophilic
small molecules. A research group in the Max-Planck Insti-
tute has developed a useful system for the metabolic profil-
ing of hydrophilic small metabolites derived from the Ara-
bidopsis leaf (8, 9). A precise protocol is available via the
internet (Fiehn, O.: Metabolomic analysis: protocol for plant
leaf metabolite profiling. http://www.mpimp-golm.mpg.de/
fiehn/blatt-protokoll-e.html). The effect of sample prepara-
tion methods on metabolite analysis was well studied using
an Escherichia coli system (10).

Derivatization and pretreatment Derivatization of
target metabolites may be required depending on the ana-
lytical equipment used. Only volatile compounds are appli-
cable for GC-MS analysis. Most hydrophilic metabolites
should be derivatized by sililation or other methods. High-
performance liquid chromatography (HPLC) also requires
derivatization in the case of UV or fluorescence detection.
Specificity and efficiency are both important factors and
they should be validated in their terms of reproducibilities.
Derivatizing conditions including the category of reagent
and reaction conditions should be well examined. In addi-
tion, the stability of yielded derivatives should also be eval-
uated. Various methods of derivatization have been well re-
viewed (11). Utilization of a stable isotope is very important
for comparative quantification because mass spectrometry
is used most often for metabolomics research. Mass spec-

trometry is generally useful both for quantification and qual-
ification. However, in the case of contamination of the ion-
ization room, the ionization efficiency of the target mole-
cule is markedly reduced (12, 13). Such deficiency is called
ionization suppression. The main reason for ionization sup-
pression is the coelution of contamination with the target
due to a defect in the separation step. Ionization suppres-
sion most likely occurs in all mass spectrometries including
GC-MS, LC-MS, CE-MS. Optimum time separation in chro-
matography prior to mass spectrometry is apparently the
best solution. However, the optimum time separation of tens
of metabolites would be almost impossible in practice. Con-
sequently, stable isotope dilution-based comparative quanti-
fication is thought to be the most convenient practical solu-
tion. The principle of the method is that isotopomers of tar-
get metabolites are used as internal standards to normalize
analysis variation, particularly for ionization. Isotopes can
be introduced by post-harvest labeling or by in vivo isotope
enrichment. Metabolites are extracted from one specific
sample named ‘the test sample’. In a similar manner, metab-
olites are extracted from a control sample in which all me-
tabolites are labeled with the isotope. The test sample is
then mixed with the control sample. The mixture is sub-
jected to LC-MS, CE-MS or GC-MS. On the chromatogram
or electropherogram, target metabolites and their corre-
sponding isotopomers are coeluted coincidentally. The com-
parative ratio of each target metabolite is estimated by the
peak ratio corresponding to each target and its isotopomer.
This principle is used in the proteomics research technol-
ogy, Isotope coded affinity tags (ICAT) (14). Post-sampling
stable isotope labeling would also be applicable in metabo-
lomics research although D-labeling may have some diffi-
culties (15, 16). In vivo stable isotope enrichment is a prom-
ising method for stable isotope dilution. The metabolic pro-
filing of sulfur metabolites using 34S has been reported (17).
13C and 15N stable isotope labeling techniques are available
for use in some cases (16, 18). In the future, a combination
of time-course sampling and stable isotope dilution com-
parative quantification will be one of the de facto standard
methods in dynamic metabolomics.

Separation and quantification Separation is one of
the most important unit operations in metabolomics. Sepa-
ration methods usually include chromatography or electro-
phoresis coupled to mass spectrometry. UV detection and
electrochemical detection are also used for quantification.
Each specific separation method is well reviewed in detail
in the literature (19). Technical problems in separation pro-
cesses are focused on in this paper. Metabolome data should
be classified in to two independent categories that include
resolution and quantification. Separation strongly affects
both resolution and quantification. However, it might be
costly and inconvenient to determine the best specification
for both resolution and quantification. In an on-demand
practical system, either resolution or quantification should
be chosen as the first priority. It is important to image the
matterthat is to be elucidated by metabolomics.

Resolution can be thought of as a practical index by
which each separation system is evaluated in terms of the
possible number of metabolites that can be separated. Reso-
lution directly depends on the peak capacity of each system.
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Among conventional separation systems, capillary electro-
phoresis (CE) is superior in terms of resolution. The second
best is gas chromatography (GC). Liquid chromatography is
worst in terms of resolution although its adaptational capac-
ity is the widest. Complete separation of all target metabo-
lites is desired to maintain a high degree of quantification.
However, several metabolites would usually coelute or co-
migrate in each separation system. Liquid chromatography
should be used frequently due to its wide adaptational ca-
pacity although currently capillary electrophoresis and gas
chromatography tend to be used as separation tools in me-
tabolomics due to their high resolution. Liquid chromatog-
raphy would cover almost all metabolites. However, several
important metabolites would be coeluted in liquid chroma-
tography because samples derived from living organisms
contain many complicated metabolites. Coelution might
cause ionization suppression, which is the main reason for
quantification being compromised. In addition, the solvent
gradient systems that are conventionally used in liquid chro-
matography might affect the reproducibility of metabolite
retention times, although retention time is one of the most
important factors when chromatography results are sub-
jected to a data mining procedure. The above-described dif-
ficulties are the main reason why researchers tend to hesi-
tate to use liquid chromatography as a conventional method
for metabolomics.

We will now focus on the examples of high-efficiency
HPLC separations made possible by monolithic silica col-
umns composed of network type silica skeletons (20, 21).
Micro-HPLC systems with a monolithic silica capillary col-
umn possess the following advantages: (i) small consump-
tion of stationary and mobile phases, (ii) high detection sen-
sitivity for a certain amount of samples, (iii) high-speed sep-
aration with a low pressure drop, and (iv) the possible use of
a long column of 1–2 m that can provide around 100,000–
200,000 theoretical plates. The disadvantages are (i) the
smaller sample capacities of monolithic silica columns com-
pared with particle-packed columns, (ii) the necessity of
skill and knowledge to operate a capillary HPLC system to
obtain high separation efficiency, and (iii) insufficient sup-
ply of good columns and instruments for capillary HPLC.
We employed a molithic column HPLC system to accom-
plish the perfect separation of naturally derived polyprenol
regioisomers (22). It has been almost impossible to separate
polyprenol regiomers by means of conventional separation
modes. In addition, a monolithic capillary. HPLC system
was proven to be useful for plant metabolic profiling (23). A
sophisticated two-dimensional monolithic capillary HPLC
system has been developed to provide more than 10-fold
higher resolution than conventional HPLC systems (24, 25).
Refinement of the system is required for user-friendly oper-
ation. Supercritical fluid chromatography (SFC) is one of
the promising technologies for separation of hydrophobic
metabolites. In particular, it would be useful for the separa-
tion of hydrophobic polymers that are very difficult to ana-
lyze by conventional HPLC systems. The separation power
of SFC has been proven through the analysis of polyprenols
(26, 27). A mutidimensional detection system is a powerful
tool for the analysis of complicated elution patterns, which
include mass spectrometry, photo diode arrays, GC by GC

and so on. A sophisticated deconvolution system for GC-MS
has been developed in which coeluted metabolites can be
separated and identified by mass spectrometry (28). Fourier
transform ion cyclotron resonance mass spectrometry (FT-
ICR-MS), which is the newest mass spectrometry technol-
ogy, is a powerful tool for identifying biomarkers. Infusion
FT-ICR-MS analysis without preseparation by chromatog-
raphy has been achieved for exhaustive metabolic profiling
(29).

Quantitative performance is also one of the most impor-
tant factors for metabolomics in practice. This depends on
the dynamic range of linearity in each analytical system.
Surveying the best option in terms of a detection system is
required. The influence of the existence of several types of
contamination should also be considered. Mass spectrome-
try has a serious drawback, known as ionization suppres-
sion, which might diminish quantitative reproducibility as
described above. Perfect time separation by high-resolution
chromatography would be a unique solution when using
mass spectrometry. An infusion operation using FT-ICR-MS
can be regarded as one convenient solution in which resolu-
tion has priority over quantitation. Normalization of ioniza-
tion suppression would be essential for infusion analysis.
The reproducibility of UV detection and electrochemical de-
tection might be less affected by coelution despite their low
sensitivities compared with mass spectrometry. Consequent-
ly, classical detection systems are still regarded as important
in the case when quantitation has priority over resolution.
Spectrometry is also useful in some cases. The conventional
spectrometries that are available include Fourier transform
nuclear magnetic resonance (FT-NMR), Fourier transform
infrared spectroscopy (FT-IR), and Near field infrared spec-
troscopy (NIR). Especially, FT-NMR was recently used in
plant metabolomics (30–32). In FT-NMR analysis, compli-
cated separation steps such as chromatography or electro-
phoresis are not essential. In addition, the dynamic range of
FT-NMR detection is rather wide. FT-NMR tends to be used
in metabolic fingerprinting because of its superior specific-
ity. NMR analyses require a relatively large amount of sam-
ple, and the analysis results might be affected by contami-
nation, which is a serious problem in practice. Recently, a
combination of several chromatographies and FT-NMR has
been developed for precise metabolite profiling or target
analysis (33, 34). Diffusion-ordered NMR spectroscopy
(DOSY), which is one of the newest methodologies, is a
possible tool for the profiling of complicated mixtures of
samples without separation (35). The method involves two
dimensional NMR application using pulse magnetic field
gradient technologies. In detail, a self-diffusion constant (D)
is characteristic of DOSY for discrimination depending on
the molecular weight of each metabolite measured. Thus,
DOSY can afford almost similar information to that ob-
tained by a combination of size-exclusion chromatography
and FT-NMR. FT-IR is a well-known conventional spectro-
metry for structure elucidation of organic compounds. FT-IR
can also be used in metabolomics, especially for metabolic
fingerprinting, in addition to FT-NMR. FT-IR is useful for
the quantification of compounds that have specific func-
tional groups although it is not optimal for complicated me-
tabolite profiling due to the lack of a separation procedure.
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FT-IR has been proven to be useful for the profiling of com-
plicated mixtures derived from industrial raw materials or
food. FT-IR would be useful in the field of large-scale ex-
haustive profiling as an easy and high-throughput method.
Actually, FT-IR has been used for the metabolic fingerprint-
ing of tomato and Arabidopsis (36, 37). Recently, a combi-
nation of microscopy and FT-IR has been proven to be a
powerful tool for histochemical metabolic profiling (38).

Data conversion Multivariate analyses tend to be used
in metabolomics research because rather complicated linear
and nonlinear relationships must be elucidated. Analogue
raw chromatographic data must be converted to digital ma-
trix data. Raw data obtained from chromatography or elec-
trophoresis can be converted into a matrix data table that
can be subjected to multivariate analysis via peak identifi-
cation and integration. In this case, the target metabolite
should be used as an independent variable and peak area
should be used as a dependent variable. In the case of using
spectroscopy data , some specific know-how is required to
prepare an appropriate matrix table that can be subjected
to data mining, because spectroscopic instruments (FT-IR,
FT-NMR) generally provide analytical data in a specific
data format. All matrix tabl data sets must be adjusted into
exactly the same form, which is essential for multivariate
analysis. In the case that data points are different among the
data to be analyzed, data point adjustment must be con-
ducted. Spectral data might often include some disturbance
according to each specificity and environmental perturba-
tion. Such disturbance should be corrected for by appropri-
ate data preprocessing. Data obtained by GC-MS or LC-MS
should also be corrected by appropriate preprocessing. In
fact, appropriate preprocessing is a prerequisite for data
mining. Preprocessing involves (i) noise reduction, (ii) base-
line correction, (iii) resolution enhancement, and (iv) nor-
malization. Several tactics, such as smoozing, spectral dif-
ference, differentiation, baseline correction, peak separation,
mean center,and scaling are often performed in common
preprocessing. Recently, a sophisticated algorithm concern-
ing the preprocessing of GC-MS chromatogram data was
reported (39).

DATA MINING BY MULTIVARIATE ANALYSIS

In metabolomics, multivariate analysis with an appropri-
ate algorithm should be performed depending on data struc-
ture and mining intention. Multivariate analysis methodol-
ogy used includes multiple regression, discriminant analy-
sis, principal component analysis, hierarchical cluster analy-
sis, factor analysis, canonical analysis. Among these meth-
ods, exploratory analysis tends to be used most often in
plant metabolomics. The mission of the analysis is mainly
for the characterization of data structure and preliminary
mining of significant tendencies included in the data. Ex-
ploratory data analysis should be performed before conduct-
ing further analysis, such as multiple regression or classifi-
cation. Biologists tend to hesitate to use multivariate analy-
sis due to some difficulties concerning basic linear algebra
and statistics, although multivariate analysis is one of the
most important tools in metabolomics. Principal component
analysis (PCA), hierarchical cluster analysis (HCA) and

self-organizing mapping (SOM) are the most important
multivariate analysis methods that are used often. Their fea-
tures and operation methods are described in the following
sections.

Principal component analysis (PCA) The definition
of principal component analysis is the analysis of data that
has been transformed from the original axes to the principal
axes. PCA is a useful technique to reduce the dimensional-
ity of large data sets, such as those from metabolomics anal-
ysis. PCA is also useful to identify significant signals in
noisy data. The mathematical technique used in PCA is
called eigen analysis. The eigenvalues and eigenvectors of a
square symmetric matrix with sums of squares and cross
products can be solved from data matrix obtained from me-
tabolite analysis. In many cases, the data matrix for PCA
should be prepared from data obtained by GC-MS, LC-MS
or CE-MS. Therefore, the target metabolites should be used
as an independent variable and the amount of the corre-
sponding metabolite should be used as dependent variable.
The eigenvector associated with the largest eigenvalue has
the same direction as the first principal component. The
eigenvector associated with the second largest eigenvalue
determines the direction of the second principal component.
The sum of the eigenvalues equals the trace of the square
matrix and the maximum number of eigenvectors equals the
number of rows (or columns) of this matrix. PCA can iden-
tify and indicate useful information from the metabolome
using a few principal components. In fact, the application of
PCA to a metabolome data set provides two quantities: the
score and the loading. The loading allows the evaluation of
the contribution that each metabolite makes to the total
information of the metabolome. The loading is useful to
understand differences among samples in each metabolite
level. The PCA score is defined as the coordinate of data
vectors in the base of the principal component analysis. The
score plot, limited to the most significant principal compo-
nents, gives a visual image of the differences of samples
from an all-around view point. The first principal axis is the
direction in which the data are primarily distributed in n-di-
mensional space. In the field of biology or biochemistry, the
principal component is defined as a constituent that is most
abundant or that is most important. Differences between in-
formaticians and biologists sometimes cause misunder-
standings and each group should appreciate the viewpoint
of the other.

Hierarchical cluster analysis (HCA) HCA is also
used frequently in metabolomics. HCA is a method of
cluster analysis based on the multivariate distance between
every pair of data points. In HCA, the data are not parti-
tioned into a particular cluster in a single step. Instead, a
series of partitions takes place, which may run from a single
cluster containing all objects to n clusters each containing a
single object. HCA is subdivided into agglomerative meth-
ods, which are proceeded by a series of fusions of the n
objects into groups, and divisive methods, which separate
n objects successively into finer groupings. Agglomerative
techniques are commonly used in metabolomics. HCA may
be represented by a two-dimensional diagram known as a
dendrogram, which illustrates the fusions or divisions made
at each successive stage of analysis. The n agglomerative
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hierarchical clustering procedure produces a series of parti-
tions of the data, P

n
, P

n–1
, ... P

1
. The first P

n
 consists of n sin-

gle object clusters, the last P
1
, consists of a single group

containing all n cases. At each particular stage, the two clus-
ters which are closest together are joined. Different ways of
defining distance between clusters are available.

The linkage methods are divided into single linkage clus-
tering (nearest neighbor technique), complete linkage clus-
tering (farthest neighbor technique), average linkage clus-
tering, average group linkage. HCA is familiar to biologists
because it is often applied for phylogenetic studies based on
the sequence homologies of several orthologic genes such
as 16S rDNA. This method is accurate but is very computer-
intensive when a data set has a huge number of data points.
For large numbers of data points, the k-mean clustering
(kMC) or batch learning self-organizing mapping (BL-SOM)
is preferred. HCA is sometimes used after the data have first
been transformed into their principal component.

Self-organizing mapping (SOM) SOM is one of the
noncluster exploring data analysis methods employing neu-
ral network technology. In addition to PCA and HCA, SOM
is used in omics sciences including genomics and transcrip-
tomics. It should be possible to apply the SOM algorithm to
metabolomics (40). The original SOM algorithm (41, 42)
requires rather a long time for calculation, and it might
afford different clustering results in its topology depending
on the order of data input. Recently, the original SOM has
been improved to a batch-learning SOM (BL-SOM), which
would not be affected by input order. BL-SOM can be con-
ducted in the laboratory using a Personal Computer because
the algorithm does not require high CPU (central processing
unit) power. BL-SOM is widely used for genomics and tran-
scriptomics (43, 44). HCA that presents a dendrogram based
on the distance of each sample point would be useful for
visceral comparison. However, HCA might afford false im-
ages when each data set is in close formation with other
sets. This unwelcome phenomena might be caused when the
linking method used is mismatched for the data set struc-
ture. PCA might not work well in case the of nonlinear or
noncontiguous data structures. For example, the fold change
in the amounts of metabolites obtained by time-course sam-
pling should be analyzed by SOM or KMC. However, SOM
can provide no information on why clusters are separated.
Careful consideration is required for the practical usage of
SOM.

Other data mining methods Several other multivari-
ate analysis methods in addition to PCA, HCA and SOM
are also available for plant metabolomics. Soft independent
modeling of class analogy (SIMCA) is a method for the
classification and prediction of unknown samples by means
of the principal component models that are prepared in each
category of training sets (known samples). SIMCA is useful
for the profiling of a large number of samples. K-nearest
neighbor (KNN) and k-mean cluster analysis (kMN) are
available for sample classification. Principal component re-
gression (PCR) or partial least squares regression (PLS) are
also useful in several cases. A de facto standard protocol
for data mining in metabolomics has not been established.
Therefore, data mining of metabolomics is now being oper-
ated in an on-demand fashion. At present, metabolomics

can be considered almost more an art than a science.

PRACTICAL OPERATION OF METABOLOMICS

Metabolomics could be integrated with other omics sci-
ences including transcriptomics or proteomics. However, de
facto standard protocols for integrated analytical systems
have not been established. The throughput of proteomics
might be less than one hundredth of that of metabolomics.
Transcriptomics is an extremely expensive protocol despite
its rather low throughput. However, metabolomics has al-
ready been considered as an apparently useful technology
despite a lack of integration with other omics science in the
case of restricted aims. The crucial points for the practical
operation of metabolomics are described below. The appli-
cation of metabolomics is also discussed.

Quantitative performance or resolution power? It
is obvious that both quantitative performance and resolution
are desirable in general analytical chemistry. However, on
occasion it must be decided which one is of primary impor-
tance. To identify biomarkers indicating extreme perturba-
tions imposed on test organisms, resolution power is of pri-
mary importance although the analytical system might not
be quantitative. In this case, Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR-MS) is currently the
best tool. On the other hand, in the case of the classification
of unknown samples based on finger-printing patterns, the
first priority is quantitative performance and repeatability.
GC-MS, LC-MS, FT-IR are almost suitable in this case.

Focused (biased) or exhaustive (nonbiased)? When
a certain working hypothesis has been established, a spe-
cific biosynthetic pathway can be proposed. In such cases, a
few samples upon which perturbations were imposed, in-
cluding physical stresses, biotic stress, mutation, transgenic
stress should be evaluated in a small-scale experiment. Me-
tabolomics should focus on the specific biosynthetic path-
way or on the specific category of metabolites. This means
that target analysis and small-scale metabolic profiling
should be conducted in depth. Time-course sampling or a
combination of several sets of perturbations that are im-
posed should be considered. Snap-shot analyses for un-
known samples without any significant hypothesis should
be conducted in the nonbiased mode, which involves identi-
fying biomarkers.

Reproducibility and repeatability When an exactly
equal result is obtained in the same experiment under the
same specification with the same instrument by the same
person, this is defined as repeatability. When a similar ex-
periment is performed at a different place with different
equipment by a different person and a similar result is ob-
tained, this is termed reproducibility. Repeatability must be
the minimum requirement for experiments. Thus, the speci-
fication of the system should be lowered until the repeat-
ability is assured. In detail, the following solution can be
proposed: (i) lowering the threshold of observation sensitiv-
ity; (ii) decreasing the number of index compounds; and
(iii) reducing the accuracy of detection. Generally, it is diffi-
cult to maintain repeatability at a high level because many
factors that might compromise repeatability are involved in
metabolomics schemes. Careful consideration must be made
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and technical know-how should be applied at each step.
With respect to reproducibility, only a general tendency

might be reproducible upon re-examination. It is very diffi-
cult to maintain an exact reproducibility of metabolomics at
the present moment because of an incompatibility between
the mass spectrometry equipment used by the original re-
searcher and the equipment used by other researchers. In
particular, it is almost impossible to reproduce metabolic
fingerprinting experiments because the clustering topology
is affected by slight differences in mass spectrometric peak
patterns. Apart from mass spectrometry differences, other
processes, such as plant growth, sampling, derivatization
might also induce experimental error. Careful consideration
is required in the case of exchanging metabolomics experi-
mental data between researchers. In fact, metabolomics re-
search imposes several biases regarding the class of targets
or analytical protocols due to the general technical problems
being encountered at present. This means that most metabo-
lomics research should be termed biased metabolomics. Re-
cently, several attempts to impose a strong bias on the class
of analytes have been reported. Focused metabolomics in-
cludes lipidomics (focusing on lipids) (45–47), glycomics
(focusing on glycans or glycosides) (48, 49), peptidomics
(focusing on peptides) (50, 51) and RNomics (focusing on
siRNA or miRNA) (52, 53). New biased metabolomics will
be established based on need in the future.

FUTURE PERSPECTIVES

A de facto standard protocol of metabolomics has not
been established although metabolomics is obviously be-
coming a promising tool for functional genomics as de-
scribed above. The lack of a standard protocol makes bio-
scientists hesitate to use metabolomics as a research tool.
Researchers who are developing new metabolomics pro-
tocols must explain their own technology as clearly as
possible for bioscientists. Bioscientists should identify areas
in which metabolomics can contribute meaningfully. Only
through good collaboration, will metabolomics receive its
deserved position in functional genomics.
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