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ABSTRACTABSTRACT

Most of the important codes are special types of  so-called linear

codes.

Linear codes are of very large importance because they have Linear codes are of very large importance because they have 

very concise description, 

very nice properties, very nice properties, 

very easy encoding

And,And,

in principle, easy to describe  decoding.

Linear codes 1



Linear codesLinear codesIV054 Linear codesLinear codes

Linear codes are special sets of words of the length n over an alphabet {0,..,q -1}, where 
q is a power of prime.

IV054

q is a power of prime.

Since now on sets of words Fq
n will  be considered as vector spaces V(n,q) of vectors of 

length n with elements from the set {0,..,q -1} and arithmetical operations will be taken length n with elements from the set {0,..,q -1} and arithmetical operations will be taken 
modulo q.

The set {0,..,q -1} with operations + and • modulo q is called also the Galois field GF(q).

DefinitionDefinition A subset C ⊆ V(n,q) is a linear code ifDefinitionDefinition A subset C ⊆ V(n,q) is a linear code if

(1) u + v ∈ C for all u, v ∈ C

(2) au ∈ C for all u ∈ C, a ∈ GF(q)

Example Codes C1, C2, C3 introduced in Lecture 1 are linear codes.

LemmaLemma A subset C ⊆ V(n,q) is a linear code if one of the following conditions is satisfiedLemmaLemma A subset C ⊆ V(n,q) is a linear code if one of the following conditions is satisfied

(1) C is a subspace of V(n,q)

(2) sum of any two codewords from C is in C (for the case q = 2)

If C is a k -dimensional subspace of V(n,q), then C is called [n,k] -code. It has qk 

codewords. If minimal distance of C is d, then it is called  [n,k,d] code.

2Linear codes

Linear codes are also called “group codes“.



ExerciseExerciseIV054 ExerciseExercise

Which of the following binary codes are linear?
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C1 = {00, 01, 10, 11}

C2 = {000, 011, 101, 110}

C3 = {00000, 01101, 10110, 11011}C3 = {00000, 01101, 10110, 11011}

C5 = {101, 111, 011}

C6 = {000, 001, 010, 011}

C = {0000, 1001, 0110, 1110}C7 = {0000, 1001, 0110, 1110}

How to create a linear codeHow to create a linear code

Notation If S is a set of vectors of a vector space, then let 〈〈〈〈S〉〉〉〉 be the set of all linear 
combinations of vectors from S.

Theorem For any subset S of a linear space, 〈〈〈〈S〉〉〉〉 is a linear space that consists of Theorem For any subset S of a linear space, 〈〈〈〈S〉〉〉〉 is a linear space that consists of 
the following words:

• the zero word,

• all words in S,• all words in S,

• all sums of two or more words in S.

Example S = {0100, 0011, 1100}

〈 〉

3Linear codes

〈S〉 = {0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111}.



Basic properties of linear codesBasic properties of linear codesIV054 Basic properties of linear codesBasic properties of linear codes

Notation: w(x) (weight of x) denotes the number of non-zero entries of x.
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Notation: w(x) (weight of x) denotes the number of non-zero entries of x.

Lemma If x, y ∈ V(n,q), then h(x,y) = w(x - y).

Proof x - y has non-zero entries in exactly those positions where x and y differ. 

Theorem Let C be a linear code and let weight of C, notation w(C), be the smallest 

of the weights of non-zero codewords of C. Then h(C) = w(C).of the weights of non-zero codewords of C. Then h(C) = w(C).

Proof There are x, y ∈ C such that h(C) = h(x,y). Hence h(C) = w(x - y) ≥ w(C).

On the other hand for some x ∈ C

w(C) = w(x) = h(x,0) ≥ h(C).

Consequence

• If C is a code with m codewords, then in order to determine h(C) one has to 

make comparisons in the worth case.( ) ( )2m   mθ=make comparisons in the worth case.

• If C is a linear code, then in order to compute h(C) , m - 1 comparisons are 

enough.

( ) ( )2m

2   mθ=
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enough.



Basic properties of linear codesBasic properties of linear codesIV054 Basic properties of linear codesBasic properties of linear codes

If C is a linear [n,k] -code, then it has a basis consisting of k codewords. 
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If C is a linear [n,k] -code, then it has a basis consisting of k codewords. 

ExampleExample

CodeCode

C4 = {0000000, 1111111, 1000101, 1100010,

0110001, 1011000, 0101100, 0010110,

0001011, 0111010, 0011101, 1001110,

0100111, 1010011, 1101001, 1110100}

has the basishas the basis

{1111111, 1000101, 1100010, 0110001}.

How many different bases has a linear code?

TheoremTheorem A binary linear code of dimension k hasTheoremTheorem A binary linear code of dimension k has

bases.
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Advantages and disadvantages of linear codes I.Advantages and disadvantages of linear codes I.IV054 Advantages and disadvantages of linear codes I.Advantages and disadvantages of linear codes I.

AdvantagesAdvantages - big.
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1.  Minimal distance h(C) is easy to compute if C is a linear code.

2.  Linear codes have simple specifications.

• To specify a non-linear code usually all codewords have to be listed.• To specify a non-linear code usually all codewords have to be listed.

• To specify a linear [n,k] -code it is enough to list k codewords.

Definition A k × n matrix whose rows form a basis of a linear [n,k] -code (subspace) Definition A k × n matrix whose rows form a basis of a linear [n,k] -code (subspace) 
C is said to be the generator matrix of C.

Example The generator matrix of the code

 000

























=  
101

110
      is      

101

110

000

 2C

and of the code









101

011

101









1010001

1111111















  

1000110

0100011

1010001
      is     4C
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3. There are simple encoding/decoding procedures for linear codes.




Advantages and disadvantages of linear codes II.Advantages and disadvantages of linear codes II.IV054 Advantages and disadvantages of linear codes II.Advantages and disadvantages of linear codes II.

DisadvantagesDisadvantages of linear codes are small:
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DisadvantagesDisadvantages of linear codes are small:

1. Linear q -codes are not defined unless q is a prime 1. Linear q -codes are not defined unless q is a prime 

power.

2. The restriction to linear codes might be a restriction to 

weaker codes than sometimes desired.

7Linear codes



Equivalence of linear codesEquivalence of linear codesIV054 Equivalence of linear codesEquivalence of linear codes

Definition Two linear codes GF(q) are called equivalent if one can be obtained from 
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Definition Two linear codes GF(q) are called equivalent if one can be obtained from 

another by the following operations:

(a) permutation of the positions of the code;

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two k × n matrices generate equivalent linear [n,k] -codes over GF(q) if Theorem Two k × n matrices generate equivalent linear [n,k] -codes over GF(q) if 

one matrix can be obtained from the other by a sequence of the following 

operations:

(a) permutation of the rows(a) permutation of the rows

(b) multiplication of a row by a non-zero scalar

(c) addition of one row to another(c) addition of one row to another

(d) permutation of columns

(e) multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations 

convert a generator matrix to one of an equivalent code. 

8Linear codes



Equivalence of linear codesEquivalence of linear codesIV054 Equivalence of linear codesEquivalence of linear codes

Theorem Let G be a generator matrix of an [n,k] -code. Rows of G are then linearly 
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Theorem Let G be a generator matrix of an [n,k] -code. Rows of G are then linearly 

independent .By operations (a) - (e) the matrix  G can be transformed into the form:

[ Ik | A ] where Ik is the k × k identity matrix, and A is a k × (n - k) matrix.

Example

11111111111111

    
1011100

0101110

1111111

    
0100011

1010001

1111111

→→

10100011010001

0111000

1011100

1000111

0100011

?   
1011100

1110010

1010001

    
1011100

0101110

1010001

→→

01110000111000
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Encoding with  a linear codeEncoding with  a linear codeIV054 Encoding with  a linear codeEncoding with  a linear code

is a vector × matrix multiplication

Let C be a linear  [n,k] -code over GF(q) with a generator matrix G. 
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Let C be a linear  [n,k] -code over GF(q) with a generator matrix G. 

Theorem C has qk codewords. 

Proof Theorem follows from the fact that each codeword of C can be expressed 
uniquely as a linear combination of the basis vectors.uniquely as a linear combination of the basis vectors.

Corollary The code C can be used to encode uniquely qk messages.

Let us identify messages with elements V(k,q). Let us identify messages with elements V(k,q). 

Encoding of a message u = (u1, … ,uk) with the code C:

.  of rows are  ,...,    where GrrruGu
k

∑=⋅
Example Let C be a [7,4] -code with the generator matrix

 1010001

.  of rows are  ,...,    where 11
GrrruGu ki ii∑ =

=⋅

A message (u1, u2, u3, u4) is encoded as:??? 

















=  

1101000

0110100

1110010

1010001

 G

A message (u1, u2, u3, u4) is encoded as:??? 

For example:

0  0  0  0 is encoded as ………………………….. ?

1  0  0  0 is encoded as ………………………….. ?





 1101000

10Linear codes

1  0  0  0 is encoded as ………………………….. ?

1  1  1  0 is encoded as ………………………….. ?



Uniqueness of encodingsUniqueness of encodingsIV054 Uniqueness of encodingsUniqueness of encodings

with linear codeswith linear codes

IV054

with linear codeswith linear codes

Theorem If G={wi}i=1
k is a generator matrix of a binary linear code C of length n and 

dimension k, then

v = uG

ranges over all 2k codewords of C as u ranges over all 2k words of length k.

ThereforeTherefore

C = { uG | u ∈ {0,1}k }

MoreoverMoreover

u1G = u2G

if and only if

u = u .u1 = u2.

Proof If u1G – u2G=0, then

( )∑∑∑ −=−=
kkk

wuuwuwu0

And, therefore, since wi are linearly independent, u1 = u2.

( )∑∑∑
===

−=−=
i

iii

i

ii

i

ii wuuwuwu
1

,2,1

1

,2

1

,10
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Decoding of linear codesDecoding of linear codesIV054 Decoding of linear codesDecoding of linear codes

Decoding problem: If a  codeword: x = x1 … xn is sent and the word y = y1 … yn is 
received, then e = y – x = e1 … en is said to be the error vector. The decoder must 
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received, then e = y – x = e1 … en is said to be the error vector. The decoder must 
decide, from y, which x was sent, or, equivalently, which error e occurred. 

To describe main Decoding method some technicalities have to be introduced

Definition Suppose C is an [n,k] -code over GF(q) and u ∈ V(n,q). Then the set

u + C = { u + x | x ∈ C }

is called a coset (u-coset) of C in V(n,q).is called a coset (u-coset) of C in V(n,q).

Example Let C = {0000, 1011, 0101, 1110}

Cosets:Cosets:

0000 + C =  C,

1000 + C =  {1000, 0011, 1101, 0110},

0100 + C =  {0100, 1111, 0001, 1010} = 0001+C,0100 + C =  {0100, 1111, 0001, 1010} = 0001+C,

0010 + C =  {0010, 1001, 0111, 1100}.

Are there some other cosets in this case?

Theorem Suppose C is a linear [n,k] -code over GF(q). ThenTheorem Suppose C is a linear [n,k] -code over GF(q). Then

(a) every vector of V(n,k) is in some coset of C,

(b) every coset contains exactly qk elements,

12Linear codes

(b) every coset contains exactly q elements,

(c) two cosets are either disjoint or identical.



Nearest neighbour decoding scheme:Nearest neighbour decoding scheme:IV054 Nearest neighbour decoding scheme:Nearest neighbour decoding scheme:

Each vector having minimum weight in a coset is called a coset leader.

IV054

Each vector having minimum weight in a coset is called a coset leader.

1. Design a (Slepian) standard array for an [n,k] -code C - that is a qn - k × qk array 

of the form:

codewords   coset leader codeword 2 … codeword 2k

coset leader + … +

.. + + +.. + + +

coset leader + … +

coset leader

Example
0000 1011 0101 1110

1000 0011 1101 01101000 0011 1101 0110

0100 1111 0001 1010

0010 1001 0111 1100

A word y is decoded as  codeword of the first row of the column in which y occurs. 

Error vectors which will be corrected are precisely coset leaders!

In practice, this decoding method is too slow and requires too much memory.

13Linear codes

In practice, this decoding method is too slow and requires too much memory.



Probability of good error correctionProbability of good error correctionIV054 Probability of good error correctionProbability of good error correction

What is the probability that a received word will be decoded as the codeword sent 

IV054

What is the probability that a received word will be decoded as the codeword sent 

(for binary linear codes and binary symmetric channel)?

Probability of an error in the case of a given error vector of weight i isProbability of an error in the case of a given error vector of weight i is

p i (1 - p)n - i.

Therefore, it holds.

Theorem Let C be a binary [n,k] -code, and for i = 0,1, … ,n let αi be the number of 

coset leaders of weight i. The probability Pcorr (C) that a received vector  when 

decoded by means of a standard array is the codeword which was sent is given bydecoded by means of a standard array is the codeword which was sent is given by

( ) ( ) .1 ∑ −−=
n

ini

icorr ppCP α

Example For the [4,2] -code of the last example

α0 = 1, α1 = 3, α2 = α3 = α4 = 0.

( ) ( ) .1 
0

∑
=

−=
i

icorr ppCP α

α0 = 1, α1 = 3, α2 = α3 = α4 = 0.

Hence

Pcorr (C) = (1 - p)4 + 3p(1 - p)3 = (1 - p)3(1 + 2p).

If p = 0.01, then P = 0.9897

14Linear codes

If p = 0.01, then Pcorr = 0.9897



Probability of good error detectionProbability of good error detectionIV054 Probability of good error detectionProbability of good error detection

Suppose a binary linear code is used only for error detection.
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Suppose a binary linear code is used only for error detection.

The decoder will fail to detect errors which have occurred if the received word y is a 

codeword different from the codeword x which was sent, i. e. if the error vector e =codeword different from the codeword x which was sent, i. e. if the error vector e =

y - x is itself a non-zero codeword. 

The probability Pundetect (C) that an incorrect codeword is received is given by the The probability Pundetect (C) that an incorrect codeword is received is given by the 

following result.

Theorem Let C be a binary [n,k] -code and let Ai denote the number of codewords Theorem Let C be a binary [n,k] -code and let Ai denote the number of codewords 

of C of weight i. Then, if C is used for error detection, the probability of an incorrect 

message being received is

( ) ( ) .1 det ∑ −−=
n

ini

iectun ppACP

Example In the case of the [4,2] code from the last example

A = 1 A = 2

( ) ( ) .1 
0

det ∑
=

−=
i

iectun ppACP

A2 = 1 A3 = 2

Pundetect (C) = p2 (1 - p)2 + 2p3 (1 - p) = p2 – p4.

For p = 0.01

15Linear codes

Pundetect (C) = 0.000099.



Dual codesDual codesIV054 Dual codesDual codes

Inner product of two vectors (words)

u = u … u , v = v … v

IV054

u = u1 … un, v = v1 … vn

in V(n,q) is an element of GF(q) defined (using modulo q operations) by

u ⋅ v = u1v1 + … + unvn.1 1 n n

Example In V(4,2): 1001 ⋅ 1001 = 0

In V(4,3): 2001 ⋅ 1210 = 2

1212 ⋅ 2121 = 21212 ⋅ 2121 = 2

If u ⋅ v = 0 then words (vectors) u and v are called orthogonal.

Properties If u, v, w ∈ V(n,q), λ, µ ∈ GF(q), thenProperties If u, v, w ∈ V(n,q), λ, µ ∈ GF(q), then

u ⋅ v = v ⋅ u, (λu + µv) ⋅ w = λ (u ⋅ w) + µ (v ⋅ w).

Given a linear [n,k] -code C, then dual code of C, denoted by C⊥, is defined byGiven a linear [n,k] -code C, then dual code of C, denoted by C , is defined by

C⊥ = {v ∈ V(n,q) | v ⋅ u = 0 if u ∈ C}.

Lemma Suppose C is an [n,k] -code having a generator matrix G. Then for 
v ∈ V(n,q)v ∈ V(n,q)

v ∈ C⊥ <=> vGT = 0,

where GT denotes the transpose of the matrix G.

16Linear codes

where G denotes the transpose of the matrix G.

Proof Easy.



PARITE CHECKS versus ORTHOGONALITYPARITE CHECKS versus ORTHOGONALITYIV054 PARITE CHECKS versus ORTHOGONALITYPARITE CHECKS versus ORTHOGONALITY

For understanding of the role the parity checks play for linear codes, it 
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For understanding of the role the parity checks play for linear codes, it 

is important to understand relation between orthogonality and special 

parity checks.

If words x and y are orthogonal, then the word y has even number of 

ones (1’s) in the positions determined by ones (1’s) in the word x.

This implies that if words x and y are orthogonal, then x is a parity 

check word for y and y is a parity check word for x.

Exercise: Let the word

100001100001

be orthogonal to a set S of binary words of length 6. What can we say 

about the words in S?

17Linear codes



EXAMPLEEXAMPLEIV054 EXAMPLEEXAMPLE

For the [n,1] -repetition code C, with the generator matrix

IV054

For the [n,1] -repetition code C, with the generator matrix

G = (1,1, … ,1)

the dual code C⊥ is [n,n - 1] -code with the generator matrix G⊥, the dual code C⊥ is [n,n - 1] -code with the generator matrix G⊥, 

described by





 0...0011

⊥













=  
..

0...0101

0...0011

    G








 1...0001

..
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Parity check matricesParity check matricesIV054 Parity check matricesParity check matrices

Example   If

IV054

Example   If

⊥ .  then  , 
0011

0000

 CCC =







= ⊥ .  then  , 

1111

1100

0011
 555 CCC =












=

If

1111 

000






⊥ .  
111

000
   then  , 

110

011

000

 66 







=













= CC
111

101

110 














Theorem Suppose C is a linear [n,k] -code over GF(q), then the dual code C⊥ is a 

linear [n,n - k] -code.

Definition A parity-check matrix H for an [n,k] -code C is a generator matrix of C⊥. 
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Definition A parity-check matrix H for an [n,k] -code C is a generator matrix of C⊥. 



Parity check matricesParity check matricesIV054 Parity check matricesParity check matrices

Definition A parity-check matrix H for an [n,k] -code C is a generator matrix of C⊥.

IV054

Definition A parity-check matrix H for an [n,k] -code C is a generator matrix of C .

Theorem If H is parity-check matrix of C, then

C = {x ∈ V(n,q) | xHΤ = 0},

and therefore any linear code is completely specified by a parity-check matrix.

Example Parity-check matrix forExample Parity-check matrix for









 
1100

0011
   is  5C

and for





 1100

5

( ).  111   is  6C

The rows of a parity check matrix are parity checks on codewords. They say that 

certain linear combinations of the coordinates of every codeword are zeros.

( ).  111   is  6C
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Syndrome decodingSyndrome decodingIV054 Syndrome decodingSyndrome decoding

Theorem If G = [Ik | A] is the standard form generator matrix of an [n,k] -code C, 

IV054

Theorem If G = [Ik | A] is the standard form generator matrix of an [n,k] -code C, 
then a parity check matrix for C is H = [-AT | In-k].

Example
0111

111

101

=⇒=

Definition Suppose H is a parity-check matrix of an [n,k] -code C. Then for any 

   

1011

1110  m.check parity   

110

011

111
   matrix Generator 34 IHIG =⇒=

Definition Suppose H is a parity-check matrix of an [n,k] -code C. Then for any 
y ∈ V(n,q) the following word is called the syndrome of y:

S(y) = yHT.

Lemma Two words have the same syndrom iff they are in the same coset.

Syndrom decoding Assume that a standard array of a code C is given and, in 
addition, let in the last two columns the syndrom for each coset be given.addition, let in the last two columns the syndrom for each coset be given.

10

11

00

  
0101

0110

0111

  
1000

1011

1010

  
1111

1100

1101

  
0010

0001

0000

When a word y is received, compute S(y) = yHT, locate S(y) in the “syndrom 
column”, and then locate y in the same row and decode y as the codeword in the 

01

10

0011

0101

1110

1000

1001

1111

0100

0010
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column”, and then locate y in the same row and decode y as the codeword in the 
same column and in the first row.



KEY OBSERVATION for SYNDROM COMPUTATIONKEY OBSERVATION for SYNDROM COMPUTATIONIV054 KEY OBSERVATION for SYNDROM COMPUTATIONKEY OBSERVATION for SYNDROM COMPUTATION

When preparing a ”syndrome decoding'' it is sufficient to store only two columns: one for coset coset 

IV054

When preparing a ”syndrome decoding'' it is sufficient to store only two columns: one for coset coset 

lleaderseaders and one for syndromessyndromes.

Example

coset leaders syndromescoset leaders syndromes

l(z) z

0000 00 

1000 11

0100 01

0010 10

Decoding procedure

• Step 1 Given y compute S(y).

• Step 2 Locate z = S(y) in the syndrome column.

• Step 3 Decode y as y - l(z).• Step 3 Decode y as y - l(z).

Example If y = 1111, then S(y) = 01 and the above decoding procedure produces

1111 – 0100 = 1011.

Syndrom decoding is much fatser than searching for a nearest codeword to a received 

word. However, for large codes it is still too inefficient to be practical.

In general, the problem of finding the nearest neighbour in a linear code is NP-complete.

22Linear codes

In general, the problem of finding the nearest neighbour in a linear code is NP-complete.

Fortunately, there are important linear codes with really efficient decoding.



Hamming codesHamming codesIV054 Hamming codesHamming codes

An important family of simple linear codes that are easy to encode and decode, are 
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An important family of simple linear codes that are easy to encode and decode, are 
so-called Hamming codes. 

DefinitionDefinition Let r be an integer and H be an r × (2r - 1) matrix columns of which are 
non-zero distinct words from V(r,2). The code having H as its parity-check matrix is non-zero distinct words from V(r,2). The code having H as its parity-check matrix is 
called binary Hamming code and denoted by Ham(r,2).

Example
( ) [ ]111

011
2,2 =⇒





== GHHam( ) [ ]111
101

011
2,2 =⇒








== GHHam

( ) 







=⇒





==
1010010

1100001

0101101

0011110

2,3 GHHam

TheoremTheorem Hamming code Ham(r,2)

( )











=⇒











==

1111000

0110100

1010010
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01011012,3 GHHam

TheoremTheorem Hamming code Ham(r,2)

• is [2r - 1, 2r – 1 - r] -code, 

• has minimum distance 3, 

• is a perfect code.

PropertiesProperties of binary Hamming coesof binary Hamming coes Coset leaders are precisely words of weight

≤ 1. The syndrome of the word 0…010…0 with 1 in j -th position and 0 otherwise is 
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≤ 1. The syndrome of the word 0…010…0 with 1 in j -th position and 0 otherwise is 
the transpose of the j -th column of H.



Hamming codes Hamming codes -- decodingdecodingIV054 Hamming codes Hamming codes -- decodingdecoding

Decoding algorithmDecoding algorithm for the case the columns of H are arranged in the order of 

IV054

Decoding algorithmDecoding algorithm for the case the columns of H are arranged in the order of 

increasing binary numbers the columns represent.

• Step 1 Given y compute syndrome S(y) = yHT.

• Step 2 If S(y) = 0, then y is assumed to be the codeword sent.

• Step 3 If S(y) ≠ 0, then assuming a single error, S(y) gives the binary position of

the error.the error.
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ExampleExampleIV054 ExampleExample

For the Hamming code given by the parity-check matrix

IV054

For the Hamming code given by the parity-check matrix









= 1100110

1111000

H

and the received word

y = 110 1011,






 1010101

y = 110 1011,

we get syndrome

S(y) = 110

and therefore the error is in the sixth position.and therefore the error is in the sixth position.

Hamming code was discovered by Hamming (1950), Golay (1950).
11

It was conjectured for some time that Hamming codes and two so called Golay 

codes are the only non-trivial perfect codes.

CommentComment

Hamming codes were originally used to deal with errors in long-distance telephon 
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Hamming codes were originally used to deal with errors in long-distance telephon 

calls.



ADVANTAGES of HAMMING CODESADVANTAGES of HAMMING CODESIV054 ADVANTAGES of HAMMING CODESADVANTAGES of HAMMING CODES

Let a binary symmetric channel is used which with probability q

IV054

Let a binary symmetric channel is used which with probability q

correctly transfers a binary symbol.

If a 4-bit message is transmitted through such a channel, then correct If a 4-bit message is transmitted through such a channel, then correct 

transmission of the message occurs with probability q4.

If Hamming (7,4,3) code is used to transmit a 4-bit message, then If Hamming (7,4,3) code is used to transmit a 4-bit message, then 

probability of correct decoding is

q7 + 7(1 - q)q6.q7 + 7(1 - q)q6.

In case q = 0.9 the probability of correct transmission is 0.651 in the 

case no error correction is used and 0.8503 in the case Hamming code case no error correction is used and 0.8503 in the case Hamming code 

is used - an essential improvement.
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IMPORTANT CODESIMPORTANT CODESIV054 IMPORTANT CODESIMPORTANT CODES

• Hamming (7,4,3) -code. It has 16 codewords of length 7. It can be 

IV054

• Hamming (7,4,3) -code. It has 16 codewords of length 7. It can be 

used to send 27 = 128 messages and can be used to correct 1 error.

• Golay (23,12,7) -code. It has 4 096 codewords. It can be used to • Golay (23,12,7) -code. It has 4 096 codewords. It can be used to 

transmit 8 388 608 messages and can correct 3 errors.

• Quadratic residue (47,24,11) -code. It has

16 777 216 codewords16 777 216 codewords

and can be used to transmit

140 737 488 355 238 messages140 737 488 355 238 messages

and correct 5 errors.

• Hamming and Golay codes are the only non-trivial perfect codes.
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GOLAY CODES GOLAY CODES -- DESCRIPTIONDESCRIPTIONIV054 GOLAY CODES GOLAY CODES -- DESCRIPTIONDESCRIPTION

Golay codes G24 and G23 were used by Voyager I and Voyager II to transmit color 
pictures of Jupiter and Saturn. Generation matrix for G has the form

IV054

pictures of Jupiter and Saturn. Generation matrix for G24 has the form









100011101101000000000010

010001110111000000000001













001110110101000000001000

000111011011000000000100

100011101101000000000010













=
110110100011000001000000

111011010001000000100000

011101101001000000010000

G











=

011010001111000100000000

101101000111000010000000

110110100011000001000000
G













101000111011010000000000

110100011101001000000000

011010001111000100000000

G24 is (24,12,8) –code and the weights of all codewords are multiples of 4. G23 is 
obtained from G24 by deleting last symbols of each codeword of G24. G23 is 





 010001110111100000000000
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obtained from G24 by deleting last symbols of each codeword of G24. G23 is 
(23,12,7) –code.



GOLAY CODES GOLAY CODES -- CONSTRUCTIONCONSTRUCTIONIV054 GOLAY CODES GOLAY CODES -- CONSTRUCTIONCONSTRUCTION

Matrix G for Golay code G24 has actually a simple and regular 

IV054

Matrix G for Golay code G24 has actually a simple and regular 

construction.

The first 12 columns are formed by a unitary matrix I , next column The first 12 columns are formed by a unitary matrix I12, next column 

has all 1’s.

Rows of the last 11 columns are cyclic permutations of the first row Rows of the last 11 columns are cyclic permutations of the first row 

which has 1 at those positions that are squares modulo 11, that is

0, 1, 3, 4, 5, 9.0, 1, 3, 4, 5, 9.
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SINGLETON BOUNDSINGLETON BOUNDIV054 SINGLETON BOUNDSINGLETON BOUND

If C is a linear [n,k,d] -code, then n - k ≥ d - 1 (Singleton bound).
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If C is a linear [n,k,d] -code, then n - k ≥ d - 1 (Singleton bound).

To show the above bound we can use the following lemma.

LemmaLemma If u is a codeword  of a linear code C of weight s,then there is a 
dependence relation among s columns of any parity check matrix of C, and dependence relation among s columns of any parity check matrix of C, and 
conversely, any dependence relation among s columns of a parity check matrix of 
C yields a codeword of weight s in C.

ProofProof Let H be a parity check matrix of C. Since u is orthogonal to each row of H, 
the s components in u that are nonzero are the coefficients of  the dependence
relation of the s columns of H corresponding to the s nonzero components. The 
converse holds by the same reasoning.converse holds by the same reasoning.

CorollaryCorollary If C is a linear code, then C has minimum weight d if d is the largest 
number so that every d - 1 columns of any parity check matrix  of C arenumber so that every d - 1 columns of any parity check matrix  of C are
independent.

CorollaryCorollary For a linear [n,k,d] it holds n - k ≥ d - 1.

A linear [n,k,d] -code is called maximum distance separablemaximum distance separable ((MDS codeMDS code)) if d
= n –k + 1.

MDS codes are codes with maximal possible minimum weight.
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MDS codes are codes with maximal possible minimum weight.



REEDREED--MULLER CODESMULLER CODESIV054 REEDREED--MULLER CODESMULLER CODES

Reed-Muller codes form a family of codes defined recursively with interesting 
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Reed-Muller codes form a family of codes defined recursively with interesting 

properties and easy decoding.

If D1 is a binary [n,k1,d1] -code and D2 is a binary [n,k2,d2] -code, a binary code If D1 is a binary [n,k1,d1] -code and D2 is a binary [n,k2,d2] -code, a binary code 

C of length 2n is defined as follows C = { u | u + v |, where u ∈ D1, v ∈ D2}.

LemmaLemma C is [2n,k1 + k2, min{2d1,d2}] -code and if Gi is a generator matrix for Di, LemmaLemma C is [2n,k1 + k2, min{2d1,d2}] -code and if Gi is a generator matrix for Di, 

i = 1, 2, then is a generator matrix for C.








2

21

0 G

GG

Reed-Muller codes R(r,m), with 0 ≤ r ≤ m are binary codes of length n = 2m. 

R(m,m) is the whole set of words of length n, R(0,m) is the repetition code.

If 0 < r < m, then R(r + 1,m + 1) is obtained from codes R(r + 1,m) and R(r,m) 

by the above construction.

TheoremTheorem The dimension of R(r,m) equals The minimum weight 

of R(r,m) equals 2m - r. Codes R(m - r - 1,m) and R(r,m) are dual codes.
( ) ( ).   ...  1 1

m

r

m +++
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Singleton BoundSingleton BoundIV054 Singleton BoundSingleton BoundIV054

Singleton bound: Let C be a q-ary (n, M, d)-code.Singleton bound: Let C be a q-ary (n, M, d)-code.

Then

M ≤ q n-d+1 .M ≤ q .

Proof Take some d − 1 coordinates and project all codewords to the 

resulting coordinates.

The resulting codewords are all different and therefore M cannot be 

larger than the number of q-ary words of length n−d−1.

Codes for which M = q n−d+1 are called MDS-codes (Maximum Codes for which M = q n−d+1 are called MDS-codes (Maximum 

Distance Separable).

Corollary: If C is a q-ary linear [n, k, d]-code, then

k + d ≤ n + 1.k + d ≤ n + 1.
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Shortening and puncturing of linear codesShortening and puncturing of linear codesIV054 Shortening and puncturing of linear codesShortening and puncturing of linear codesIV054

Let C be  a q-ary linear [n, k, d]-code. LetLet C be  a q-ary linear [n, k, d]-code. Let

D = {(x1, ... , xn-1) | (x1, ... , xn-1, 0)∈C}.

Then D is a linear [n-1, k-1, d]-code – a shortening of the code C.Then D is a linear [n-1, k-1, d]-code – a shortening of the code C.

Corollary: If there is a q-ary [n, k, d]-code, then shortening yields 

a q-ary [n−1, k−1, d]-code. a q-ary [n−1, k−1, d]-code. 

Let C be a q-ary [n, k, d]-code. LetLet C be a q-ary [n, k, d]-code. Let

E = {(x1, ... , xn-1) | (x1, ... , xn-1, x)∈C, for some x ≤ q},

then E is a linear [n-1, k, d-1]-code – a puncturing of the code C.then E is a linear [n-1, k, d-1]-code – a puncturing of the code C.

Corollary: If there is a q-ary [n, k, d]-code with d >1, then there is a 

q-ary [n−1, k, d-1]-code.q-ary [n−1, k, d-1]-code.
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Lengthening of Codes Lengthening of Codes –– Constructions X and XXConstructions X and XXIV054 Lengthening of Codes Lengthening of Codes –– Constructions X and XXConstructions X and XXIV054

Construction X Let C and D be q-nary linear codes with parameters Construction X Let C and D be q-nary linear codes with parameters 

[n, K, d] and [n, k, D], where D > d, and K > k. Assume also that 

there exists a q-nary code E with parameters [l, K − k, δ ]. Then 

there is a ”longer” q-nary code with parameters there is a ”longer” q-nary code with parameters 

[n + l, K, min(d + δ, D)].

The lengthening of C is constructed by appending φ(x) to each word 

∈

The lengthening of C is constructed by appending φ(x) to each word 

x ∈ C, where φ : C/D → E is a bijection – a well known application 

of this construction is the addition of the parity bit in binary codes.

∈

Construction XX Let the following q-ary codes be given: a code C

with parameters [n, k, d]; its sub-codes Ci , i = 1,2 with parameters i 

[n, k − ki , di] and with C1 ∩ C2 of minimum distance ≥ D; auxiliary 

q-nary codes Ei , i = 1,2 with parameters [li , ki , δi]. Then there is a i i i i

q-ary code with parameters

[n + l1 + l2 , k, min{D, d2 + δ1, d1 + δ2 , d + δ1 + δ2}].
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Strength of CodesStrength of CodesIV054 Strength of CodesStrength of CodesIV054

• Strength of codes is another important parameter of codes. It is • Strength of codes is another important parameter of codes. It is 

defined through the concept of the strength of so-called 

orthogonal arrays - an important concepts of combinatorics.

• An orthogonal array QAλ(t, n, q) is an array of n columns, λq t rows 

with elements from Fq and the property that in the projection onto 

any set of t columns each possible t-tuple occurs the same any set of t columns each possible t-tuple occurs the same 

number λ of times. t is called strength of such an orthogonal 

array.

• For a code C, let t(C) be the strength of C - if C is taken as an 

orthogonal array.

Importance of the concept of strength follows also from the • Importance of the concept of strength follows also from the 

following Principle of duality: For any code C its minimum 

distance and the strength of C⊥ are closely related. Namelydistance and the strength of C⊥ are closely related. Namely

d(C) = t(C⊥) + 1.
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Dimension of Dual Linear CodesDimension of Dual Linear CodesIV054 Dimension of Dual Linear CodesDimension of Dual Linear CodesIV054

If C is an [n, k]-code, then its dual code C⊥ is [n, n − k] If C is an [n, k]-code, then its dual code C⊥ is [n, n − k] 
code.

A binary linear [n, 1] repetition code with codewords of 
length n has two codewords: all-0 codeword and all-1 
codeword.codeword.

Dual code to [n, 1] repetition code is so-called sum zero Dual code to [n, 1] repetition code is so-called sum zero 
code of all binary n-bit words whose entries sum to 
zero (modulo 2). It is a code of dimension n − 1 and it is zero (modulo 2). It is a code of dimension n − 1 and it is 
a linear [n, n − 1, 2] code
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ReedReed--Solomon CodesSolomon CodesIV054 ReedReed--Solomon CodesSolomon Codes

An important example of MDS-codes are q-ary Reed-Solomon codes 
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An important example of MDS-codes are q-ary Reed-Solomon codes 
RSC(k, q), for k ≤ q.

They are codes generator matrix of which has rows labelled by 
polynomials X i, 0 ≤ i ≤ k − 1, columns by elements 0, 1, . . . , q − 1 polynomials X i, 0 ≤ i ≤ k − 1, columns by elements 0, 1, . . . , q − 1 
and the element in a row labelled by a polynomial p and in a 
column labelled by an element u is p(u).

RSC(k, q) code is [q, k, q − k + 1] code.

Example Generator matrix for RSC(3, 5) code is





 11111

















14410

43210

11111

Interesting property of Reed-Solomon codes:

RSC(k, q)⊥ = RSC(q − k, q).

Reed-Solomon codes are used in digital television, satellite 



⊥

Reed-Solomon codes are used in digital television, satellite 
communication, wireless communication, barcodes, compact 
discs, DVD,... They are very good to correct burst errors - such as 
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discs, DVD,... They are very good to correct burst errors - such as 
ones caused by solar energy.



Trace and Subfield CodesTrace and Subfield CodesIV054 Trace and Subfield CodesTrace and Subfield Codes

• Let p be a prime and r an integer. A trace tr is mapping from Fpr into Fp
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• Let p be a prime and r an integer. A trace tr is mapping from Fpr into Fp

defined by 

tr(x) = ∑
−

=

ir

i

pix
0

.

• Trace is additive (tr(x1 + x2) = tr(x1) + tr(x2)) and Fp-linear (tr(λx) = λtr(x)).

• If C is a linear code over Fpr and tr is a trace mapping from Fpr to Fp, then 

=i 0

• If C is a linear code over Fpr and tr is a trace mapping from Fpr to Fp, then 

trace code tr(C) is a code over Fp defined by

(tr(x1), tr(x2), . . . , tr(xn))

where (x , x , . . . , x ) ∈∈ C.where (x1, x2, . . . , xn) ∈∈ C.

• If Fn
pr⊃ C is a linear code of strength t, then strength of tr(C) is at least t.

• Let C be a linear code. The subfield code CFp consists of those codewords • Let C be a linear code. The subfield code CFp consists of those codewords 

of C all of whose entries are in Fp.

• Delsarte theorem If C is a linear code. Then

tr(C)⊥ = (C⊥)Fp .
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Soccer Games Betting SystemSoccer Games Betting SystemIV054 Soccer Games Betting SystemSoccer Games Betting SystemIV054

Ternary Golay code with parameters (11, 729, 5) can be

used to bet for results of 11 soccer games with potentialused to bet for results of 11 soccer games with potential

outcomes 1 (if home team wins), 2 (if guests win) and 3 (in

case of a draw).case of a draw).

If 729 bets are made, then at least one bet has at least 9

results correctly guessed.

In case one has to bet for 13 games, then one can usually

have two games with pretty sure outcomes and for the rest

one can use the above ternary Golay code.
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