Overview of Software Architectures (SA)

Barbora Bühnová

Faculty of Informatics, Masaryk University Brno, Czech Republic

LASARIS SEMINAR

October 1, 2009

Aim of the talk

Outline

Three levels of topics

- Concepts = general principles
- Technologies = realization of concepts

Topics of SA

Tools = support of the technologies

This talk discusses

- Concepts of software architectures
- Topics related to software architectures

Notice: Some of the slides are inspired by Software Architecture lectures of Uni Karlsruhe, © R. Reussner

Introduction to SA

Why software architectures? What is a software architecture?

2 Topics of SA

Architecture design and evaluation Architectures of Information systems Architectures of Embedded systems

3 Component-Based Software Engineering

Motivation for CBSE Basic terms and notions Why component-based development? Challenges of component-based development

4 Conclusion

Why software architectures?

• How to bridge the gap between requirements and code?

The solution

The role of software architecture

- System-level abstractions
- Coarse-grained structure of the system

What constitutes a Software architecture?

Three core views that need to be described

- Module view = system components

 i.e. computational software units, often concurrent (tasks, threads)
- Connector view = communication styles
 e.g. pipe-and-filter, shared-data, publish-subscribe, client-server (synchronous vs. asynchronous)
- Allocation view = mapping to hardware (or software)
 resources

Advantages of an explicit Architecture

Topics of SA

Stakeholder communication

 Architecture may be used as a focus of discussion by system stakeholders

System analysis

Prediction of the quality attributes of the architecture

Large-scale reuse

- The architecture may be reusable across a range of systems
- Existing components can be considered during design

Project planning

 Cost estimation, mile-stone organisation, dependency analysis, etc.

- Introduction to SA
 - Why software architectures?
 What is a software architecture?
- 2 Topics of SA

Architecture design and evaluation Architectures of Information systems Architectures of Embedded systems

- 3 Component-Based Software Engineering Motivation for CBSE Basic terms and notions Why component-based development? Challenges of component-based development
- 4 Conclusion

Architecture development

Architecture design

Developer roles, development process, correctness by construction

Architectural patterns

Layers, Peer-to-Peer, Client-Server, Pipe & Filter, ...

Middleware architectures

• Run-time environments realizing architectural concepts

Topics of SA

Modelling of SW architectures

 Component, Class, Sequence and Deployment diagrams of Unified Modelling Language (UML)

Documenting SW architectures

Interface descriptions

Evaluation of SW architectures

Qualitative vs. quantitative properties

Concepts in software architectures I.

Component-based development

System assembly out of prefabricated components

Topics of SA

Service-oriented architecture (SOA)

 Autonomy of services, loose coupling, interoperability, outsourcing

Aspect-oriented architecture

Integration of crosscutting concerns

Model-driven architecture (MDA)

M2M transformations and completions

Embedded control systems

Role of sensors and actuators

Software product lines

Families of products with similar core, variation points

Dynamic and self-adapting architectures

Reaction to changes in system usage, fault tolerance

Introduction to SA

Why software architecture?
What is a software architecture?

2 Topics of SA

Architecture design and evaluation Architectures of Information systems Architectures of Embedded systems

3 Component-Based Software Engineering

Motivation for CBSE
Basic terms and notions
Why component-based development?
Challenges of component-based development

4 Conclusion

Components around us

Mechanical components are all around

Topics of SA

- Cars assembled from engine, gearbox, wheels, tires, breaks, ...
- Computers assembled from processor, memory, sound card, monitor, keyboard, ...

And what about software?

Software components

Outline

A **software component** is a contractually specified building block for software which can be readily composed by third parties without understanding its internal structure. [Reussner]

Main characteristics:

- Encapsulation
- Interfaces (services)
- Compositionality
- Client anonymity
- Ready to use
- Black-box reusability

Other characteristics:

- Language independence
- Platform independence
- Configurability

Component:

- Executable run-time entity
- Described by interfaces (IDL)
- May contain several classes (hierarchical)
- No code available (black-box/grey-box)
- Developed separately for reuse
- Deployment context changes after compilation

Class:

- Design-time entity
- Source code available (white-box)
- In most cases designed for one system
- Stable deployment context after compilation

Component Models

A **component model** defines specific representation, interaction, composition, and other standards for software components.

[Heineman and Councill]

Existing component models have different views on

- What constitutes a component
 - run-time [COM/.NET, Fractal] VS. design-time [KobrA, SOFA, PCM]
 - dynamic [EJB, CCM, Darwin] VS. Static [Wright, SOFA]
- Description of interfaces (services)
 - signatures [EJB, COM/.NET, CCM], pre/post-conditions [KobrA]
 - protocols of valid/performed call sequences [PCM, SOFA, Wright]
- Component composition
 - synchronous [Darwin, SOFA] VS. asynchronous [EJB, COM/.NET, CCM]
 - flat [EJB, COM/.NET, CCM] VS. hierarchical [Fractal, SOFA, Koala, ACME]

Why component-based development?

Component libraries

- Faster development
- Lower risk

Outline

Reuse of components

- I ower cost
- Higher quality

Maintainability

- Comprehensibility
- Configurability
- Language independence
- Flexibility w.r.t component update

Challenges of component-based development

General difficulties

- Components delivered by different vendors
- Components developed for different environments
- Component environment changes dynamically

Correctness of a single component

- Unknown deployment context
- Unknown component usage

Correctness of a composite system

- Independently developed components
- No compilation after assembly
- Common updates and reconfiguration

Challenges of component-based development

The aim of CBSE – Engineering of correct and high-quality component-based systems on the level of

- Single component
- 2 Assembly process
- 3 Composite system

1. Correctness of a component

- Context and usage independent/dependent
- Component certification
 - of component properties
 - of behavioural description

2. Assembly process

Outline

Component compatibility

- Syntactic on a signature level
- Semantic guarantee of correct interaction
- Automatically generated adaptors and wrappers

Topics of SA

Component assembly

- Components first assembly of existing components
- Architecture first decomposition of system specification to component specifications, and search for the implementations
- Correctness by construction

3. Composite system

Outline

System analysis

- Verification of coordination errors
 - Compositional verification (top-down, bottom-up)

Topics of SA

- Assume-guarantee verification
- Prediction of extra-functional properties (performance, reliability, etc.)
 - Markov-chain analysis
 - Simulation-based methods

System evolution

- Component update safe substitutability
- Reconfiguration regression verification and testing

Introduction to SA

Why software architectures?
What is a software architecture?

2 Topics of SA

Outline

Architecture design and evaluation Architectures of Information systems Architectures of Embedded systems

Component-Based Software Engineering
 Motivation for CBSE
 Basic terms and notions
 Why component-based development?

Challenges of component-based development

Concepts of Software Architectures

- What is a software architecture?
- Why software architectures?
- What are the topics?

Component-Based Software Engineering

- What are software components?
- Why component-based development?
- What are the challenges of CBSE?

Thank you

Thank you for your attention! Any **questions?**

