CHAPTER 3: Cyclic and convolution codes

Cyclic codes are special linear cods of interest and importance because

- They posses a rich algebraic structure that can be utilized in a variety of ways.
- They have extremely concise specifications.
- They can be efficiently implemented using simple shift registers.
- Many practically important codes are cyclic.

Convolution codes allow to encode streams od data (bits).

IMPORTANT NOTE

In order to specify a binary code with 2^{k} codewords of length n one may need to write down

$$
2^{k}
$$

codewords of length n .

In order to specify a linear binary code with 2^{k} codewords of length n it is sufficient to write down

$$
k
$$

codewords of length n.

In order to specify a binary cyclic code with 2^{k} codewords of length n it is sufficient to write down

$$
1
$$

codeword of length n.

BASIC DEFINITION AND EXAMPLES

Definition A code C is cyclic if
(i) C is a linear code;
(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever $a_{0}, \ldots a_{n-1} \in C$, then also $a_{n-1} a_{0} \ldots a_{n-2} \in C$.
Example
(i) Code $C=\{000,101,011,110\}$ is cyclic.
(ii) Hamming code $\operatorname{Ham}(3,2)$: with the generator matrix
is equivalent to a cyclic code.

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

(iii) The binary linear code $\{0000,1001,0110,1111\}$ is not a cyclic, but it is equivalent to a cyclic code.
(iv) Is Hamming code $\operatorname{Ham}(2,3)$ with the generator matrix

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 2
\end{array}\right)
$$

(a) cyclic?
(b) equivalent to a cyclic code?

FREQUENCY of CYCLIC CODES

Comparing with linear codes, the cyclic codes are quite scarce. For, example there are 11811 linear $(7,3)$ linear binary codes, but only two of them are cyclic.

Trivial cyclic codes. For any field F and any integer $n>=3$ there are always the following cyclic codes of length n over F :

- No-information code - code consisting of just one all-zero codeword.
- Repetition code - code consisting of codewords (a, a, \ldots, a) for $a \in F$.
- Single-parity-check code - code consisting of all codewords with parity 0 .
- No-parity code - code consisting of all codewords of length n

For some cases, for example for $n=19$ and $F=G F(2)$, the above four trivial cyclic codes are the only cyclic codes.

EXAMPLE of a CYCLIC CODE

The code with the generator matrix

$$
G=\left(\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

has codewords

$$
\begin{array}{ccc}
c_{1}=1011100 & c_{2}=0101110 & c_{3}=0010111 \\
c_{1}+c_{2}=1110010 & c_{1}+c_{3}=1001011 & c_{2}+c_{3}=0111001 \\
& c_{1}+c_{2}+c_{3}=1100101 &
\end{array}
$$

and it is cyclic because the right shifts have the following impacts

$$
\begin{array}{ccc}
c_{1} \rightarrow c_{2}, & c_{2} \rightarrow c_{3}, & c_{3} \rightarrow c_{1}+c_{3} \\
c_{1}+c_{2} \rightarrow c_{2}+c_{3}, & c_{1}+c_{3} \rightarrow c_{1}+c_{2}+c_{3}, & c_{2}+c_{3} \rightarrow c_{1} \\
& c_{1}+c_{2}+c_{3} \rightarrow c_{1}+c_{2} &
\end{array}
$$

A codeword of a cyclic code is usually denoted

$$
a_{0} a_{1} \ldots a_{n-1}
$$

and to each such a codeword the polynomial

$$
a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

will be associated.
NOTATION: $F_{q}[x]$ denotes the set of all polynomials over $G F(q)$.
$\operatorname{deg}(\mathrm{f}(x))=$ the largest m such that x^{m} has a non-zero coefficient in $f(x)$.
Multiplication of polynomials If $\mathrm{f}(x), \mathrm{g}(x) \in F_{\mathrm{q}}[x]$, then

$$
\operatorname{deg}(f(x) g(x))=\operatorname{deg}(f(x))+\operatorname{deg}(g(x)) .
$$

Division of polynomials For every pair of polynomials $\mathrm{a}(x), \mathrm{b}(x) \neq 0$ in $F_{\mathrm{q}}[x]$ there exists a unique pair of polynomials $\mathrm{q}(x), \mathrm{r}(x)$ in $F_{\mathrm{q}}[x]$ such that

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{b}(x)+\mathrm{r}(x), \operatorname{deg}(\mathrm{r}(x))<\operatorname{deg}(\mathrm{b}(x)) .
$$

Example Divide $x^{3}+x+1$ by $x^{2}+x+1$ in $F_{2}[x]$.
Definition Let $\mathrm{f}(x)$ be a fixed polynomial in $F_{\mathrm{q}}[x]$. Two polynomials $\mathrm{g}(x), \mathrm{h}(x)$ are said to be congruent modulo $f(x)$, notation

$$
\mathrm{g}(x) \equiv \mathrm{h}(x)(\bmod \mathrm{f}(x))
$$

if $\mathrm{g}(\mathrm{x})-\mathrm{h}(x)$ is divisible by $\mathrm{f}(x)$.

The set of polynomials in $F_{\mathrm{q}}[x]$ of degree less than $\operatorname{deg}(f(x))$, with addition and multiplication modulo $\mathrm{f}(x)$ forms a ring denoted $\mathrm{F}_{\mathrm{q}}[\mathbf{x}] / \mathrm{f}(\mathbf{x})$.
Example Calculate $(x+1)^{2}$ in $F_{2}[x] /\left(x^{2}+x+1\right)$. It holds

$$
(x+1)^{2}=x^{2}+2 x+1 \equiv x^{2}+1 \equiv x\left(\bmod x^{2}+x+1\right) .
$$

How many elements has $F_{\mathrm{q}}[x] / \mathrm{f}(x)$?
Result $\left|F_{q}[x] / f(x)\right|=q \operatorname{deg}(f(x))$.
Example Addition and multiplication in $F_{2}[x] /\left(x^{2}+x+1\right)$

+	0	1	x	$1+x$
0	0	1	x	$1+x$
1	1	0	$1+x$	x
x	x	$1+x$	0	1
$1+x$	$1+x$	x	1	0

\bullet	0	1	x	$1+x$
0	0	0	0	0
1	0	1	x	$1+x$
x	0	x	$1+x$	1
$1+x$	0	$1+x$	1	x

Definition A polynomial $\mathrm{f}(x)$ in $F_{\mathrm{q}}[x]$ is said to be reducible if $\mathrm{f}(x)=\mathrm{a}(x) \mathrm{b}(x)$, where $\mathrm{a}(x), \mathrm{b}(x) \in F_{\mathrm{q}}[x]$ and

$$
\operatorname{deg}(\mathrm{a}(\mathrm{x}))<\operatorname{deg}(\mathrm{f}(x)), \quad \operatorname{deg}(\mathrm{b}(x))<\operatorname{deg}(\mathrm{f}(x)) .
$$

If $\mathrm{f}(x)$ is not reducible, it is irreducible in $F_{\mathrm{q}}[x]$.
Theorem The ring $F_{\mathrm{q}}[x] / \mathrm{f}(x)$ is a field if $\mathrm{f}(x)$ is irreducible in $F_{\mathrm{q}}[x]$.

Computation modulo $x^{n}-1$
Since $x^{n} \equiv 1\left(\bmod \left(x^{n}-1\right)\right)$ we can compute $f(x) \bmod \left(x^{n}-1\right)$ as follows: In $\mathrm{f}(x)$ replace x^{n} by $1, x^{n+1}$ by x, x^{n+2} by x^{2}, x^{n+3} by x^{3}, \ldots

Identification of words with polynomials

$$
a_{0} a_{1} \ldots a_{n-1} \leftrightarrow a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n-1} x^{n-1}
$$

Multiplication by x in R_{n} corresponds to a single cyclic shift

$$
x\left(a_{0}+a_{1} x+\ldots a_{n-1} x^{n-1}\right)=a_{n-1}+a_{0} x+a_{1} x^{2}+\ldots+a_{n-2} x^{n-1}
$$

Algebraic characterization of cyclic codes

Theorem A code C is cyclic if C satisfies two conditions
(i) $\mathrm{a}(x), \mathrm{b}(x) \in C \Rightarrow \mathrm{a}(x)+\mathrm{b}(x) \in C$
(ii) $\mathrm{a}(x) \in \mathrm{C}, \mathrm{r}(x) \in R_{\mathrm{n}} \Rightarrow \mathrm{r}(x) \mathrm{a}(x) \in C$

Proof

(1) Let C be a cyclic code. C is linear \Rightarrow (i) holds.
(ii) Let $\mathrm{a}(x) \in C, r(x)=r_{0}+r_{1} x+\ldots+r_{n-1} x^{n-1}$

$$
r(x) a(x)=r_{0} a(x)+r_{1} x a(x)+\ldots+r_{n-1} x^{n-1} a(x)
$$

is in C by (i) because summands are cyclic shifts of $a(x)$.
(2) Let (i) and (ii) hold

- Taking $r(x)$ to be a scalar the conditions imply linearity of C.
- Taking $r(x)=x$ the conditions imply cyclicity of C.

CONSTRUCTION of CYCLIC CODES

Notation If $\mathrm{f}(x) \in R_{\mathrm{n}}$, then

$$
\langle f(x)\rangle=\left\{r(x) f(x) \mid r(x) \in R_{n}\right\}
$$

(multiplication is modulo $x^{n}-1$).
Theorem For any $\mathrm{f}(\mathrm{x}) \in R_{\mathrm{n}}$, the set $\langle\mathrm{f}(\mathbf{x})\rangle$ is a cyclic code (generated by f).
Proof We check conditions (i) and (ii) of the previous theorem.
(i) If $\mathrm{a}(x) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle$ and also $\mathrm{b}(x) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle$, then

$$
a(x) f(x)+b(x) f(x)=(a(x)+b(x)) f(x) \in\langle f(x)\rangle
$$

(ii) If $\mathrm{a}(x) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle, \mathrm{r}(x) \in R_{\mathrm{n}}$, then

$$
\mathrm{r}(x)(\mathrm{a}(x) \mathrm{f}(x))=(\mathrm{r}(x) \mathrm{a}(x)) \mathrm{f}(x) \in\langle\mathrm{f}(x)\rangle .
$$

Example $C=\left\langle 1+x^{2}\right\rangle, n=3, q=2$.
We have to compute $\mathrm{r}(x)\left(1+x^{2}\right)$ for all $\mathrm{r}(x) \in R_{3}$.

$$
R_{3}=\left\{0,1, x, 1+x, x^{2}, 1+x^{2}, x+x^{2}, 1+x+x^{2}\right\} .
$$

Result

$$
\begin{gathered}
C=\left\{0,1+x, 1+x^{2}, x+x^{2}\right\} \\
C=\{000,011,101,110\}
\end{gathered}
$$

Characterization theorem for cyclic codes

We show that all cyclic codes C have the form $C=\langle f(x)\rangle$ for some $f(x) \in R_{\mathrm{n}}$.
Theorem Let C be a non-zero cyclic code in R_{n}. Then

- there exists unique monic polynomial $g(x)$ of the smallest degree such that
- $C=\langle g(x)\rangle$
- $g(x)$ is a factor of $x^{n}-1$.

Proof

(i) Suppose $\mathrm{g}(x)$ and $\mathrm{h}(x)$ are two monic polynomials in C of the smallest degree.

Then the polynomial $\mathrm{g}(x)-\mathrm{h}(x) \in C$ and it has a smaller degree and a multiplication by a scalar makes out of it a monic polynomial. If $\mathrm{g}(x) \neq \mathrm{h}(x)$ we get a contradiction.
(ii) Suppose $\mathrm{a}(\mathrm{x}) \in C$.

Then

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{g}(x)+\mathrm{r}(x) \quad(\operatorname{deg} \mathrm{r}(x)<\operatorname{deg} \mathrm{g}(x))
$$

and

$$
\mathrm{r}(x)=\mathrm{a}(x)-\mathrm{q}(x) \mathrm{g}(x) \in C
$$

By minimality

$$
r(x)=0
$$

and therefore $\mathrm{a}(x) \in\langle\mathrm{g}(x)\rangle$.

Characterization theorem for cyclic codes

(iii) Clearly,

$$
x^{n}-1=\mathrm{q}(x) \mathrm{g}(x)+\mathrm{r}(x) \text { with } \quad \operatorname{deg} \mathrm{r}(x)<\operatorname{deg} \mathrm{g}(x)
$$

and therefore

$$
\mathrm{r}(x) \equiv-\mathrm{q}(x) \mathrm{g}(x)\left(\bmod x^{\mathrm{n}}-1\right) \text { and }
$$

$$
\mathrm{r}(x) \in C \Rightarrow \mathrm{r}(x)=0 \Rightarrow \mathrm{~g}(x) \text { is a factor of } x^{\mathrm{n}}-1
$$

GENERATOR POLYNOMIALS

Definition If for a cyclic code C it holds

$$
C=\langle\mathbf{g}(x)\rangle,
$$

then g is called the generator polynomial for the code C.

HOW TO DESIGN CYCLIC CODES?

The last claim of the previous theorem gives a recipe how to get all cyclic codes of the given length n.
Indeed, all we need to do is to find all factors of

$$
x^{n}-1
$$

Problem: Find all binary cyclic codes of length 3.
Solution: Since

$$
x^{3}-1=\underbrace{\frac{(x+1)\left(x^{2}+x+1\right)}{\text { factors are irreducible in } G F(2)}}_{\text {both }}
$$

we have the following generator polynomials and codes.

Generator polynomials 1
$x+1$
$x^{2}+x+1$
$x^{3}-1(=0)$

Code in R_{3}
R_{3}
$\left\{0,1+x, x+x^{2}, 1+x^{2}\right\}$
$\left\{0,1+x+x^{2}\right\}$
\{0\}

Code in V(3,2)
$V(3,2)$
$\{000,110,011,101\}$
$\{000,111\}$
\{000\}

Design of generator matrices for cyclic codes

Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial

$$
g(x)=g_{0}+g_{1} x+\ldots+g_{r} x^{r}
$$

Then $\operatorname{dim}(C)=\mathrm{n}-\mathrm{r}$ and a generator matrix G_{1} for C is

Proof

$$
G_{1}=\left(\begin{array}{cccccccccc}
g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & 0 & \ldots & 0 \\
0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & 0 & \ldots & 0 \\
0 & 0 & g_{0} & g_{1} & g_{2} & \ldots & g_{r} & 0 & \ldots & 0 \\
. . & . . & & & & & & & & . . \\
0 & 0 & \ldots & 0 & 0 & \ldots & 0 & g_{0} & \ldots & g_{r}
\end{array}\right)
$$

(i) All rows of G_{1} are linearly independent.
(ii) The $n-r$ rows of G represent codewords

$$
\begin{equation*}
g(x), x g(x), x^{2} g(x), \ldots, x^{n-r-1} g(x) \tag{*}
\end{equation*}
$$

(iii) It remains to show that every codeword in C can be expressed as a linear combination of vectors from (*).
Inded, if $a(x) \in C$, then

$$
\mathrm{a}(x)=\mathrm{q}(x) \mathrm{g}(x)
$$

Since $\operatorname{deg} \mathrm{a}(x)<\mathrm{n}$ we have $\operatorname{deg} \mathrm{q}(x)<\mathrm{n}-\mathrm{r}$.
Hence

$$
\begin{aligned}
q(x) g(x) & =\left(q_{0}+q_{1} x+\ldots+q_{n-r-1} x^{n-r-1}\right) g(x) \\
& =q_{0} g(x)+q_{1} x g(x)+\ldots+q_{n-r-1} x^{n-r-1} g(x) .
\end{aligned}
$$

EXAMPLE

The task is to determine all ternary codes of length 4 and generators for them.
Factorization of $x^{4}-1$ over $G F(3)$ has the form

$$
x^{4}-1=(x-1)\left(x^{3}+x^{2}+x+1\right)=(x-1)(x+1)\left(x^{2}+1\right)
$$

Therefore there are $2^{3}=8$ divisors of $x^{4}-1$ and each generates a cyclic code.

Generator polynomial
1
$x-1$
$x+1$

$$
x^{2}+1
$$

$$
(x-1)(x+1)=x^{2}-1
$$

$$
(x-1)\left(x^{2}+1\right)=x^{3}-x^{2}+x-1
$$

$$
(x+1)\left(x^{2}+1\right)
$$

$$
x^{4}-1=0
$$

Generator matrix

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
-1 & 1_{4} & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{llll}
-1 & 1 & -1 & 1
\end{array}\right]} \\
& \text { [lllll} \left.\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] \\
& {\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Check polynomials and parity check matrices for cyclic codes

Let C be a cyclic $[n, k]$-code with the generator polynomial $g(x)$ (of degree $n-k$). By the last theorem $g(x)$ is a factor of $x^{n}-1$. Hence

$$
x^{n}-1=g(x) h(x)
$$

for some $h(x)$ of degree k (where $h(x)$ is called the check polynomial of C).
Theorem Let C be a cyclic code in R_{n} with a generator polynomial $\mathrm{g}(x)$ and a check polynomial $\mathrm{h}(x)$. Then an $\mathrm{c}(x) \in R_{\mathrm{n}}$ is a codeword of C if $\mathrm{c}(x) \mathrm{h}(x) \equiv 0$ - (this and next congruences are all modulo $x^{n}-1$).

Proof Note, that $\mathrm{g}(x) \mathrm{h}(x)=x^{\mathrm{n}}-1 \equiv 0$
(i) $\mathrm{c}(x) \in C \Rightarrow \mathrm{c}(x)=\mathrm{a}(x) \mathrm{g}(x)$ for some $\mathrm{a}(x) \in R_{\mathrm{n}}$

$$
\Rightarrow \mathrm{c}(x) \mathrm{h}(x)=\mathrm{a}(x) \underbrace{\mathrm{g}(x) \mathrm{h}(x)}_{\equiv 0} \equiv 0 .
$$

(ii) $\mathrm{c}(x) \mathrm{h}(x) \equiv 0$

$$
\begin{gathered}
\mathrm{c}(x)=\mathrm{q}(x) \mathrm{g}(x)+\mathrm{r}(x), \operatorname{deg} \mathrm{r}(x)<n-k=\operatorname{deg} \mathrm{g}(x) \\
\mathrm{c}(x) \mathrm{h}(x) \equiv 0 \Rightarrow \mathrm{r}(x) \mathrm{h}(x) \equiv 0\left(\bmod x^{\mathrm{n}}-1\right)
\end{gathered}
$$

Since deg $(\mathrm{r}(x) \mathrm{h}(x))<n-k+k=n$, we have $\mathrm{r}(x) \mathrm{h}(x)=0$ in $F[x]$ and therefore

$$
\mathrm{r}(x)=0 \Rightarrow \mathrm{c}(x)=\mathrm{q}(x) \mathrm{g}(x) \in C .
$$

POLYNOMIAL REPRESENTATION of DUAL CODES

Since $\operatorname{dim}(\langle\mathrm{h}(\mathrm{x})\rangle)=n-k=\operatorname{dim}\left(\mathrm{C}^{\perp}\right)$ we might easily be fooled to think that the check polynomial $h(x)$ of the code C generates the dual code C^{\perp}.
Reality is "slightly different":
Theorem Suppose C is a cyclic $[n, k]$-code with the check polynomial

$$
h(x)=h_{0}+h_{1} x+\ldots+h_{k} x^{k},
$$

then
(i) a parity-check matrix for C is

$$
H=\left(\begin{array}{ccccccc}
h_{k} & h_{k-1} & \ldots & h_{0} & 0 & \ldots & 0 \\
0 & h_{k} & \ldots & h_{1} & h_{0} & \ldots & 0 \\
. . & . & & & & & \\
0 & 0 & \ldots & 0 & h_{k} & \ldots & h_{0}
\end{array}\right)
$$

(ii) C^{\perp} is the cyclic code generated by the polynomial

$$
\bar{h}(x)=h_{k}+h_{k-1} x+\ldots+h_{0} x^{k}
$$

i.e. the reciprocal polynomial of $h(x)$.

POLYNOMIAL REPRESENTATION of DUAL CODES

Proof A polynomial $\mathrm{c}(x)=\mathrm{c}_{0}+\mathrm{c}_{1} x+\ldots+\mathrm{c}_{\mathrm{n}-1} x^{\mathrm{n}-1}$ represents a code from C if $\mathrm{c}(x) \mathrm{h}(x)=0$. For $\mathrm{c}(x) \mathrm{h}(x)$ to be 0 the coefficients at $x^{\mathrm{k}}, \ldots, x^{\mathrm{n}-1}$ must be zero, i.e.

$$
\begin{gathered}
c_{0} h_{k}+c_{1} h_{k-1}+\ldots+c_{k} h_{0}=0 \\
c_{1} h_{k}+c_{2} h_{k-1}+\ldots+c_{k+1} h_{0}=0 \\
\quad . \quad . \quad \\
c_{n-k-1} h_{k}+c_{n-k} h_{k-1}+\ldots+c_{n-1} h_{0}=0
\end{gathered}
$$

Therefore, any codeword $\mathrm{c}_{0} \mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{n}-1} \in \mathrm{C}$ is orthogonal to the word $\mathrm{h}_{\mathrm{k}} \mathrm{h}_{\mathrm{k}-1} \ldots \mathrm{~h}_{0} 00 \ldots 0$ and to its cyclic shifts.
Rows of the matrix H are therefore in C^{\perp}. Moreover, since $h_{k}=1$, these row-vectors are linearly independent. Their number is $n-k=\operatorname{dim}\left(C^{\perp}\right)$. Hence H is a generator matrix for C^{\perp}, i.e. a parity-check matrix for C.
In order to show that C^{\perp} is a cyclic code generated by the polynomial

$$
\bar{h}(x)=h_{k}+h_{k-1} x+\ldots+h_{0} x^{k}
$$

it is sufficient to show that $\bar{h}(x)$ is a factor of $x^{\mathrm{n}}-1$.
Observe that $\bar{h}(x)=x^{k} h\left(x^{-1}\right)$ and since $\quad \mathrm{h}\left(x^{-1}\right) \mathrm{g}\left(x^{-1}\right)=\left(x^{-1}\right)^{\mathrm{n}}-1$
we have that $\quad x^{\mathrm{k}} \mathrm{h}\left(x^{-1}\right) x^{\mathrm{n}-\mathrm{k}} \mathrm{g}\left(x^{-1}\right)=x^{\mathrm{n}}\left(x^{-\mathrm{n}}-1\right)=1-x^{\mathrm{n}}$
and therefore $\bar{h}(x)$ is indeed a factor of $x^{n}-1$.

ENCODING with CYCLIC CODES I

Encoding using a cyclic code can be done by a multiplication of two polynomials - a message polynomial and the generating polynomial for the cyclic code.

Let C be an $[n, k]$-code over an field F with the generator polynomial $g(x)=g_{0}+g_{1} x+\ldots+g_{r-1} x^{r-1}$ of degree $r=n-k$.

If a message vector m is represented by a polynomial $m(x)$ of degree k and m is encoded by

$$
m \Rightarrow c=m G
$$

then the following relation between $\mathrm{m}(x)$ and $\mathrm{c}(x)$ holds

$$
\mathrm{c}(x)=\mathrm{m}(x) \mathrm{g}(x) .
$$

Such an encoding can be realized by the shift register shown in Figure below, where input is the k-bit message to be encoded followed by $n-k 0$ and the output will be the encoded messace.

Shift-register encodings of cyclic codes. Small circles represent multiplication by the corresponding constant, \oplus nodes represent modular addition, squares are delay elements

Definition (Again!) Let r be a positive integer and let H be an $r^{*}\left(2^{r}-1\right)$ matrix whose columns are distinct non-zero vectors of $V(r, 2)$. Then the code having H as its parity-check matrix is called binary Hamming code denoted by $\operatorname{Ham}(r, 2)$.

It can be shown that binary Hamming codes are equivalent to cyclic codes.

Theorem The binary Hamming code $\operatorname{Ham}(r, 2)$ is equivalent to a cyclic code.

Definition If $\mathrm{p}(x)$ is an irreducible polynomial of degree r such that x is a primitive element of the field $F[x] / p(x)$, then $p(x)$ is called a primitive polynomial.

Theorem If $p(x)$ is a primitive polynomial over $G F(2)$ of degree r, then the cyclic code $\langle\mathrm{p}(x)\rangle$ is the code $\operatorname{Ham}(r, 2)$.

Hamming codes as cyclic codes

Example Polynomial $x^{3}+x+1$ is irreducible over $G F(2)$ and x is primitive element of the field $F_{2}[x] /\left(x^{3}+x+1\right)$.

$$
\begin{gathered}
F_{2}[x] /\left(x^{3}+x+1\right)= \\
\left\{0, x, x^{2}, x^{3}=x+1, x^{4}=x^{2}+x, x^{5}=x^{2}+x+1, x^{6}=x^{2}+1\right\}
\end{gathered}
$$

The parity-check matrix for a cyclic version of $\operatorname{Ham}(3,2)$

$$
H=\left(\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 & 1
\end{array}\right)
$$

PROOF of THEOREM

The binary Hamming code $\operatorname{Ham}(r, 2)$ is equivalent to a cyclic code. It is known from algebra that if $p(x)$ is an irreducible polynomial of degree r, then the ring $F_{2}[x] / p(x)$ is a field of order 2^{r}.
In addition, every finite field has a primitive element. Therefore, there exists an element α of $F_{2}[x] / p(x)$ such that

$$
F_{2}[x] / p(x)=\left\{0,1, \alpha, \alpha^{2}, \ldots, \alpha^{2 r-2}\right\} .
$$

Let us identify an element $\mathrm{a}_{0}+\mathrm{a}_{1}+\ldots \mathrm{a}_{\mathrm{r}-1} x^{r-1}$ of $F_{2}[x] / p(x)$ with the column vector

$$
\left(a_{0}, a_{1}, \ldots, a_{r-1}\right)^{\top}
$$

and consider the binary $r^{*}\left(2^{r}-1\right)$ matrix

$$
H=\left[\begin{array}{lllll}
1 & \alpha & \alpha^{2} & \ldots & \alpha^{2^{\wedge} r-2}
\end{array}\right]
$$

Let now C be the binary linear code having H as a parity check matrix.
Since the columns of H are all distinct non-zero vectors of $V(r, 2), C=\operatorname{Ham}(r, 2)$.
Putting $n=2^{r}-1$ we get

$$
\begin{align*}
C & =\left\{f_{0} f_{1} \ldots f_{n-1} \in V(n, 2) \mid f_{0}+f_{1} \alpha+\ldots+f_{n-1} \alpha^{n-1}=0\right. \tag{2}\\
& =\left\{f(x) \in R_{n} \mid f(\alpha)=0 \text { in } F_{2}[x] / p(x)\right\} \tag{3}
\end{align*}
$$

If $\mathrm{f}(x) \in C$ and $\mathrm{r}(x) \in R_{\mathrm{n}}$, then $\mathrm{r}(x) \mathrm{f}(x) \in C$ because

$$
r(\alpha) f(\alpha)=r(\alpha) \bullet 0=0
$$

and therefore, by one of the previous theorems, this version of $\operatorname{Ham}(r, 2)$ is cyclic.

BCH codes and Reed-Solomon codes

To the most important cyclic codes for applications belong BCH codes and ReedSolomon codes.

Definition A polynomial p is said to be minimal for a complex number x in Z_{q} if $p(x)$ $=0$ and p is irreducible over Z_{q}.
Definition A cyclic code of codewords of length n over $Z_{q}, q=p^{r}, p$ is a prime, is called BCH code ${ }^{1}$ of distance d if its generator $g(x)$ is the least common multiple of the minimal polynomials for

$$
\omega^{I}, \omega^{I+1}, \ldots, \omega^{I+d-2}
$$

for some I, where

$$
\omega \text { is the primitive } n \text {-th root of unity. }
$$

If $n=q^{m}-1$ for some m, then the BCH code is called primitive.
Definition A Reed-Solomon code is a primitive BCH code with $n=q-1$.

Properties:

- Reed-Solomon codes are self-dual.
${ }^{1}$ BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered these codes.

CONVOLUTION CODES

Very often it is important to encode an infinite stream or several streams of data - say of bits.

Convolution codes, with simple encoding and decoding, are quite a simple generalization of linear codes and have encodings as cyclic codes.

An (n, k) convolution code (CC) is defined by an $k x n$ generator matrix, entries of which are polynomials over F_{2}.

For example,

$$
G_{1}=\left[x^{2}+1, x^{2}+x+1\right]
$$

is the generator matrix for a $(2,1)$ convolution code CC_{1} and

$$
G_{2}=\left(\begin{array}{ccc}
1+x & 0 & x+1 \\
0 & 1 & x
\end{array}\right)
$$

is the generator matrix for a $(3,2)$ convolution code CC_{2}

ENCODING of FINITE POLYNOMIALS

An (n, k) convolution code with a kx n generator matrix G can be used to encode a k-tuple of plain-polynomials (polynomial input information)

$$
I=\left(I_{0}(x), I_{1}(x), \ldots, I_{k-1}(x)\right)
$$

to get an n-tuple of crypto-polynomials

$$
C=\left(C_{0}(x), C_{1}(x), \ldots, C_{n-1}(x)\right)
$$

As follows

$$
C=I . G
$$

EXAMPLES

EXAMPLE 1

$$
\begin{aligned}
\left(x^{3}+x+1\right) \cdot G_{1}= & \left(x^{3}+x+1\right) \cdot\left(x^{2}+1, x^{2}+x+1\right] \\
& =\left(x^{5}+x^{2}+x+1, x^{5}+x^{4}+1\right)
\end{aligned}
$$

EXAMPLE 2

$$
\left(x^{2}+x, x^{3}+1\right) \cdot G_{2}=\left(x^{2}+x, x^{3}+1\right)\left(\begin{array}{ccc}
1+x 0 & x+1 \\
0 & 1 & x
\end{array}\right)
$$

ENCODING of INFINITE INPUT STREAMS

The way infinite streams are encoded using convolution codes will be Illustrated on the code CC_{1}.

An input stream $I=\left(I_{0}, I_{1}, I_{2}, \ldots\right)$ is mapped into the output stream $\mathrm{C}=\left(\mathrm{C}_{00}, \mathrm{C}_{10}, \mathrm{C}_{01}, \mathrm{C}_{11} \ldots\right)$ defined by

$$
C_{0}(x)=C_{00}+C_{01} x+\ldots=\left(x^{2}+1\right) I(x)
$$

and

$$
C_{1}(x)=C_{10}+C_{11} x+\ldots=\left(x^{2}+x+1\right) I(x) .
$$

The first multiplication can be done by the first shift register from the next figure; second multiplication can be performed by the second shift register on the next slide and it holds

$$
\mathrm{C}_{0 \mathrm{i}}=I_{i}+I_{i+2}, \quad C_{1 i}=I_{i}+I_{i-1}+I_{i-2} .
$$

That is the output streams C_{0} and C_{1} are obtained by convolving the input stream with polynomials of G_{1},

ENCODING

The first shift register

will multiply the input stream by $\mathbf{x}^{2}+1$ and the second shift register

will multiply the input stream by $x^{2}+x+1$.

ENCODING and DECODING

The following shift-register will therefore be an encoder for the code CC ${ }_{1}$

For encoding of the convolution codes so called

Viterbi algorithm

Is used.

