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sentation, with increasing mortality worldwide. Current diagnos-
tic measures employing multiple criteria such as imaging,
cytology, and serum tumor markers are not satisfactory, and a
new diagnostic tool is needed. Because bile is a cognate metabo-
lite-rich bio-fluid in the biliary ductal system, we tested a new
metabolomic approach to develop an effective diagnostic tool.
Methods: Biles were collected prospectively from patients with
cancer (n = 17) or benign biliary tract diseases (n = 21) with per-
cutaneous or endoscopic methods. Nuclear magnetic resonance
spectra (NMR) of these biles were analyzed using orthogonal par-
tial least square discriminant analysis (OPLS-DA).
Results: The metabolomic 2-D score plot showed good separation
between cancer and benign groups. The contributing NMR signals
were analyzed using a statistical TOCSY approach with verifica-
tion. The diagnostic performance assessed by leave-one-out anal-
ysis exhibited 88% sensitivity and 81% specificity, better than the
conventional markers (CEA, CA19-9, and bile cytology).
Conclusion: The NMR-based metabolomics approach provides
good performance in discriminating cancer and benign biliary
duct diseases. The excellent predictability of the method suggests
that it can, at least, increase the currently available diagnostic
approaches.
� 2009 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
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OBiliary tract cancer arises from epithelial cells of the intrahepatic
and extrahepatic bile ducts. Although this type of cancer is not
very common, it is highly lethal, since most are locally advanced
at presentation. Its incidence increases with age, and the mortal-
ity is increasing worldwide [1–4]. Patients with biliary tract can-
cer often present painless jaundice, pruritus, and/or anorexia.
Hepatic resection and liver transplantation are the only curative
options for this cancer, but the recurrence rate is high.

The diagnosis of biliary tract cancer is usually done based on a
combination of radiologic, histological, and tumor marker evi-
dence, because each of these approaches alone has drawbacks.
Tissue diagnosis, which could confirm the presence of cancer
cells, cannot be generally performed due to tumor location, size,
and desmoplastic characteristics [5–7]. For example, obtaining
tissues through percutaneous fine needle aspiration is frequently
not possible, since many of these tumors are located in the liver
hilum amid large vascular structures [8,9].

Serum tumor markers, including carbohydrate antigen 19-9
(CA19-9) and carcinoembryonic antigen (CEA), have been used
to diagnose biliary tract cancer [10–12]. These proteins are onco-
fetal antigens found at high levels in the fetal small intestine and
gastrointestinal tumors. CA19-9 is mainly used in pancreatic and
biliary tract cancer diagnosis, with sensitivities of about 80% and
60%, respectively [10,11]. However, it can also be elevated in
other malignancies such as pancreatic, colon, lung, and breast
cancers, and other benign conditions such as pancreatitis, bile
stasis, cholangitis, and inflammatory bowel disease. CEA is nor-
mally found in embryonic entodermal tissues and fetal gastroin-
testinal tissues, but also elevated in adult cancers, such as
pancreatic, stomach, lung, and hepatobiliary cancers [13]. There-
fore, these serum markers alone are not sufficient to diagnose bil-
iary tract cancers, and other benign biliary duct complications
can compromise their utility [14].

Bile cytology has been used widely for the diagnosis, because
bile can be obtained relatively easily with Percutaneous Transhe-
patic Cholangiography (PTC) and Endoscopic Retrograde Cholan-
gioPancreatography (ERCP). However, ERCP cytology alone gives
a low sensitivity of 35% [15], and additional brushing step was
reported to improve the sensitivity [16]. This brush cytology is
now the most common tissue sampling technique and it can be
09 vol. xxx j xxx–xxx
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Table 1. Clinical patient characteristics.

Biliary tract cancer Benign biliary tract
diseasef

Clinical parameters (n = 17) (n = 21)
Gender (M:F) 4.7:1 1.3:1
Age, yearsa 70.4 ± 10.6 59.4 ± 15.5
Methods of bile sampling
PTBD� 13 2
ENBD� 3 14
Operation 1 5
Cancer stagesb

I Ia: 5, Ib: 2
II IIa: 3, IIb: 2 –
III IIIa: 1, IIIb: 2, 11 Ic: 2 –
Diagnosis of cancerc

Operationd 5 –
Operation and Bile
cytologied

4 –

Bile cytologyd 3 –
Clinical and radiologicale 5 –

Out of 17 cancer patients, 9 patients were diagnosed by operation (Operation
(5) + Operation and Bile cytology(4)). In addition, three un-operated patients
showed positive in cancer cells in the drained bile. Therefore, total of 12 patients
(71%) were diagnosed either by operation or bile cytology. Overall, the sensitivity
of the bile cytology was 41%. For the rest of the cancer patients (five, 29%), his-
tological examination (bile cytology, brushing cytology, guided fine needle aspi-
ration) could not detect cholangiocarcinoma. However, radiological
(cholangiography and abdominal CT), and clinical (obstructive jaundice, weight
loss, abdominal pain or incidental abdominal mass detection) evidence justified
the diagnosis of cholangiocarcinoma. Moreover, all of the patients died of cancer
progression within one year of diagnosis, which gave additional support to our
diagnosis.
� PTBD, Percutaneous transhepatic biliary drainage; ENBD, Endoscopic nasobil-
iary drainage.
a Values expressed as the mean + SD (range).
b According to American joint committee on cancer staging manual (2002, 6th
Edition, Springer).
c All of the patients died of cancer progression within one year of diagnosis.
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performed for most biliary strictures detected by endoscopic chol-
angiography. Even with the brushing step, the reported sensitivity
is still low and variable, with its mean value around 60% [17–20].
Moreover, the additional procedure could increase the risk of
infection [21]. Overall, diagnosis of biliary tract cancer, especially,
differentiating it from benign clinical conditions, is quite difficult,
and new diagnostic approaches are highly needed [22].

Recently, a new ‘‘-omics” approach, called metabolomics, has
emerged as a promising tool to differentiate individuals in dis-
ease or toxic conditions [23]. Compared with other omics
approaches, metabolomics deals with smaller molecular metabo-
lites in the body these change depending on the subject’s envi-
ronmental states. It can be applied to any bio-fluid, such as
urine, serum, saliva, or bile, and is particularly useful for organs
that store or produce small molecular metabolites. Metabolomics
can be readily employed for new diagnostic approaches, as first
shown in a study with 36 coronary heart disease patients, where
it showed its utility as a rapid and non-invasive diagnostic tool
with high sensitivity and specificity [23,24]. Metabolomics has
subsequently shown promising results in diagnosing several can-
cers, such as those in breast, ovary, and prostate [25].

Here, we have applied pattern recognition techniques and
expert data analysis to NMR spectra of biles taken from individ-
uals with biliary tract cancer or benign biliary tract diseases. The
objective of this study was to evaluate the performance of meta-
bolomic diagnosis of biliary tract cancer in comparison with the
conventional diagnostic tools including serum tumor markers
(CA19-9, CEA) and bile cytology. Our approach gave good distinc-
tion between the cancer and benign diseases and better sensitiv-
ity and specificity than the other approaches. This metabolomic
approach may become a reliable and convenient diagnostic tool
for biliary tract cancer.
C
T

139
140
141

142

143
144
145
146
147
148
149

150

151
152
153
154
155
156
157
158
159
160

d These represent the gold standard of the biliary duct cancer diagnosis.
e Radiological evidence includes cholangiography and abdominal CT. Clinical
evidence includes obstructive jaundice, weight loss, abdominal pain or incidental
abdominal mass detection.
f One cancer patient had been treated with intrahepatic duct stone before the

cholangiocarcinoma.
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Patients and methods

Patients

Informed consent was obtained from every patient enrolled in this study and the
study protocol conforms to the ethical guidelines of the 1975 Declaration of Hel-
sinki. The study was approved before initiation by the Institutional Review Board
at the Inha University Medical School and Hospital.

We prospectively obtained bile samples from patients with biliary tract can-
cer and benign biliary tract diseases at the Inha University Hospital (Incheon,
Korea) between January, 2006, and August, 2007. Patients with severe biliary sep-
sis were excluded from this study. This study included 17 patients with biliary
tract cancer and 21 patients with benign biliary tract disease (Table 1). The
patient groups were not matched on gender, age or disease stages to maximize
patient diversity. There were no exclusion criteria except for biliary sepsis, which
severely distorts metabolite profiles but can be easily diagnosed with other meth-
ods as reported previously [26].

Assays and bile cytology

Serum CA19-9 and CEA were assayed with an immunoradiometric method and a
commercially available ELSA-CA19-9 and ELSA2-CEA (Cisbio International, Bed-
ford, MA). For patients with biliary tract cancer, routine diagnostic procedures
included abdominal CT scans or ultrasound. Upon identifying a duct stricture,
we performed percutaneous transhepatic biliary drainage (PTBD) or endoscopic
nasobiliary drainage (ENBD) as needed.

Sample collection

Bile samples were collected by PTBD, ENBD or during operation. The collected
biles were frozen at -80 �C immediately and freeze-dried in vacuo. Ten milligrams
of the dried samples were re-solubilized into 500 ll of a D2O + CD3OD mixture
2 Journal of Hepatology 200

Please cite this article in press as: Wen H et al. A new NMR-based metabolom
doi:10.1016/j.jhep.2009.11.002
containing 10 mM sodium phosphate (pH 6.0). Insoluble material was removed
by centrifugation, and 0.025% TSP was added for chemical shift referencing and
normalization.

NMR measurements

All spectra were obtained by an NMR spectrometer (Bruker Biospin Avance 500)
operating at a proton NMR frequency of 500.13 MHz. The acquisition parameters
were essentially the same as previously reported [27,28]. The time domain data
were Fourier transformed, phase corrected, and baseline corrected manually. This
study made use of the NMR facility at Korea Basic Science Institute, which is sup-
ported by Bio-MR Research Program of the Korean Ministry of Science and Tech-
nology (E28080).

Metabolomics data analysis

To reduce the complexity of the NMR data for pattern recognition, the spectra
were binned with 0.04 ppm width using an in-house Perl program. The signals
were normalized against total integration values, and then, 0.025% TSP signal.
The water and methanol regions were excluded. The numeric data were imported
into statistical software. Matlab (MathWorks, Natick, MA), SIMCA-P version 11.0
(Umetrics, Sweden), Chenomx (Spectral database; Edmonton, Alberta, Canada)
and Excel (Microsoft, Seattle, WA) programs were used for data analysis. Orthog-
onal projections to latent structure-discriminant analysis (OPLS-DA) were per-
formed to distinguish cancer and benign patient groups. The statistical
validation was performed using ‘‘Y-scrambling” validation, where the class mem-
9 vol. xxx j xxx–xxx
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bership was shuffled 200 times randomly, and the resulting Q2 and R2 values were
calculated. Prediction of the unknown samples was carried out by leave-one-out
analysis, as reported previously [29]. The conceptual explanation of these meth-
ods is given in Supplementary material S4.
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Fig. 1. Representative 500 MHz 1H-NMR spectra of bile samples from a benign
biliary tract disease patient (top) and a biliary tract cancer patient (bottom).
The spectra were taken for samples in 500 ll of D2O + CD3OD mixture containing
10 mM sodium phosphate (pH 6.0) and 0.025% TSP as a chemical shift reference.
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Fig. 2. Orthogonal projections to latent structure-discriminant analysis
(OPLS-DA) score plot of benign and cancer samples. Open triangle: Benign
samples; Filled box: Cancer samples. The model was obtained using one
predictive and four orthogonal component, with R2(Y) of 95% and Q2(Y) of 91%.
Pp represents the predictive component and Po represents the orthogonal
component.
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Results

Patient characteristics

The biliary tract cancer group included 13 Klatskin tumors, two
CBD cancers, one gallbladder cancer, and one intrahepatic chol-
angiocarcinoma. There were 17 bile duct stones, two benign bil-
iary strictures, one choledochal cyst, and one other disease in the
benign biliary tract group. Patient characteristics of the two
groups were different because of the epidemiology of biliary tract
cancer (Table 1). Bile sampling was also different between the
two groups because treatment options for the two groups
differed.

NMR spectra and multivariate analysis

We obtained NMR spectra of bile samples from both patient
groups. The general spectral features were similar, with large
peaks in the aliphatic region (2.3–0.8 ppm) corresponding to
the bile acids, cholesterol, fatty acids, and other lipid compo-
nents, present abundantly in bile (Fig. 1). To analyze the NMR
data holistically and to establish the prediction model for biliary
tract cancer, we applied OPLS-DA multivariate analysis to the
NMR data. The results revealed that analysis with signals upfield
of 6.0 ppm gave better separation (data not shown), probably due
to the aliphatic nature of the bile components. Therefore, we per-
formed the subsequent analysis with the 0–6.0 ppm region sig-
nal. The OPLS-DA distinction model was obtained using one
predictive (Pp) and four orthogonal components (Po) (Fig. 2).
The majority of the normal and cancer samples appear clustered
in their respective regions with only a few overlaps between
them. The model featured an overall goodness of fit, R2(Y), of
95% and an overall cross-validation coefficient, Q2(Y), of 91%.
Out of the overall R2(X) value of 0.87, 60% was structured but
uncorrelated to the response, and 27% was predictive. These
results show that there is considerable variation within each
group, but that our model can reliably differentiate between
them, even with large structured noise.

Statistical TOCSY analysis

With the efficient separation of the cancer and benign groups, we
further identified the variables responsible for the classification
rules. We utilized statistical total correlation spectroscopy (STO-
CSY), which can show the modeled correlation (P(corr)p) as NMR
lines, enabling straightforward interpretation of the variable con-
tributions [27,30,31]. The STOCSY plot (Fig. 3) shows that impor-
tant contributions for the separation come from signals at 1.50
(1), 1.06 (2), and 3.70 (3) ppm, which correspond to –CH2–, –
CH3–, and –CHn –OR moieties that are common in bile acids.
Therefore, differences in the bile acid composition are impor-
tantly related to the class differentiation. However, the P(coor)p

values indicate that variations in these signals are not entirely
responsible for the class difference. This is not very surprising,
considering a previous report on coronary heart disease [23].
There, only 20–30% of the variance of the most important vari-
Journal of Hepatology 200
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ables was related to the heart disease risk, but very high sensitiv-
ity and specificity were still obtained. Therefore, the remaining
variations in our case should result from subtle individual chem-
ical differences in bile acids, such as the position of the double
bonds and bile-metabolite conjugation.
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Statistical validation

The separation result of the cancer and normal patients was sub-
jected to ‘‘Y-scrambling” statistical validation to test the possibility
of chance correlation. We randomly permutated the Y -variable
(cancer or benign group designation), re-built the statistical model,
and observed the trends of the predictive power and goodness of fit
at each step. Two hundred rounds of such reshuffling gave coher-
ent decreases in both parameters and the extrapolated value of
the Q2 of �0.3 (Fig. 4), which shows that the separation model is
statistically sound, and that its high predictability is not due to
over-fitting of the data. Although the current study may not cover
all the possible variations in the patients, such as the bile duct
obstruction time, we believe our validation through randomiza-
tion of the Y-variable suggests that those variations should be
orthogonal to, and thus not be a major factor for our differentiation
between the cancer and normal groups. Unrelated variations were
most likely partitioned into the orthogonal components of the pre-
diction model and, thus, should not affect the predictability.

Among the unrelated variations, gender and age could provide
a large source of variation that may affect the differentiation.
Therefore, we analyzed the patient data in subgroups that are
T
E
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nt to original values

hundred permutations were performed, and the resulting R2 and Q2 values were
e for R2 and the dashed line for Q2.
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Fig. 5. Prediction of cancer and benign patients using leave-one-out analysis. One patient sample (unknown) was left-out at a time and an OPLS-DA prediction model
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Enot affected by these biases. First, we performed the differentiation
with only male patients, as the cancer group is primarily male and
the benign group has relatively even distribution. The actual result
(see Supplementary Fig. S1A) exhibited very similar differentiation
as our original model with all the patients (see Fig. 2), which con-
firms that our original differentiation is not based on the gender. If
the original model had been influenced by the gender, the male-
only analysis should have given much poorer, or even no, discrim-
ination between the cancer and benign groups. We also tested the
influence of age in our model. In separate analyses with younger
(see Supplementary Fig. S1B) and older groups (see Supplementary
Fig. S1C), the differentiation of cancer and benign groups were even
better than the one with all the patients (see Fig. 2). As stated
above, if our original model had been influenced mainly by age,
the differentiation should have been much worse in each sub-
group. These results again confirm the validity of our OPLS-DA
approach which can effectively exclude these possible confound-
ing factors in differentiating the groups based on the feature of
interest (cancer status, in our case).

Prediction and diagnostic performance test

To estimate the actual performance of our OPLS-DA model in
diagnosing biliary tract cancer, we performed a leave-one-out
Journal of Hepatology 200

Please cite this article in press as: Wen H et al. A new NMR-based metabolom
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predictive test. For this, we left-out one patient sample at a time
and constructed the OPLS-DA prediction model with the rest of
the data (a training set). The prediction model was constructed
with the same number of predictive and orthogonal components
as the original OPLS-DA classification model. The class member-
ship of the left-out sample was predicted using an a priori cut-
off value of 0.5. This procedure was repeated until each and every
sample had been tested once. Of the 21 benign disease samples,
18 were predicted correctly as benign, and of the 17 cancer sam-
ples, 15 were predicted correctly as cancer (Fig. 5). Therefore, our
OPLS-DA metabolomics prediction model exhibited a sensitivity
of 88% and a specificity of 81% for biliary tract cancer diagnosis,
which is significantly better than conventional serum markers
or cytology (Table 2).
Discussion

Biliary tract cancer is highly lethal and only surgical excision of
the tumor can improve survival [32–35]. However, biliary tract
cancer is often presented locally advanced, and the majority of
the patients are elderly, with critical co-morbidity which
increases the risk of operation. In this respect, it has been sug-
gested that neither more advanced surgical techniques nor radi-
9 vol. xxx j xxx–xxx 5
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Table 2. Comparison of the diagnostic performance between conventional
and metabolomicQ1 .

Criteria CA19-9** CEA� Bile cytology Metabolomics
[Reference] [22] [9] [15,20] [current study]
Sensitivity 81% (73%) 20% (68%) 41% (35–61��%) 88%
Specificity 53% (63%) 100% (82%) N/A 81%

* The numbers indicate the values obtained from the patients enrolled in the
current study. The numbers in the parenthesis are from the literature.
** Cut-off value of >37 U/mL (both reference and our study).
� Cut-off value of >5.2 ng/mL in primary sclerosing cholangitis patients and cut-
off value of 6.0 ng/mL in our study.
�� 61% was obtained using brush cytology.
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ation therapy is likely to improve survival [36]. Therefore, cur-
rently, efforts are being directed to prevention and reliable detec-
tion. However, current diagnostic tools, such as serum tumor
markers and bile cytology, have limited utility for differentiating
cancer and benign diseases, and new diagnostic methods are
highly needed.

Here, we applied a metabolomics approach to biles obtained
directly from patients in order to assess its accuracy and reliabil-
ity in diagnosing biliary tract cancer. Our approach showed better
performance in terms of both specificity and sensitivity than con-
ventional data obtained from literature and our own patients
(Table 2). Although CEA showed perfect specificity for our
patients, its utility was significantly compromised due to its poor
sensitivity. In general, sensitivity is more important than specific-
ity in serious diseases such as cancer. Bile cytology, in theory, can
deliver perfect specificity, as it directly observes cancer cells in
the samples, but its reported sensitivity is rather poor to range
between 35% and 40% [15,37]. We also obtained 41% sensitivity
using bile cytology for our patients. Although brushing has been
shown to increase cytology sensitivity by about 20% [17–20], it
requires additional invasive steps such as ERCP or EST, which
could increase the risk of pancreatitis [21]. The final sensitivity
of brush cytology is still about 60%, significantly lower than our
metabolomics results. Our metabolomics approach gave high val-
ues for both sensitivity and specificity. Therefore, we believe that
the metabolomic diagnosis may be more clinically useful than
conventional techniques in biliary tract cancer diagnosis. Obvi-
ously, as with any other new diagnostic approaches, there are
limitations to our study. One such possibility is the effects of bil-
iary infection without clinical evidence of sepsis on the metabolic
profiles. This potential confounding factor, though, can be diag-
nosed by culture or PCR, and therefore, may be an interesting
subject for later studies.

To get deeper insights into the metabolic difference, we ana-
lyzed our data with targeted metabolic profiling for four
metabolites involved importantly in energy metabolic pathways:
choline, lactate, citrate and glucose. We used student’s indepen-
dent t-test to see if the contents of these metabolites are
statistically different between cancer and benign groups (see
Supplementary Fig. S2). While choline (p > 0.85), lactate (p >
0.79), and glucose (p > 0.24) did not show any relevant differ-
ences, citrate level was statistically higher in cancer groups
(p < 0.05). The higher content of citrate is interesting, as it is
the starting molecule of the TCA cycle, the hallmark of the aerobic
energy metabolism. Citrate is formed through a condensation
reaction between oxaloacetate and acetyl CoA. The latter is also
the precursor of the cholesterol which is metabolized into bile
acids. The higher level of citrate in the cancer group might result
from the low dependence of the cancer cells on the aerobic
6 Journal of Hepatology 200
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energy metabolism consuming citrate in the TCA cycle, consistent
with the Warburg effect in cancer cells. High level of citrate is
expected to affect the concentration of acetyl CoA, its immediate
precursor, which in turn can affect the bile acid formation. As cit-
rate also has –CH2– group, this is consistent with our initial sug-
gestion on contributing signals .Although confirmation of the
above will require detailed flux analysis of all the involved path-
ways, our metabolomic data provide an interesting initial evi-
dence for the link between the energy metabolism and bile acid
compositions in the cancer group.

In addition to our main goal of differentiating cancer and
benign patients, we also tested if our approach can differentiate
the various stages of the biliary duct cancer. Although individual
differentiation of stages I, II, and III were not satisfactory (data
not shown), we obtained a good separation between stages I
and II combined against stage III (see Supplementary Fig. S3).
Although the number of patients is not large for each group, these
data suggest that it may be possible to differentiate between rel-
atively early (I and II) and later stage biliary duct cancers with our
metabolomic approach.

It should be noted that our metabolomics approach is ‘‘non-
invasive”, as it uses bile that had been drained for therapeutic
purposes and required no separate collection steps. In contrast,
brush bile cytology requires additional steps, and serum markers
require blood drawing. This fact also alleviates ethical problems,
the inconvenience of additional visits, or pain for sample collec-
tion for patients, providing a more convenient option.

An efficient diagnostic method is best developed with tissues
or bio-fluids that are cognate to the organs of interest. For exam-
ple, urine metabolites have been used to predict kidney cancer or
allograft rejection [29,38]. Here, we used bile for biliary duct can-
cer diagnosis. Bile passes through the biliary duct before being
secreted into the intestine, during which time it has direct con-
tact with any surrounding cancer tissue. Especially in obstructive
bile duct diseases, such as those targeted in this study, bile stays
in the ducts for a long time, thus likely reflecting differences in
the ductal epithelial cells. Conventional serum markers, such as
CA-19-9 and CEA are detected from serum and, therefore, could
reflect changes in other tissues, including colon or pancreatic
cancers. Bile cytology, although using bile, may not always be
able to retrieve cancer cells from the tissue, resulting in low
sensitivity. Therefore, bile metabolomics seems more theoreti-
cally relevant for the biliary tract cancer diagnosis than those
approaches.

Currently, biliary tract cancer is diagnosed by multiple criteria
based on computerized tomography, magnetic resonance imag-
ing, bile cytology, endoscopic ultrasonography, serum markers,
and positron emission tomography. Our study shows that a met-
abolomics approach, by itself, can differentiate biliary tract can-
cer from benign diseases with high reliability. To the best of
our knowledge, this study is the first report of a metabolomics
diagnostic approach in the human hepatobiliary system outper-
forming other conventional clinical criteria. A study with larger
patient groups and standardized protocols could eventually lead
to a dependable diagnostic tool for biliary tract cancer.
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