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The repertoire of biochemicals (or small molecules) present in cells, tissue, and body fluids is known as the
metabolome. Today, clinicians utilize only a very small part of the information contained in the metabolome,
as revealed by the quantification of a limited set of analytes to gain information on human health. Examples
include measuring glucose or cholesterol to monitor diabetes and cardiovascular health, respectively. With a
focus on comprehensively studying the metabolome, the rapidly growing field of metabolomics captures the
metabolic state of organisms at the global or “-omics” level. Given that the overall health status of an
individual is captured by his or her metabolic state, which is a reflection of what has been encoded by the
genome and modified by environmental factors, metabolomics has the potential to have a great impact upon
medical practice by providing a wealth of relevant biochemical data. Metabolomics promises to improve
current, single metabolites-based clinical assessments by identifying metabolic signatures (biomarkers) that
embody global biochemical changes in disease, predict responses to treatment or medication side effects
(pharmachometabolomics). State of the art metabolomic analytical platforms and informatics tools are being
used to map potential biomarkers for a multitude of disorders including those of the central nervous system
(CNS). Indeed, CNS disorders are linked to disturbances in metabolic pathways related to neurotransmitter
systems (dopamine, serotonin, GABA and glutamate); fatty acids such as arachidonic acid-cascade; oxidative
stress and mitochondrial function. Metabolomics tools are enabling us to map in greater detail perturbations
in many biochemical pathways and links among these pathways this information is key for development of
biomarkers that are disease-specific. In this review, we elaborate on some of the concepts and technologies
used in metabolomics and its promise for biomarker discovery. We also highlight early findings from
metabolomic studies in CNS disorders such as schizophrenia, Major Depressive Disorder (MDD), Bipolar
Disorder (BD), Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD).

© 2009 Published by Elsevier Inc.
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Introduction

Currently the diagnostic and follow up of most psychiatric, neuro-
logical and neuropsychiatric disorders, collectively central nervous
system (CNS) disorders, is based on the identification of cluster of
symptoms and scales. For many of these conditions, it remains
impossible to identify individuals at risk or easily make an accurate
diagnosis. This is in part due to the fact that the etiopathogenesis of
many illnesses affecting the CNS remains unclear. CNS disorders are
likely to arise from the dynamic dysregulation of several gene
regulatory networks, proteins, and metabolic alterations, reflecting
complex perturbations (genetic and environmental) of the “system”.
Thus, there is growing need to scale up knowledge in the study of CNS
diseases in an attempt to understand at a system level the totality of
changes that can contribute to the pathogenesis of these disorders.
Disease specific molecular fingerprint can be defined by integrating
the use of high-throughput methods at the core of genomics (aiming
to measure gene expression), proteomics (assaying proteins), meta-
bolomics (focused on the quantification of small molecules) and other
“omics” data. This knowledge could help to map dysregulated
networks implicated in disease pathogenesis. Furthermore, global
mapping of abnormal pathways in CNS disorders, can lead to the
identification of disease biomarkers and biomarkers of response.

A biomarker is a characteristic that is objectively measured and
evaluated as an indicator of normal or pathogenic processes as well
as responses to therapeutic interventions (Biomarkers Definitions
Working Group, 2001; Vasan, 2006). The discovery of biomarkers for
psychiatric, neurological and neuropsychiatric disorders and their
incorporation into clinical decision-making could dramatically
change the future delivery of health care. These biomarkers should
be more reliable, have more precise predictive ability than current
methods, and/or could be more informative about disease patho-
genesis (Biomarkers Definitions Working Group, 2001; Vasan, 2006).
The path for the discovery of biomarkers is now characterized by our
ability to move from the study of single genes, mRNA transcripts,
proteins, or metabolites, to a more global approach. Indeed, there has
been a gradual transition from research solely based on a reductionis-
tic, hypothesis-driven approach, to a more holistic (systems view),
discovery-driven approach research (Ahn et al., 2006a,b; Kell, 2006;
Nicholson, 2006; van der Greef et al., 2004, 2007; Kaddurah-Daouk
et al., 2008; Kaddurah-Daouk et al., 2009). This systems approachmay
allow the discovery of panels of biomarkers that capture more
accurately a disease state and provide information that is valuable
for a more individualized clinical care (Nicholson, 2006; van der Greef
et al., 2006, Kaddurah-Daouk et al., 2008).

The study of metabolism at the global or “-omics” level is a new but
rapidly growing field that has the potential to impact medical practice
(Schmidt, 2004; Harrigan, 2002; van der Greef et al., 2003, 2004, 2007;
Kaddurah-Daouk et al., 2008, 2009; Kristal et al., 2007a,b; Lindon et al.,
2004; Holmes et al., 2008a). Metabolomics (also referred to as
metabonomics, metabolic profiling, metabolic fingerprinting, among
other terms) focuses on the identification and quantification of small
molecules, or metabolites in cells, tissues, and body fluids (Kaddurah-
Daouk et al., 2008; Kristal et al., 2007a,b; Hollywood et al., 2006;
Oldiges et al., 2007; Shulaev, 2006;Weckwerth andMorgenthal, 2005;
Holmes et al., 2008a). The overall sumof thesemetabolites is known as
the metabolome. Metabolomics captures the status of diverse
biochemical pathways at a particular moment and defines a metabolic
state such as health or disease state. The comprehensive study of the
metabolome could lead to the identification of new disease-specific
signature(s) as possible biomarkers. As we describe in detail below,
this notion is highlighted by the initial identification of biochemical
signatures for CNS disorders such as schizophrenia, Major Depressive
Disorder (MDD), Bipolar Disorder (BD), Amyotrophic lateral sclerosis
(ALS) and Parkinson's disease (PD). Metabolic signatures are expected
to replace the use of one molecule as a biomarker for disease as it will
capturemore comprehensive information about disease pathogenesis.

This review outlines general aspects of biomarker research and
how metabolic abnormalities in CNS disorders can contribute to the
identification of unique biomarkers. It includes an introduction to
metabolomics—its conceptual basis, the analytical techniques that are
used to perform metabolomic studies, and the informatic tools that
are required to analyze metabolomic data. The review also under-
scores how evidence documenting the existence of large number of
biochemical abnormalities in CNS disorders provides a rational for the
application of global approaches such as metabolomics to biomarker
discovery. Examples illustrating how metabolomics was used to
define initial signatures for particular CNS disorders are provided. The
review concludes by discussing current challenges and future promise
of this technology in the process of biomarker discovery. We also
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suggest some references for those interested on a more in depth
examination of any of the topics highlighted in this review.

Biomarker discovery research

A biomarker is a characteristic that is objectively measured and
evaluated as an indicator of normal or pathogenic processes, as well
as responses to therapeutic interventions (Biomarkers Definitions
Working Group, 2001; Vasan, 2006). Biomarkers, particularly as they
relate to metabolomics, can be measured in any biological sample,
e.g., blood, urine, or saliva (Harrigan, 2002, Kaddurah-Daouk et al.,
2008, 2009; Lindon et al., 2004; van der Greef et al., 2003; Kristal
and Shurubor, 2005; Bogdanov et al., 2008; Holmes et al., 2008a).
They can be indicators of disease traits (or risk markers), disease
states, or disease rates (progression). Accordingly, biomarkers have
been classified as antecedent biomarkers (identifying the risk of
developing an illness), screening biomarkers (screening for sub-
clinical disease), diagnostic biomarkers (recognizing overt disease),
staging biomarkers (categorizing disease severity), or prognostic
biomarkers (predicting future disease course, including recurrence
and response to therapy, and monitoring efficacy of therapy)
(Biomarkers Definitions Working Group, 2001; Vasan, 2006).

A naïve expectation is that single biomarkers can capture the
complex process underlying an illness. Rather, by looking as
perturbations of biochemical networks (systems view), it becomes
clear that a multiparameter analysis (panel of markers or multiple
metabolites) may provide better insight into disease diagnosis,
prognosis, and treatment (Hood et al., 2004). By surveying for global
changes in metabolic pathways, metabolomics-based approaches are
more likely to provide a wealth of information that may be difficult to
capture by looking at only one pathway or one biomarker. An example
of the usefulness of this multivariate approach, in 2007 the U.S. Food
and Drug Administration (FDA) cleared for marketing a multivariate
index assay that determines the likelihood of breast cancer returning
within five to 10 years after awoman's initial cancer (http://www.fda.
gov/bbs/topics/NEWS/2007/NEW01555.html). This assay looks at 70
genes in a sample of a woman's surgically removed breast cancer
tumor, and then applying an algorithm, produces a score that
determines whether the patient is deemed low risk or high risk for
spread of the cancer to another site (Fan et al., 2006).

Biomarkers in CNS disorders

According to the type of information that they provide, biomarkers
for CNSdisorders can alsobe classifiedas genetic, neuroimaging, clinical,
or biochemical markers (DeKosky and Marek, 2003). Next, we describe
the information provided by these different types of biomarkers.

Genetic biomarkers capitalize on molecular genetics to identify
gene variations associated with disease. Although the presence or
absence of specific alleles can at times identify individuals who are at
risk of developing a given disease, they generally do not predict age of
disease onset accurately.

Clinical biomarkers link processes such as the loss of a certain
function (e.g., episodic memory) to survival endpoints, often relying
on clinicians' assessment. Examples of these markers include memory
assessment in AD (DeKosky, 2008) and loss of olfaction in PD (Herting
et al., 2008; Kranick and Duda, 2008; Wolters, 2008). Unfortunately,
the identification of clinical biomarkers for CNS disorders has been
fraught with difficulties due to the known variability in the expression
of signs and symptoms (Haehner et al., 2007). This variability maybe a
consequence of individual-specific topographical sequences of pathol-
ogy [i.e., extent and progression of the degenerative process at defined
sites) (Wolters, 2008)].

Neuroimaging biomarkers originate on the use of imaging techno-
logies such as single photon emission computerized tomography
(SPECT) and positron emission tomography (PET) for the detection of
mostly biochemical changes using isotope-labeled tracers probes;
Magnetic Resonance Imaging (MRI) for higher resolution structural
analysis; and functional MRI (fMRI) which by measuring changes in
the blood oxygenation levels in microcirculation provides indirect
measures of regional changes in cerebral blood flow and neural
activity. Neuroimaging biomarkers are emerging as potential supple-
ments to clinical data in the assessment CNS disorders including PD
(Berg, 2008; Brooks, 2004), Alzheimer's disease AD (Jagust, 2004), BD
(Phillips and Vieta, 2007) and HD (Rosas et al., 2004); as well as
potential means to assess newmedication affecting the brain (Borsook
et al., 2006). Indeed, these markers could provide diagnostic and
prognostic information; can be performed repeatedly from an early
stage of the disease and throughout progression of the disease. Some
limitations for the large-scale use of neuroimaging biomarkers are the
need for highly specialized equipment and personnel, imaging time
and cost, as well as subjects' exposure to radioactive probes.

Finally, classical research (pre-metabolomics) on the identification
of biochemical biomarkers in blood and CSF for CNS disorders has
been aimed at assaying single metabolites. Often this search has been
based on research hypotheses. Unfortunately, none of the single
biomarkers identified to date have the desired sensitivity and
specificity for diagnosis; have sufficient power to identify disorders
at an early stage; or serve of CNS disorders as surrogate endpoints in
clinical trials.

Evidence for metabolic changes in neuropsychiatric disorders:
rationale for a metabolomics approach for biomarker discovery

A comprehensive review of the current knowledge on biochemical
abnormalities in CNS disorders is outside the scope of this review. We
provide an overview of biochemical abnormalities described in
common CNS disorders here (Kaddurah-Daouk et al., 2009). Findings
are derived from studies often focusing on quantifying single or few
metabolites. This data provides a rationale for the use metabolomic
approaches in the study of CNS disorders aiming to capture more
global biochemical disturbances and using this information for the
identification of biomarkers that reflect more accurately the disease
state, disease progression or response to therapy.

Studies have used cerebrospinal fluid (CSF) or blood (plasma or
serum) to conduct biochemical analysis. Despite CSF is an obvious
sample to use when searching for biomarkers in conditions affecting
the CNS, due to reasons that we discuss later in detail; the use of blood
has several practical advantages and most of the studies used blood as
a source of sample.

In CNS disorders several metabolic changes are noted. For example
impairments in neuronal survival, neurotransmitters; antioxidant
system and free radicals ratios, membrane composition, mitochon-
drial function and immune response (e.g., arachidonic acid metabo-
lism) have been noted in many CNS disorders (Kaddurah-Daouk et al.,
2009). Some of these abnormalities have been captured by classical
biochemical approaches where single metabolites are measured.

Given that in each CNS disorder there are disturbances in several
pathways, research based on global approaches such metabolomics
would derive a more comprehensive picture of the pathways involved
and their links. Furthermore, insofar as common disturbances maybe
present across disorders, there might be a need to conduct studies
including more that one CNS condition to clarify the specificity of
findings to any given disease.

Metabolomics: a global biochemical approach for biomarker
discovery

This section provides a rational for the use of metabolomics for
biomarker discovery and reviews briefly the conceptual framework as
well as practical aspects of the technologies applied in the field of
metabolomics.

http://www.fda.gov/bbs/topics/NEWS/2007/NEW01555.html
http://www.fda.gov/bbs/topics/NEWS/2007/NEW01555.html
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Metabolomics overview

Themetabolome is the collection of small molecules that are found
within a systemwhich basically covers a broad rage of small molecules
such as glucose, cholesterol, ATP, biogenic amine neurotransmitters,
lipid signaling molecules among many other classes of compounds
(Kristal, 2005). The identities, concentrations, and fluxes of metabo-
lites are the final product of interactions between gene expression,
protein expression, and the cellular environment (Fig. 1). Thus,
metabolomic information complements data obtained from other
fields such as—genomics, transcriptomics, and proteomics—adding a
final piece to a systems approach for the study of disease pathophy-
siology, biomarkers identification and drug action (Kaddurah-Daouk
et al., 2008; Kristal et al., 2007a; Lindon et al., 2004; Holmes et al.,
2008a; Wishart 2008). In contrast to classical biochemical approaches
that often focus on single metabolites, metabolomics involves the
collection of quantitative data on a broad series of metabolites in an
attempt to gain an overall understanding of metabolism and/or
metabolic dynamics associated with conditions of interest, including
disease and drug exposure (Kaddurah-Daouk et al., 2008, 2009;
Kristal et al., 2007a; Lindon et al., 2004; Wishart 2008).

Several disease states induce long lasting changes in the
metabolome and such changes can be captured using a variety of
metabolomics platforms. Initial metabolomic signatures have already
been reported for several disease states, cardiovascular and coronary
artery disease (Sabatine et al., 2005), hypertension (Brindle et al.,
2003), subarachnoid hemorrhage (Dunne et al., 2005), preeclampsia
(Kenny et al., 2005), type 2 diabetes (van Doorn et al., 2007; Yi, 2006),
liver cancer (Yang et al., 2004), ovarian cancer (Odunsi et al., 2005)
and breast cancer (Fan et al., 2005; Holmes et al., 2008b; Beckonert,
2003). These signatures are made up of tens of metabolites that are
deregulated, with concentrations that are modified in the disease
state or after drug exposure. As a result, analysis of these signatures
and their components can potentially provide information concerning
disease pathophysiology.

The application of metabolomics to the study of the effects of drugs
captures signatures representing changes that occur secondary to
drug treatment and in which those signatures capture information
from pathways that are targets for, or are affected by, drug therapy
(Kaddurah-Daouk et al., 2008; Kell, 2006; Morvan and Demidem,
2007; van der Greef et al., 2003, 2006; van Doorn et al., 2007;Wishart,
2008; Wishart et al., 2008).
Fig. 1. Flow of information from DNA, to proteins to finally metabolites. CNS disorders are
interactions are manifested at the level of the transcriptome, the proteome and the metabo
based approaches.
Metabolomics approaches and platforms

An overview of a “typical” metabolomics study was described in
(Kaddurah-Daouk et al., 2008); detail experimental protocols are
provided in (Carlson and Cravatt, 2007) and (Weckwerth, 2007).
Hundreds to thousands of metabolites can be separated and
quantified in samples of interest such as plasma, CSF, urine or cell
extracts using a variety of commonly use metabolomics platforms
such as Nuclear magnetic resonance spectroscopy (NMR), Gas
chromatography with mass spectroscopy (GC–MS), Liquid chromato-
graphy with mass spectroscopy LC–MS, and liquid chromatography
electrochemical array detection (LCECA) (Dettmer et al., 2007; Dunn,
2008; Weckwerth, 2007). Clearly, none of these platforms alone can
capture the total complexity of the metabolome. However, some of
these platforms are more suited for the study of specific pathways and
can be used to test hypothesis about disease mechanisms, while
others are more suited for looking more globally at metabolism in a
non targeted way to generate new hypothesis.

Combinations of techniques can be used to augment separations
and/or expand the analyte information acquired (Williams et al.,
2006). These datasets must be then collected and curated, a process
that can take significant time for the overall experiment. After
curation, the data are analyzed by one or more software packages
designed for studies of datasets that are far too large for human
evaluation. A database is then generated for the diseased patients and
another for the controls or for the same patients before and after drug
therapy. These databases include levels of detectable metabolites and
identity (or a description of the properties) of the metabolites, i.e.,
oxidation–reduction potential, mass/charge ratio etc. whenever
known. Next, we briefly highlight some general features of the
metabolomics platforms that are currently used.

NMR spectroscopy-based metabolomics
For a comprehensive review of this platform the reader is referred

to recent in depth review (Coen et al., 2008; Beckonert et al., 2007).
NMR is an analytical platform that allows the reliable detection and
quantification of wide range of metabolites (high universality, i.e., will
detect any hydrogen containing metabolite) present in complex
biological fluids at micromolar concentrations. “Whole” samples can
be analyzed, thus NMR is considered to be non-destructive technique
with low handling and preprocessing times. There are multiple
examples in the literature of the application of NMR metabolomics in
the result of the interaction between environmental factors and the genome. These
lome. Biomarkers can be identified by focusing on any of these levels and using omics-
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CNS disorders including, Huntington's [results in a murine model
(Tsang et al., 2006b)]; studies on tissue and plasma in a rodent model
of traumatic brain injury (Viant et al., 2005); and studies in patients
with schizophrenia (Holmes et al., 2006).

MS-based methods for metabolomics
For a comprehensive review on MS applications in metabolomics

research the reader is referred to recent reviews (Dettmer et al., 2007;
Dunn, 2008; Fiehn, 2008). MS-based approaches represent universal,
yet sensitive tools to characterize, identify, and quantify the plethora
of compounds present in a biological tissue or body fluid (Dettmer
et al., 2007). Prior to analysis, biological samples need to be separated
using chromatography, commonly either gas or liquid chromato-
graphy (GS and LC); and subsequently, metabolites are identified
using a mass spectrometer. The use of MS for metabolomics research
in CNS disorders provides a number of advantages, allowing the
detection of many metabolite classes at physiological concentrations
including amino and organic acids, fatty acids, sugars, sugar
phosphates, bile acids, lipids and nucleotide bases. MS has the ability
to identify known as well as newmetabolites (not currently described
in databases) in a relatively straightforward fashion. This is mainly
through the measurement of molecular mass (thereby molecular
formula) or by allowing the inference of molecular structure using
fragmentation mass spectra.

GC–MS
The combination of Gas chromatography (GC) with MS is a well-

developed and robust tool that has been applied for many years. Thus,
GC–MS has been one of the major analytical drivers in the early
developments of metabolomics. GC–MS allows the detection and
quantification of many metabolite classes including amino and
organic acids, fatty acids and some lipids, sugars, sugar alcohols and
phosphates, amines, amides and thiol containing metabolites. This
technique has become highly developed because of high sensitivity,
high chromatographic resolution, wide range of detectable metabolite
classes and the ability to identify metabolites through the production
of mass spectral/retention index libraries or by comparison to
commercially available libraries. GC–MS offers structural information,
reasonable quantitative precision and high throughput. However,
there are some disadvantages to using GC–MS for metabolite profiling
and the identification of biomarkers for CNS disorders, including
involved sample preparation that requires extraction as well as
derivatization to improve volatility; and the limits on the size and type
of molecule that can be analyzed (e.g., nonvolatile, polar macro-
molecules are unsuitable). In spite of these limitations, there are
several successful examples of the application of GC–MS for
metabolomics research in CNS disorders (Underwood et al., 2006;
Paige et al. 2007).

LC–MS
Thisflexible andsensitive analytical platform is used to characterize,

identify, and quantify a large number of compounds in a biological
sample where metabolites are present at very different concentrations
(Dunn, 2008). LC encompasses a range of systems including high
performance liquid chromatography (HPLC) and capillary liquid
chromatography, among others. Metabolic profiling using LC–MS can
be hindered by issues related to the chromatographic resolution, effect
of matrix effects (ionization suppression) on co-eluting metabolites
and influence of column chemistries employed. Nonetheless, LC–MS
has been used successfully for metabolomic studies in CNS disorders
[e.g., virus infection induced neurodegeneration (Wikoff et al., 2008)].
Importantly, to handle and process LC–MS data, processing pipelines,
repositories and databases have been developed (e.g., METLIN; http://
metlin.scripps.edu/). Incorporation of collections of spectroscopic and
chemical data aids in metabolite identification through accurate mass
measurement and isotopic-pattern evaluation.
Electrochemistry based metabolomics platform—LCECA
This metabolomics platform allows differential detection and

quantification of small molecules on the basis of their oxidation–
reduction potentials, representing a subset of the metabolome that
includes molecules amenable to oxidation–reduction, such as neuro-
transmitters and related pathways. This particular platform is ideal for
application to the study of the tryptophan and tyrosine pathways that
lead to monoamine neurotransmitters since most of the metabolites
within these pathways can be measured quantitatively in this fashion.
LCECA has been used to define signatures in motor neuron disease
(Rozen et al., 2005) and recently in PD (Bogdanov et al., 2008).

From the above-mentioned overview, it should be apparent that
none of the platforms could provide a complete characterization of the
full universe of metabolites present in biological fluids. Hence, a
valuable approach might be the combination of the platforms to
derive comprehensive information from the same set of samples.

Extracting information from metabolomics datasets

For a comprehensive review of data analysis approaches the reader
is referred to (Marie Brown et. al., 2005). The application of software
tools for the analysis of the metabolomic data sets contained in a
database is required for the identification of disease signatures,
classification of groups of interest (e.g., disease or control, pre- or
post-drug exposure) and for the identification of unrecognized groups
in the data (e.g., drug response subgroups; Altmaier, 2008).
Metabolomics data sets can be analyzed with a range of statistical
and machine-learning algorithms (Marie Brown et al., 2005; Sajda,
2006; Shin and Markey, 2006; Lindon and Nicholson, 2008). Methods
can be classified within two major classes: unsupervised and
supervised. Unsupervised algorithms find patterns in the datawithout
any biases. Examples of unsupervised methods that have been
routinely used in analyzing molecular fingerprinting data include
principal component analysis (PCA) and self-organizing maps
(unsupervised competitive-learning network algorithms which form
a nonlinear projection of a high-dimensional data manifold on a
regular, low-dimensional grid) (Meinicke et al., 2008; Zou and
Tolstikov, 2008). These methods are usually guided by the largest
average differences between the groups, and are thus very sensitive to
outliers. Given that the groupings originate from the data itself, rather
than from the analyst, the methods are also very sensitive to how the
experiments were carried out. These methods are best used to reveal
unknown patterns in the data, but their interpretation needs to be
highly connected to the experimental details. Their application is
important in the sense that they provide a kind of quality control, by
which we will verify which are the most salient features of the data.
An example of the application of artificial neural networks in CNS
disorders, includes the use of self-organizing maps to identify
differences in the levels of platelets fatty acids between healthy and
depressed individuals (Cocchi et al., 2008).

Supervised algorithms require that samples be labeled in groups a
priori, and they uncover the features (variables) that best discriminate
between those groups. Supervised methods have been applied to
molecular fingerprinting data, most often ANOVA, partial least squares
(PLS), and discriminant function analysis (DFA) (Mendes, 2002;
Shulaev, 2006).

Metabolomics for identification of signatures and biomarkers

Metabolomics has the potential to map early biochemical changes in
disease and hence provides an opportunity to develop predictive
biomarkers that can trigger earlier interventions (Kaddurah-Daouk
et al., 2007, 2008; Lindon et al., 2004; van der Greef et al., 2003). If
that turnsouttobethecasethen, thisfieldfits theBiomarkerConsortium's
criteria defining high-impact biomarker research (http://www.fnih.org/
index.php?option=com_content&task=view&id=595&Itemid=43).

http://metlin.scripps.edu/
http://metlin.scripps.edu/
http://www.fnih.org/index.php?option=com_content&task=view&id=595&Itemid=43
http://www.fnih.org/index.php?option=com_content&task=view&id=595&Itemid=43
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Theconsortiumisapublic–privateresearchpartnershipof theFoundation
for NIH that has developed a number of key criteria that should be taken
into account when considering any type of research aimed to the
identification of biomarkers.

Although metabolomics is not explicitly described, adapting their
criteria tofield ofmetabolomics, it is possible to say thatmetabolomics-
driven biomarker research is important by focusingon knowledge gaps,
namely identifying metabolic signatures of disorders and treatment
responses via the refine dissection of perturbations in biological
pathways and networks; translational given that metabolomics has as
a goal to improve patient care; transformational by improving the
process of biomarkers discovery via the characterization of the
metabolome, a sum of endogenous products which capture the
dynamic interactions between the genome and the environment in
health and disease; feasible by having a realistic timeframes given that
many of the platforms for metabolomic research have already been
developed and continue to be refined; practical by building on
preexisting resources that include for instance the growing number
of metabolites databases (e.g., pathway databases and viewers such as
KEGG) and collaborative research networks (e.g., The Metabolomics
Network for Drug Response Phenotype).

Deriving signatures and biomarkers from a highly dynamic metabolome

Metabolic signatures can be obtained using some of the plat-
forms described above. For CNS disorders quantitative or qualitative
variation in metabolites could give rise to discovery of disease
biomarkers. Two implicit assumptions in this logic are that 1) under
normal conditions, there are consistent patterns in the metabolome
that are disturbed in the context of disease states; 2) differences
between the normal and the disease state can be identified reliably,
over and above, the strong day-to-day variability in the highly
dynamic- and environmentally influenced-, human metabolome.
Notably, a growing amount of evidence supports the notion that
metabolomics could lead to the identification of biomarkers by
revealing stable changes in the metabolome traceable using spe-
cific analytical platforms. However, there are pitfalls and confound-
ing factors that need to be dealt with before a reliable biomarker that
is disease-specific is identified. Next we briefly describe work
demonstrating the existence of relatively stable metabolomic
signatures in healthy individuals. In the next section, we review
work substantiating the presence of disease-specific changes in the
metabolome.

Despite that individuals' metabolic profile is partially influenced by
multiple factors (including genotype, age, lifestyle, environmental
factors, nutritional status, assumption of drugs, etc), the existence of
an invariant part of the individual metabolome in “healthy” subjects
should allow the identification of disease-associated variants that
might serve as biomarkers. In other words, there are portions of the
metabolome shared at the population level; as well as, individual-
specific components. Indeed, biochemical analysis of human plasma
samples using HPLC separations coupled with coulometric electrode
array detection, allowed the identification of markers/metabolites in
human plasma. It was concluded that the use of metabolomics
markers in human clinical trials and epidemiological studies was
warranted (Shurubor et al., 2007).

That the metabolome has an invariant part has also been docu-
mented in a recent study (Assfalg et al., 2008). In this work, metabolic
fingerprints were generated by one-dimensional NMR spectroscopy
from multiple urine samples collected from a group of healthy
subjects. Using multivariate models that reduced inter-subject
differences and minimized intra-subject variability the authors
demonstrated the existence of an “individual metabolic phenotype”,
that was shown to constitute a strong characteristic of each donor as
to allow its identification with 100% probability. Applying a
projection/back-projection approach, the authors were able to obtain
this “core” profile free from random daily noise factors. Many studies
conducted by Drs, Matson and Kaddurah-Daouk confirm that indeed
there is a metabotype that is unique for each individual (personal
communication). In sum, despite being highly dynamic, the meta-
bolome in healthy subjects might have core properties that are stable
over time. This self-similarity of each of us is disruptedwhen a disease
occurs resulting in a disease signature that is measurable above all
variations (Assfalg et al., 2008; Shurubor et al., 2007, Matson et al.,
unpublished results).

Metabolomics–genetics interface
Importantly, there is mounting evidence suggesting that genetic

variability in individuals belonging to different populations, and hence
having diverse genetic make-up, can be captured by current methods
used to characterize the metabolome (Dumas et al., 2007). In other
words, metabolomics also has the potential to aid in the characteriza-
tion of the relationships between genomic and phenotypic variation.

Metabolomics, effects of environmental factors and biomarker discovery
One of the aspects of metabolomics as a tool for discovery of

biomarkers is its ability to capture characteristics that emerge from
the interaction between individual and environmental factors. As
demonstrated by the results of a recent landmark study (Holmes et al.,
2008a,b), considering this interaction might be critical in the
identification of disease biomarkers and understanding of disease
pathogenesis. In their work, the researchers derived NMR spectra
from two 24-hour urine specimens for 4630 subjects belonging to four
human populations with contrasting geographical location, diets,
diet-related major risk factors, and coronary heart disease/stroke
rates. They found significant differences between populations in their
NMR spectra and that; among discriminatory metabolites there were
associations between specificmetabolites andbloodpressure (multiple
regression analyses for individuals). The authors concluded that their
work provide the basis for a new ‘metabolome-wide association’
approach in molecular epidemiology to help understand the complex
interactions of lifestyles, environment and genes that determinemajor
diseases. Remarkable, this approach provides unique opportunities for
biomarker discovery.

Metabolomic applications in the study of CNS disorders

The examples provided below illustrate how the use of advanced
metabolomic platforms permits a global and integrated analysis of
biochemical pathways and metabolic changes occurring in a disorder.
Ideally, this global mapping of biochemical abnormalities would
facilitate the understating disease pathogenesis and the identification
of clinically relevant biomarkers.

Metabolomic signatures in motor neuron diseases (MND)

Using high performance liquid chromatography followed by
electrochemical detection (LCECA), our group profiled blood plasma
from 28 patients with MND and 30 healthy controls (Rozen et al.,
2005). Of 317 metabolites, 50 were elevated in MND patients and
more than 70 were decreased (pb0.05). Among the compounds
elevated, 12 were associated with the drug Riluzole, an inhibitor of
glutamate release effective that has some beneficial effect on the
illness (Rozen et al., 2005). Using multivariate regression techniques
(Rozen et al., 2005), we were able to identify a distinctive signature of
highly correlated metabolites in a set of four patients, three of whom
had lower motor neuron (LMN) disease (Fig. 2). Furthermore, we
defined a metabolic signature that was independent of the drug
Riluzole (illness-related) by profiling patients who were off medica-
tion (Rozen et al., 2005). Collectively, these results suggest that
metabolomic studies can be used to ascertain metabolic signatures of
disease using easily accessible samples like plasma.



Fig. 2. Plasma Metabolomic signature of MND. Model using projections into three dimen-
sions provided statistically significant separations between subgroups (pb0.01 by permuta-
tion test—random assignment of samples to subgroups). Model includes the four patients
with a distinctive signature, three of whom had LMN disease, indicated by an asterisk.
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Metabolomics studies in Parkinson's disease (PD) and Huntington's
disease (HD)

A recent study by Bogdanov and colleges conducted interesting
work defining metabolomic signatures in PD. They included 25
controls and 66 PD patients and used LCECA to create a database
representing 2000 signals from plasma samples. Multivariate data
analysis revealed separation of the metabolomic profile of medicated
and unmedicated patients and controls. Markers of oxidative damage
and the antioxidant glutathione were significantly increased in PD
patients. Uric acid levels were significantly decreased. Interestingly,
alike glutathione, uric acid is also an antioxidant and higher uric acid
levels lower risk for PD and slow the progression of the illness.
Together, these findings show that metabolomic profiling with LCECA
coulometric array has great promise in the identification of biomarkers
for both the diagnosis, as well asmonitoring disease progression in PD.

Another neuropsychiatric disorder in which metabolomic studies
have been performed is HD. In an interesting cross-species study,
serum samples from a transgenic mouse model of HD and patients
with HD were studied using gas chromatography-time-of-flight-mass
spectrometry (Underwood et al., 2006). The investigators observed
clear differences in metabolic profiles between transgenic mice and
wild-type littermates (healthy mice), with a trend for similar
differences in human patients and control (Underwood et al., 2006).
Potential markers were related to fatty acid breakdown (including
glycerol andmalonate) and also to certain aliphatic amino acids. Taken
together, the findings of this study suggest the interesting possibility
that the metabolites responsible for distinguishing transgenic mice
also comprised a metabolic signature tentatively associated with the
human disease. Results from another murine model of HD have also
highlighted the usefulness of metabolomics to study disease patho-
genesis and identify potential biomarkers (Tsang et al., 2006b).

Metabolomics in psychiatric disorders

For more comprehensive review of this subject the reader is
referred to Kaddurah-Daouk et al. (2009). Using plasma samples and
sophisticatedmetabolomics analytical platforms and informatics tools
we have begun to define biochemical pathways implicated in the
pathogenesis and treatment response in schizophrenia and Major
Depressive Disorder (MDD).

Findings from metabolomics studies in depression
Metabolomic analysis of blood plasma was performed on nine

depressed, 11 remitted, and ten never-depressed older adults (Paige et
al., 2007). Hundreds of metabolites were measured using GC–MS and a
library of 800 commercially available human metabolite standards
helped in compound identification. Metabolites that were altered in
currently depressed patients when compared with controls included
several fatty acids, glycerol and gamma-aminobutyric acid (GABA).
Analyses comparing concentrations in remitted and currently depressed
patients revealed a pattern of metabolite alterations similar to the
control vs. currentlydepressedanalyses (Fig. 3). Onedifferenceobserved
in the remitted patients relative to the depressed patients was elevation
of the concentration of the ketone 3hydroxybutanoic acid (Fig. 3).

These results will need to be examined and validated in larger
longitudinal cohorts. However, these findings suggest that the de-
pressed state may be associated with alterations in the metabolism of
lipids and neurotransmitters, and that treatment with antidepressants
adjusts some of the aberrant pathways in disease so that the patients
in remission have a metabolic profile more similar to controls than
to the depressed population. An evaluation of such changes in CSF
samples is needed to establish how closely these findings are to
central changes.

Signatures in schizophrenia and its treatment
Several metabolomics studies have recently been conducted in an

attempt to better define pathways modified in schizophrenia and its
treatment (Holmes et al., 2006; Huang et al., 2007; Kaddurah-Daouk
et al., 2007; Khaitovich et al., 2008; Tsang et al., 2006a). In one study
(Kaddurah-Daouk et al., 2007) we used a specialized lipidomics
platform and measured more than 300 polar and nonpolar lipid
metabolites (structural and energetic lipids) across 7 lipid classes to
evaluate global lipid changes in schizophrenia before and after
treatment with three commonly prescribed atypical antipsychotics,
olanzapine, risperidone, and aripiprazole. Lipidomics is a branch of
metabolomics that specifically focuses on comprehensive assessment
of lipid biochemistry (German et al., 2007; Wenk, 2005; Wolf and
Quinn, 2008). In this particular study, lipid profiles were obtained for
50 patients with schizophrenia before and after 2–3 weeks of
treatment with olanzapine, risperidone, or aripiprazole. At baseline,
and prior to drug treatment, major changes were noted in two
phospholipids classes, phosphotidylethanolamine (PE) and phospho-
tidylcholine (PC), suggesting that phospholipids that play a key role in
proper membrane structure and function seem to be impaired in
patients with schizophrenia (Kaddurah-Daouk et al., 2007, Fig. 4). This
confirmed previous observations but establishes a far more detailed
biochemical map for sites of perturbations.

The effects of three antipsychotic drugs, olanzapine, risperidone,
and aripiprazole, on lipid biochemical pathways were then evaluated
by comparing metabolic profiles at baseline to post treatment
(Kaddurah-Daouk et al., 2007). It was of interest that each of the
three drugs studied had a unique signature suggesting that while
these drugs share some effects, they also have many effects that are
unique for each. PE concentrations that were suppressed at baseline in
patients with schizophrenia were elevated after treatment with all
three drugs. However, olanzapine and risperidone affected a much
broader range of lipid classes than did aripiprazole, with approxi-
mately 50 lipids that were increased after exposure to these drugs, but
not after aripiprazole therapy (Kaddurah-Daouk et al., 2007). On
balance, aripiprazole induced minimal changes in the lipidome,
consistent with its limited metabolic side effects. There were also
increased concentrations of triacylglycerols and decreased free fatty
acid concentrations after both olanzapine and risperidone, but not
after aripiprazole therapy (Kaddurah-Daouk et al., 2007).

All of these changes suggest peripheral effects that might be
related to the metabolic side effects that have been reported for this
class of drugs. Collectively, these results raised the possibility that a
more definitive long-term randomized study of these drugs in which
global lipid changes would be correlated with clinical outcomes
might yield biomarkers related to response and development of side
effects.



Fig. 3. Plasmametabolic signatures in active and remitted depression. Metabolomic analysis of blood plasmawas performed using Gas chromatography–mass spectrometry (GC–MS)
on samples from nine depressed, eleven remitted, and ten never-depressed older adults. Metabolite identification was based on a combination of chromatographic properties and
mass spectra. A library of 800 commercially available human metabolite standards analyzed on a GC–MS platform helped in compound identification. Metabolites that were altered
in currently depressed patients when 23 compared with controls included GABA glycerol (top and bottom left panels, respectively) and several fatty acids (e.g. stearate, top right
panel). Analyses comparing concentrations in remitted and currently depressed patients revealed a pattern of metabolite alterations similar to the control vs. currently depressed
analyses. One difference observed in the remitted patients relative to the depressed patients was elevation of the concentration of the ketone 3-hydroxybutanoic acid (bottom right
panel). Figure from Paige et al. (2007).
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In additional metabolomics studies in schizophrenia using NMR
spectroscopy-based metabonomic analysis plasma samples from 21
pairs of monozygotic twins discordant for schizophrenia and 8 pairs of
age-matched healthy twins demonstrated alterations in lipid profiles
of both affected and unaffected schizophrenia twins (Tsang et al.,
2006a). In another study of CSF samples from drug-naïve patients
with first-onset schizophrenia, suggested alterations in glucose
regulation an abnormality that seems to get corrected by early
treatment with antipsychotics (Holmes et al., 2006). Finally, an
interesting metabolomic study on postmortem tissue provides
support to the notion that abnormalities at the level of glutamatergic
Fig. 4. Heat map showing differences in individual lipid metabolites in the plasma of patien
metabolites as they appear in each distinct lipid class (rows). Lipids whose percent levels we
shown in green (Kaddurah-Daouk et al., 2007).
neurotransmission and myelin synthesis play an important role in
schizophrenia (Tkachev et al., 2007).

The future of metabolomics as a tool for biomarker discovery and
knowledge integration

This section describes where the field of metabolomics might be in
the next years and strategies to aid in the construction of a
biochemical roadmap for the study of CNS disorders. The suggested
roadmap could generate a wealth of information to guide the
identification of biomarkers.
ts with schizophrenia as compared to controls. The column headers indicate fatty acid
re higher in patients vs. controls are shown in red while those with decreased level are
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Metabolomics and biomarker discovery in the context of system biology,
translational research and personalized medicine

The final decades of the twentieth, and beginning of the twenty-
first, centuries havewitnessed a revolution in biomedical research. It is
now clear that understanding disease can be defined as the ability to
classify, a pathological state using phenotypic observations and
molecular diagnostics; explain how perturbed molecular processes
cause the disease state; and define the mechanisms underlying these
perturbations (e.g., genetic polymorphisms, pathogens, environ-
mental factors, etc) (Hood et al., 2004; Kell, 2006; van der Greef
et al., 2007). Reaching this high-degree of sophistication in our
understanding of disease, calls for the combined use of high-
throughput readouts to profile many genes, proteins and metabolites
(Hood et al., 2004; Kell, 2006; van der Greef et al., 2007). This vision is
at the core of systems biology, a science that combines multiple
biological data streams (from gene and metabolites to organism) to
enable a profound understanding of interdependent biological
processes (Hood et al., 2004; Kell, 2006; van der Greef et al., 2007).
This enormous network of knowledge will be critical both for
understanding biological systems and for accurately preventing,
diagnosing, monitoring and treating disease (Ahn et al., 2006a,b; van
der Greef et al., 2007).

Metabolomics will continue to be a centerpiece in systems biology
(Kell, 2004; Nicholson, 2006; van der Greef et al., 2003, 2006). An
individual's metabolic state is a close representation of the indivi-
dual's overall health status. This metabolic state reflects what has
been encoded by the genome;modified by environmental factors; and
in case of abnormal states, what is disrupted during pathological
states. As described in the next section, given that complex disease
states like schizophrenia or PD are likely to be underlie by disruptions
at the system level, the use complimentary omic platforms may
provide a more comprehensive picture suitable for the identification
of biomarkers.

A powerful approach for the characterization of disturbances in
biological networks that will continue to gain momentum is the
concurrent use of array technologies that measure global changes at
the genomic, proteomic and metabolomic level [e.g., (Pir et al., 2006;
Trauger et al., 2008; Coen, 2004; Lindon and Nicholson, 2008)]. In this
so called ‘top-down’ systems biology, the main objective is to discover
new molecular mechanisms using an iterative cycle that starts with
experimental data generated from array technologies, followed by
data analysis and integration to capture a fuller picture of gene–
protein–metabolite dynamics in a system. Thus, successful discovery
of biomarkers is likely to benefit from the use of complementary
approaches. For instance, functional genomics comparing gene
expression profiles between normal and diseased can be hindered
by gene expression not necessarily translating into changes in proteins
or change of cellular processes. Thus, simultaneously capturing
genomic, proteomic and metabolomic data would be helpful in
determining how gene expression patterns result in specific protein
expression, pathway activation and metabolomic changes. Two
examples of research involving a combined genomics (gene expres-
sion) and metabolomic analysis used the brain tissue from schizo-
phrenics, bipolar patients and control tissue and found that these
platforms pointed to compromised brain metabolism and oxidative
stress in BD (Prabakaran et al., 2004) and schizophrenia (Khaitovich et
al., 2008).

Clinical implications of metabolomic research and identification of
biomarkers

Today, clinicians capture only a very small part of the information
contained in the metabolome, as revealed by a defined set of blood
chemistry analyses to define health and disease states. Examples
include measuring glucose to monitor diabetes and measuring
cholesterol for cardiovascular health. Such a narrow chemical analysis
could potentially be replaced in the near future (5–10 years fromnow)
with a metabolic signature that captures global biochemical changes
in disease and upon treatment. Replacing single-molecule biomarker
analysis with metabolomics-based multiparameter diagnostics may
represent an extremely promising advance toward early detection of
diseases such as PD. However, sensitivity (the ability of diagnostic test
to identify all patients with the illness) and specificity (the ability of a
test to identify all patients without an illness) is an issue that remains
to be addressed in metabolomics studies. For a biomarker to be useful
in the diagnosis of any condition, it should have a sensitivity and
specificity of N85%.

So in the years to come, metabolomics will continue adding
significantly to our understanding of individual effects of environ-
mental challenges (including responses to medications) as well as
phenotypic correlates of genetic variation. This information, sup-
ported by the existence of an “individual metabolic phenotype” as
described earlier in this review, would be helpful in the studies aimed
to identify biomarkers for CNS disorders or prediction of treatment
response (as well as liability to side effects).

Role of pharmacometabolomics in personalized medicine
Metabolomics is expected to play a pivotal role in the development

of personalized medicine (Bren, 2005; Nicholson, 2006; van der Greef
et al., 2006, Kaddurah-Daouk et al., 2007, 2008). This field is based on
the notion that given the uniqueness of each individual's DNA (except
by twins); there seems to be a parallel uniqueness in an individual's
metabolic and state that defines how one will respond to particular
treatment. Indeed, a better understanding of the biochemical
variation of response to medications and availability of biomarkers
predictive of response would enable physicians to better select the
right drug for their patients, in other words to personalized therapy.
The application of metabolomics to the study of drug responses and
the identification of biomarkers of responses has also evolved in the
new field of pharmacometabolomics (or pharmacometabonomics).
Pharmacometabolomics complements research on pharmaco-
genomics aimed to characterize how genetic polymorphisms affect
individual responses to medications and hence, probabilities of
beneficial or adverse effects. Pharmacometabolomics builds on the
notion that metabolic profiling might be helpful in predicting
response and side effects. By focusing on the metabolome, pharma-
cometabolomics is sensitive to both the genetic and environmental
influences that determine the basal metabolic fingerprint of an
individual, as these will also influence the outcome of a pharmaco-
logical intervention. Notably, with funding from National Institute of
General Medical Sciences (NIGMS), we have established a national
network called “Metabolomics Network for Drug Response Pheno-
type” to start to explore applications of metabolomics in under-
standing pathways implicated in variation to drug response for drugs
such as, Statins used for cardiovascular health and SSRIs (selective
serotonin reuptake inhibitors) commonly used for the treatment of
depression; and potentially, to identify biomarkers of treatment
response (Kaddurah-Daouk et al., 2008).

Maximizing the potential for biomarker identification usingmetabolomics

Using nonaffected relatives. A limitation in the studies aiming to
identify biomarkers in CNS disorders relates to difficulties in the
identification of individuals prior to the development of their illness or
early in the course of their disease. Likewise, inmany cases it is not easy to
recruit sufficient numbers of medication naïve or unmedicated patients.
Given thepivotal role of genetics inmanyof the illnesses affecting theCNS,
it is possible to conduct studies comparing nonaffected relatives of
patients with the illness and healthy controls. Finding biochemical
abnormalities innonaffectedrelatives couldbehelpful in the identification
of biomarkers assessing the risk to develop the illness.
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Focusing on longitudinal and larger studies. Current metabolomics
research only illustrates the first steps towards the delineation of a
metabolic signatures and biomarkers for the illnesses discussed in this
review. Longitudinal studies are needed to confirm and expand on
these initial findings. Moreover, preliminary metabolomics data so far
are derived from only a small patient population using a couple of
metabolomics platforms that captures a subset of the metabolome.
Although this work exemplifies the potential for metabolomics in the
study of several neuropsychiatric disorders, future studies will have
larger samples and will be prospective in nature. Important
considerationwill continue being given to carefully matching patients
and controls; and taken into account the possible confounding effects
of other medications and disease. Replication and validation studies
will continue to be needed in independent sets of patients and
controls.

Standardization of protocols for experiment design, analysis and
publication. At least two facts suggest that future studies will
benefit from following research guidelines established by researchers
working in the field: 1) the metabolome is highly dynamic and can be
affected by a multitude of environmental factors; and 2) as described
above, there are several platforms suitable for assaying the
metabolome and analyzing data outputs. Addressing these t{es_def}
LOGOS/Gulliver/print/elseviertree_print_gray.tifwo issues, major
initiatives [e.g., Metabolomics Standards Initiative (Sansone et al.,
2007); full issue of Metabolomics Journal 2007 and Standard
Metabolic Reporting Structures Group (Lindon et al., 2005)] have
focused on outlining guidelines that cover many important aspects in
metabolic studies and reporting of metabolomics findings including
collection of a biological samples (focusing on accounting for potential
confounders such as fasting vs. nonfasting status in subjects), the
analysis of material from that sample and chemometric and statistical
approaches, and retrieval of information from the sample data. This
will help create a common language among researchers in the field.

Connecting central and peripheral changes in the study of CNS
disorders. Most of the studies described in this review applied
diversemetabolomic platforms and assayed blood samples (plasma or
serum). There are some advantages and limitations related to the use
of peripheral samples. On one hand, the use of blood samples is
practical given the accessibility of human plasma and the vast medical
laboratory infrastructure already in place for its analysis, this is likely
to remain the preferred diagnostic material for the foreseeable future.
Thus, the identification of peripheral metabolomic signatures of
neuropsychiatric illnesses is likely to have more potential for
translation into the clinical realm. Importantly it is critical in future
studies to verify that there are disease related signatures, that maybe
subrogates of changes in the brain, and hence could provide clinical
information and clues about disease pathogenesis (Kaddurah-Daouk
et al., 2009).

On the other hand, there is a limited amount of research
correlating findings seen peripherally and centrally (brain tissue or
cerebrospinal fluid—CSF). However, an obvious challenge to conduct-
ing metabolomic studies linking peripheral and central, is the limited
access to brain tissue. CSF can be collected following a lumbar
puncture, and despite that this fluid is commonly used as a proxy for
brain changes in CNS disorders (Raedler and Wiedemann, 2006), the
need for special training for collection and the risk associated to the
procedure, have limited the amount of studies conducted using this
resource. Nevertheless, some evidence seems to suggest that central
(CSF) changes in potential biomarkers might be correlated with
changes in the periphery (blood; plasma or serum). For instance
measurement of inflammatory markers in paired plasma/CSF samples
of healthy human volunteers revealed a correlation between central
and peripheral levels (Maier et al., 2005). This also seems to be the
case for somemetabolites. Plasma free tryptophan is clearly correlated
with brain tryptophan concentration. Indeed, it has been suggested
that plasma free tryptophan concentration provides an index of CSF
tryptophan and 5-HT turnover in the brain (Curzon, 1979).

Likewise, CSF and serum/plasma concentrations of vitamin
biomarkers are significantly correlated. Strikingly, the correlation
between serum and CSF-folate can be as high 0.69 (Obeid et al., 2007).
Another example is the levels of the side chain oxidized oxysterol
24Shydroxycholesterol, a potential maker of brain injury, which
formed almost exclusively in the brain; and whose levels in plasma
and CSF are highly correlated (Leoni et al., 2003).

Nonetheless, limited amount of evidence also suggests that
abnormalities in the blood level of certain metabolites (plasma or
serum) might not be correlated with central abnormalities (Levine et
al., 2005). Thus, additional research using metabolomics-based
approaches is needed to define metabolites whose central and
peripheral levels are linked and how these correlations are influence
by neuropsychiatric illnesses. Comparative studies in CSF (or post-
mortem brain tissue itself) and blood could help map central and
peripheral changes in neuropsychiatric disorders, enabling a more
accessible way for biomarker development in blood but ensuring that
these peripheral biomarkers are reflective of central changes. Given
the importance of this issue and the limited amount of data, currently
we are evaluating the concurrent use of postmortem brain tissue and
CSF for metabolomic analysis. These types of studies are critical
milestones to be reached in the developing field of metabolomics.

Indeed, the process of linking the metabolic profiles defined on
blood and specimens derived from invasive sampling (e.g., CSF) is
critical to identify ‘bridging biomarkers’ of disease, as well as both
efficacy and toxicity medication. The latter will further ease the
management of clinical trials. This approach conforms well to FDA's
Critical Path Initiative that requests enhanced tools and biomarkers
for the improvement of clinical trial design and throughput (http://
www.fda.gov/oc/initiatives/criticalpath/whitepaper.html).

Conclusions

Metabolomics, the study of the complete repertoire of small
molecules in cells, tissues, organs, and biological fluids, represents a
major and rapidly evolving component of the new biology. The
development of a series of analytical platforms, NMR, GC–MS, LC–MS,
and LCECA, among several others all capable of accurately measuring
hundreds or thousands of small molecules in biological samples,
promises to substantially advance our understanding of disease
pathophysiology and making possible the discovery of biomarkers
for multiple disorders.

The application of metabolomics technologies to the study of
neuropsychiatric disorders will enable simultaneous measurement of
many metabolites in key interacting pathways. From these studies
numerous new biomarkers will emerge. Measured collectively these
biomarkersmight providehighly relevant clinical information. In-depth
knowledge of metabolic perturbations linking neuropsychiatric dis-
orders, multiple biochemical pathways, and treatment effect–response,
should provide valuable insights into disease pathophysiology and
could provide novel approach for therapeuticmonitoring and outcome.

Given that metabolomics has the potential to map early biochem-
ical changes in disease and might provide an opportunity to develop
predictive biomarkers that can trigger earlier interventions. Likewise,
metabolomics could provide the means to sub-classify diseases, better
design of clinical trials based on sub-classification of patients, early
monitoring of drug effects in each patient, and timely mapping of the
beneficial and side effects of drugs (pharmacometabolomics). Indeed,
the potential to use biomarkers for identifying patients that are more
likely to benefit or experience an adverse reaction in response to a
given therapy, and thereby better match patients with therapies, is
anticipated to have a major effect on both clinical practice and the
development of new drugs and diagnostics (Trusheim et al., 2007).

http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html
http://www.fda.gov/oc/initiatives/criticalpath/whitepaper.html
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There can be little doubt that the addition of metabolomic analyses
to genomic, transcriptomic and proteomic assays will greatly enhance
our understanding of mechanisms underlying the pathogenesis of
illnesses and drug effects. Multiomics approaches based on the
analysis of different body fluids and tissues with various profiling
platforms promise to provide deeper insights into CNS disorders.
Different profiling platforms can capture dynamic alterations, their
response to treatment and the contribution of environmental factors
to the onset. Therefore, biomarker discovery experiments based on
profiling approaches facilitated by recent technical development are
likely to make a great contribution to uncovering disease mechanisms
in complex psychiatric disorders. Serious consideration should be
given to the concurrent analysis of global metabolic changes
peripherally (blood) and centrally (CSF) to establish how closely
abnormalities measurable in the blood are correlated to changes in the
brain. Collectively, these technologies offer great promise for the
identification of clinically relevant biomarkers for neurological and
psychiatric conditions.
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