TER 4: Classical (secret-key) cryptosystems }

* |In this chapter we deal with some of the very old or quite old
classical (secret-key or symmetric) cryptosystems that were primarily
used in the pre-computer era.

* These cryptosystems are too weak nowadays, too easy to
break, especially with computers.

 However, these simple cryptosystems give a good illustration
of several of the important ideas of the cryptography and
cryptanalysis.

* Moreover, most of them can be very useful in combination with
more modern cryptosystem - to add a new level of security.




logy, Cryptosystems - secret-key cryptography J

Cryptology (= cryptography + cryptoanalysis)
has more than two thousand years of history.

Basic historical observation

- People have always had fascination with keeping information away from
others.

« Some people — rulers, diplomats, militaries, businessmen — have always had
needs to keep some information away from others.

Importance of cryptography nowadays

« Applications: cryptography is the key tool to make modern information
transmission secure, and to create secure information society.

- Foundations: cryptography gave rise to several new key concepts of the
foundation of informatics: one-way functions, computationally perfect
pseudorandom generators, zero-knowledge proofs, holographic proofs,
program self-testing and self-correcting, ...




hes and paradoxes of cryptography

Sound approaches to cryptography

Shannon’s approach based on information theory (enemy has not enough
information to break a cryptosystem)

Current approach based on complexity theory (enemy has not enough
computation power to break a cryptosystem).

Very recent approach based on the laws and limitations of quantum physics
(enemy would need to break laws of nature to break a cryptosystem).

Paradoxes of modern cryptography

« Positive results of modern cryptography are based on negative results of
complexity theory.

- Computers, that were designed originally for decryption, seem to be now
more useful for encryption.




stems - ciphers

The cryptography deals the problem of sending a message (plaintext,
cleartext), through a insecure channel, that may be tapped by an adversary
(eavesdropper, cryptanalyst), to a legal receiver.

key source

. legal
sender - Cryptotext *. recejver

plaintext encryption : : : - decryption plaintext
i e = exfiw) y : . 1w = dp(r) 10
adversary
!




ents of cryptosystems: J

Plaintext-space: P — a set of plaintexts over an alphabet 2.

A
Cryptotext-space: C — a set of cryptotexts (ciphertexts) over alphabet

Key-space: K -— a set of keys
Each key k determines an encryption algorithm e, and an decryption

algorithm d, such that, for any plaintext w, e, (w) is the corresponding cryptotext
and

wlld, (ek (W)) or w=d, (e, (w))

Note: As encryption algorithms we can use also randomized algorithms.




2 B.C., CAESAR cryptosystem, Shift cipher |

CAESAR can be used to encrypt words in any alphabet.
In order to encrypt words in English alphabet we use:

Key-space: {0,1,...,25}

An encryption algorithm e, substitutes any letter by the
letter occurring k positions ahead (cyclically) in the
alphabet.

A decryption algorithm d, substitutes any letter by the one
occurring k positions backward (cyclically) in the alphabet.




B.C., CAESAR cryptosystem, Shift cipher j

Example e,(EXAMPLE) = GZCOSNG,
e;(EXAMPLE) = HADPTOH,
e,(HAL) = IBM,
e;(COLD) = FROG

ABCDEFGHIJKLMNOPQRSTUVWXYZ
Example Find the plaintext to the following cryptotext obtained by the
encryption with CAESAR with k= 7.

Cryptotext: VHFUHW GH GHXA, VHFUHW GH GLHX,
VHFUHW GH WURLV, VHFUHW GH WRXV.

Numerical version of CAESAR is defined on the set {0, 1, 2,..., 25} by the
encryption algorithm:

e (i) = (i + k) (mod 26)




OUS cryptosystem

for encryption of words of the English alphabet without J.

Key-space: Polybious checkerboards 5x5 with 25 English letters and with
rows + columns labeled by symbols.

Encryption algorithm: Each symbol is substituted by the pair of symbols
denoting the row and the column of the checkerboard in which the symbol is
placed.

Example: clalul iy
AlA|B|C|D]|E
BIF|G|H]| I [K
CILIM[N|JO]|P
DIQ|(R|S|T|U
EIVI I W[X|Y|Z
KONIEC -

Decryption algorithm: ?77?




’s Principle

The philosophy of modern cryptoanalysis is embodied in the following
principle formulated in 1883 by Jean Guillaume Hubert Victor Francois
Alexandre Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).

The security of a cryptosystem must not depend
on keeping secret the encryption algorithm. The
security should depend only on keeping secret the

key.




o b~ W b=

ements for good cryptosystems )

(Sir Francis R. Bacon (1561 - 1620))

Given e, and a plaintext w, it should be easy to compute ¢ = e, (w).
Given d, and a cryptotext c, it should be easy to compute w = d,(c).

A cryptotext e, (w) should not be much longer than the plaintext w.

It should be unfeasible to determine w from e,(w) without knowing d,.

The so called avalanche effect should hold: A small change in the plaintext,
or in the key, should lead to a big change in the cryptotext (i.e. a change of
one bit of the plaintext should result in a change of all bits of the
cryptotext, each with the probability close to 0.5).

The cryptosystem should not be closed under composition, i.e. not for
every two keys k;,, k, there is a key k such that

e (W) = €yq (€42 (W)).

The set of keys should be very large.
10




oanalysis }

The aim of cryptoanalysis is to get as much information about the plaintext
or the key as possible.

Main types of cryptoanalytics attack

1.Cryptotexts-only attack. The cryptanalysts get cryptotexts

c,=ew,y),..., c, = e(w,) and try to infer the key k or as many of the plaintexts
w,,..., W, as possible.

2. Known-plaintexts attack (given are some pairs plaintext-> cryptotext)

The cryptanalysts know some pairs w;, e, (w,), 1 <=i <= n, and try to infer k, or
at least w, ., for a new cryptotext many plaintexts e, (w,,..,).

3. Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts)

The cryptanalysts choose plaintexts w,, ..., w, to get cryptotexts e, (w,),...,
e(w,), and try to infer k or at least w,,, for a new cryptotext c,,, = e,(w,..).
(For example, if they get temporary access to encryption machinery.)

11




alysis J

4. Known-encryption-algorithm attack

The encryption algorithm e, is given and the cryptanalysts try to get the
decryption algorithm d,.

5. Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)
The cryptanalysts know some pairs
(c;, d(c)), 1<i<n,

where the cryptotexts c; have been chosen by the cryptanalysts. The aim is to
determine the key. (For example, if cryptanalysts get a temporary access to
decryption machinery.)

12




CAN a BAD EVE DO? }

Let us assume that a clever Alice sends an encrypted message to Bob.
What can a bad enemy, called usually Eve (eavesdropper), do?

« Eve can read (and try to decrypt) the message.

« Eve can try to get the key that was used and then decrypt all message
encrypted with the same key.

« Eve can change the message sent by Alice into another message, In
such a way that Bob will have the feeling, after he gets the changed
message, that it was a message from Alice.

« Eve can pretend to be Alice and communicate with Bob, in such a wa!
that Bob thinks he is communicating with Alice.

An eavesdropper can therefore be passive - Eve or active - Mallot.

13



goals of broadly understood cryptography }

Confidentiality: Eve should not be able to decrypt the
message Alice sends to Bob.

Data integrity: Bob wants to be sure that Alice's message
has not been altered by Eve.

Authentication: Bob wants to be sure that only Alice could
have sent the message he has received.

Non-repudiation: Alice should not be able to claim that she
did not send messages that she has sent.

Anonymity: Alice does want that Bob finds who send the
message

14




ptosystem j

The cryptosystem presented in this slide was probably never used. In spite of
that this cryptosystem played an important role in the history of modern

cryptography.

We describe Hill cryptosystem or a fixed » and the English alphabet.

Key-space: matrices M of degree n with elements from the set {0, 1,..., 25}
such that M-/ mod 26 exist.

Plaintext + cryptotext space: English words of length #.

Encoding: For a word w let ¢,, be the column vector of length » of the integer
codes of symbolsof w. (4->0,B->1,C-> 2, ...)

Encryption: ¢, = Mc,, mod 26
Decryption: ¢, = M'c, mod 26

15




osystem

Plaintext: w = LONDON

€ro = {14

|

12
25

Mec,, =
Cryptotext: MZVQRB

Theorem

a, dp

Proof: Exercise a,,

ay

IfM:[

Example ABCDEFGHIJKLMNOPQRSTUVWXYZ

4 7
1

_1_

1

oo

},then M™ =

16




ey (symmetric) cryptosystems j

A cryptosystem is called secret-key cryptosystem if some secret piece of
information — the key — has to be agreed first between any two parties that
have, or want, to communicate through the cryptosystem. Example: CAESAR,
HILL. Another name is symmetric cryptosystem (cryptography).

Two basic types of secret-key cryptosystems
- substitution based cryptosystems
- transposition based cryptosystems

Two basic types of substitution cryptosystems
- monoalphabetic cryptosystems — they use a fixed substitution —

CAESAR, POLYBIOUS

- polyalphabetic cryptosystems— substitution keeps changing during the
encryption

A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely
specified by a permutation of letters. (Number of permutations (keys) is 26!)

17




cryptosystems J

Example: AFFINE cryptosystem is given by two integers
1 <a b<25,ged(a,26)=1.

Encryption: e,p(x) = (ax + b) mod 26

Example
a=3, b=5, e;5(x)=(3x+ 5)mod 26,

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Decryption: d,,(y) = a'(y - b) mod 26

18




nalysis’s )

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems
begins with a frequency count: the number of each letter in the cryptotext is
counted. The distributions of letters in the cryptotext is then compared with some
official distribution of letters in the plaintext laguage.

The letter with the highest frequency in the cryptotext is likely to be substitute for
the letter with highest frequency in the plaintext language .... The likehood grows
with the length of cryptotext. " " "

Frequency counts in English: ~ °[** “|*® °|™
T|959 D] 3.65 G| 1.61
A|8.05 cC | 3.20 v | 0.93
0]794 U] 310 K | 0.52
N|719 P | 229 Q| o0.20
1718 F | 2.28 X | 0.20
s|659 M| 225 J | 0.10
R|6.03 W] 203 _Z] 009
H|514 Y| 1.88 5.27
and for other lanquages: 002|247
English| %  German| % Finnish| % French| % Italian | %  Spanish| %
E H2.31 E |18.46 A | 12.06 E h5.87 E [11.79 E | 1315
T [9.59 N [11.42 1 | 10.59 A |9.42 A |11.74 A | 1269
A |8.05 1 | 8.02 T | 9.76 1 |8.41 1 |11.28 o | 9.49
o |7.94 R | 714 N | 8.64 s |7.90 o | 983 s | 7.60
N [7.19 s | 7.04 E | 811 T |[729 N | 6.88 N | 695
1 |7.18 A | 538 s | 7.83 N |7.15 L | 651 R | 6.25
S |e.59 T | 522 L | 5.86 R |e.46 R | 637 1 | 6.25
R |6.03 u | 5.01 O | 554 U J|e.24 T | 562 L |594
H |5.14 | 4.94 K | 5.20 L |5.34 s | 498 5.58

The 20 most common digrams are (in decreasing order) TH, HE IN, ER, AN, RE,
ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most
common trigrams: THE, ING, AND, HER, ERE, ENT.

19




alysis’s

Cryptoanalysis of a cryptotext encrypted using the AFINE cryptosystem with an
encryption algorithm

e,p(x) = (ax + b) mod 26 = (xa+b) mod 26
where 0<a, b <25, ged(a, 26) = 1. (Number of keys: 12 x 26 = 312.)

Example: Assume that an English plaintext is divided into blocks of 5 letter and
encrypted by an AFINE cryptosystem (ignoring space and interpunctions) as
follows:

BHJUH NBULS VULRU SLYXH
ONUUN BWNUA XUSNL UYJSS
WXRLK GNBON UUNBW SWXKX
HKXDH UZDLK XBHJU HBNUDO
NUMHU GSWHU XMBXR WXKZX.L
Howtofing UXBHJ UHCXK XAXKZ SWKXX
_ LKOLJ KCXLC MXONU UBVUL
theplaintext? R RwHS HBHJU HNBXM BXRWKX
KXNOZ LJBXX HBNFU BHUJIUH
LUSWX GLLKZ LJPHU ULSYZX
BJKXS WHSSW XKXNB HBHUJIU

HYXWN UGSWX GLLEK

20




=~
alysis’s
% % %
X- 32 J- 1 D- 2 E 12.31 L | 4.03 B | 1.62
: : Uu- 30 O- 6 V- 2 T|959 D|365 G| 161
Frequency analysis of plainext andH_ 53 R. 6 Fo 1 Alsos C|320 Vv|o093
1 . B- 19 G- 5 P- 1 0O |7.94 Ul 3.10 K | 0.52
frequency table for English: R E o Nlvie Blare alos
N- 16 Y- 4 I- 0 | |7.18 F | 2.28 X | 0.20
K- 15 Z- 4 Q- 0 S |6.59 M| 2.25 J | 010
S- 15 c- 3 T- 0 R 16.03 W | 2.03 Z | 0.09
. W- 14 A- 2 H |5.14 Y | 1.88 5.27
Firstguess: E=XT=U 70.02 24.71
Encodings: 4a+ b =23 (mod 26)
xa+b=y 19a + b =20 (mod 26)
Solutions: a=5,b=3 > al! =
' crypto|ABCDEFGHIJKLMNOPQRSTUVWXYZ
Trans,atlontable pIain|PKFAVQLGBWRMHCXSNIDYTOJEZU
BHJUH NBULS VULRU SLYXH
ONUUN BWNUA XUSNL UuyvyYJss
WXRLK GNBON UUNBW SWXKX
HKXDH UZDLK XBHJU HBNUO
NUMHU GSWHU XMBXR WXKXL
UXBHJ UHC X K XAXK2Z SWKX X
LKOLJ KCXLZC MXONU UBVUL
RRWHS HBHJU HNBXM BXRWX
KXNO2Z LJBXX HBNFU BHJUH
LUSWX GLLKZ LJPHU UL SYX
BJKXS WHSSW XKXNB HBHJU
HY XWN UG SWX GLLK

provides from the above cryptotext the plaintext that starts with KGWTG CKTMO
OTMIT DMZEG, what does not make a sense.

21




alysis’s

Secondguess: E=X, A=H
Equations 4a+ b =23 (mod 26)

b =7 (mod 26)
Solutions: a = 4 or a = 17 and therefore a=17
This gives the translation table

crypd ABC D E F G HI J KLMNOPA QRSTUVWXYZ
pain|lVS P M J G D A X UROTL I FC2ZWTAOQNTZKTH HEBY
and the following SAUNA I SNOT KNOWN TOBEA
plaintext from the FINNI SHINV ENTIO NBUTT
above cryptotext HEWOR DI SF.I NNISH THERE
AREMA NYMOR ESAUN ASINEF
I NLAN DTHAN ELSEW HEREDO
NESAU NAPER EVERY THREE
ORFOU RPEOFP LEFIN NSKNO
WWHAT ASAUN AISEL SEWHE
REIFY OUSEE ASIGN SAUNA
ONTHE DOORY OUCAN NOTBE
SURET HATTH EREIS ASAUN

ABEHI NDTHE D 00O R




le of monoalphabetic cryptosystem

)

A:

B:

D:

E:

For example the plaintext:

results in the cryptotext:

Richelieu cryptosystem : t,
used sheets of card a 5 F
board with holes. L O V

F O R
H Y P

G:

H:

mmmev 90

hmMmr —CCmm

TP ==

O <<

AO——=Z2 Mmoo

mz=zw=10C C

= O W a2

J- K| L- S|T|U
M- N-|O: VIW X
P.1Q |R Y| Z

N S I e I s O O
N A e I e o et
S S 5 s A N E R

1 2 3 45 6 7 8 9 10

WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

Garbage in between method: the message (plaintext or cryptotext) is
supplemented by "garbage letters".

=

[]
[ ]

L

’J

Symbols of the English alphabet will be replaced by squares with or without points
and with or without surrounding lines using the following rule:

23




yhabetic Substitution Cryptosystems )

Playfair cryptosystem

Invented around 1854 by Ch. Wheatstone.

Key - a Playfair square is defined by a word w of length at most 25. In w repeated
letters are then removed, remaining letters of alphabets (except j) are then added
and resulting word is divided to form an 5 x 5 array (a Playfair square).
Encryption: of a pair of letters x,y

*If x and y are in the same row (column), then they are replaced by the pair of
symbols to the right (bellow) them.

*If x and y are in different rows and columns they are replaced by symbols in the
opposite corners of rectangle created by x and y.

Example: PLAYFAIR is encrypted as LCMNNFCS

Playfair was used in World War | by British army. S bz 1 U
H A F N G

B M V Y W

Playfair square: R P L C X

T O E K Q

24




phabetic Substitution Cryptosystems )

VIGENERE and AUTOCLAVE
cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the
CAESAR cryptosystem.

A 26 x26 table is first designed with the first row containing a permutation of all
symbols of alphabet and all columns represent CAESAR shifts starting with the
symbol of the first row.

Secondly, for a plaintext w a key k is a word of the same length as w.

Encryption: the i-th letter of the plaintext - w; is replaced by the letter in the w-row
and k;-column of the table.

VIGENERE cryptosystem: a short keyword p is chosen and
k = Prefix,,p°
VIGENERE is actually a cyclic version of the CAESAR cryptosystem.
AUTOCLAVE cryptosystem: k = Prefix,,,ow.

25




abetic Substitution Cryptosystems

VIGENERE and AUTOCLAVE cryptosystems

N, UoWwuL BT — Y dJEZO00 NS 2 -
v.?_ABCDEFGHIJKLMNG_PQRSTUVWVA
KYZABCDEFGHIJKLMNOPQRSTUVW
EXrN  OUOWLUT - S X JFZ00L =0
FENFN o OUOWLUT -y aEZ00&wn-
SHEMFEMNGgOUVOWLUT —SYJEZ00rwi-
FO32ERFNGgOUAWLY T —=SY 10FZ00drn
VMEFDEERFEN L BUAUNLUT - U EZ000C
FWRESFEIR N MU WL I - JE2000
QRQTUUWXYZABCDEFGHIJHLMNOP
COENFI>ERFN OVOULUT - Y 320
COQERFD>E NN O0VOWUL T — Y JdEZ
FOOQEWMEDIEX>MN_ MOUOULUYT-—=Y X
EE0LOEVFS R RN _ DUDWL BT — X 0
S EE0oLrukF ORI MFMN OUOWL WD - =Y
¥ 1IBZQOLPFENFISEHN>MN MU0 LULUT—=
—x I FEZOLOTEVMFOFEXNFIFN O U OoOWLUT -
IJKLMNOPQRETUVWXYZABCDEFGH
T-—=-x IEZ00L TV xNr-M  Ouauny
U =" 020232 TN>M  0u0wn
LI — ¥ 1EZz000runkE3rEZxrM Ouaw
WLUT—=2 IEZQAOEn-I>2 >N  0Un
AQUULUI-=¥x 23200 Fruk-o>E K= mu
VOWL U T - =Y S EFQOLYEVES e AN O
DU OWL T -  E2O0OEVED >IN N
AOUOWL PT—==Y IJZZ00rnk-23>Z2 >N

Example:

HAMBURG

Keyword:
Plaintext:

INJEDEMMENSCHENGESICHTESTEHTSEINEG

HAMBURGHAMBURGHAMBURGHAMBURGHAMBUR

Autoclave-key: HAMBURGINJEDEMMENSCHENGESICHTESTEH

Vigenere-key:

26

SURWWFLQZKRKKJLGKWLMJALIAGIN

\

PNVFXVSTEZTWYKUGQTCTNAEEVYYZZEUOYX

aVia¥hil ®

Vigerere-cryp.:

A



ALYSIS of cryptotexts produced by VINEGAR cryptosystem J

1.Task 1 -- to find the length of the key

Kasiski method (1852) - invented also by Charles Babbage (1853).

Basic observation If a subword of a plaintext is repeated at a distance
that is a multiple of the length of the key, then the corresponding subwords
of the cryptotext are the same.

Example, cryptotext:
CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Substring "CHR" occurs in positions 1, 21, 41, 66: expected keyword length is
therefore 5.

Method. Determine the greatest common divisor of the distances between
identical subwords (of length 3 or more) of the cryptotext.

27




ANALYSIS of cryptotexts produced by VINEGAR cryptosystem }

Friedman method LE€1 N; be the number of
occurrences of the I-th letter in the
cryptotext.

Let I be the length of the keyword.

Let n be the length of the cryptotext.
Thenitholds I
[ L = ‘_1—,;(@

— (n-1)1-0.0382+0.065
Once the length of the keyword is found it is easy to
determine the key using the statistical (frequency
analysis)method of analyzing monoalphabetic

cryptosystems.

28




on of the Friedman method

)

same is

— Z,-zfl”i (m;-1) _ 26 (%
I= n(n—l) - Zz:l R

and it is called the index of coincides.

alphabet. The probability that two randomly chosen symbol are the same is
2P

26
3" p? =0.065

i=1

For English text one has

For randomly chosen text:

26 26 1

D .pl= 22—62 =0.038

i=1 i=1

Approximately

1. Let n; be the number of occurrences of i-th alphabet symbol in a text of length n.
The probability that if one selects a pair of symbols from the text, then they are the

2. Let p; be the probability that a randomly chosen symbol is the i -th symbol of the

29




on of the Friedman method )

Assume that a cryptotext is organized into I columns headed by the letters of the
keyword

letters S, | S, S, S. v S,
| X, x5 X3 ... X

| X1 Xz Xuug X

Xivg X2 Xz --- Xy

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

- the same column is 0.065.
- different columns is 0.038.

The number of pairs of letters in the same column: %[%(% —1) — n(n1)

—~

1(7-1) [ﬁ n*(n-1)

The number of pairs of letters in different columns: == B 5]

=~
N —

n(n—
21

The expect number A of pairs of equals lettersis 4 =

Since [ =y = r15[0.027 +1(0.0381 - 0.065)]

one gets the formula for / from the previous slide.
30




PAD cryptosystem — Vernam’s cipher

Binary case:
plaintext w
key k } are binary words of the same length
cryptotext ¢

Encryption: c=wlk
Decryption: w=clKk
Example:

w= 101101011
k=011011010
c = 110110001

What happens if the same key is used twice or 3 times for encryption?
c,=w, 0k c,=w,0k c3=wy; Uk
c,Uc,=w, 0w,

c,Ucy=w, U wy
c,Ucy=w,l wy

31




t secret cryptosystems }

By Shanon, a cryptosystem is perfect if the knowledge of the cryptotext provides no
information whatsoever about its plaintext (with the exception of its length).

It follows from Shannon's results that perfect secrecy is possible if the key-space is
as large as the plaintext-space. In addition, a key has to be as long as plaintext and
the same key should not be used twice.

An example of a perfect cryptosystem ONE-TIME PAD cryptosystem (Gilbert S.
Vernam (1917) - AT&T + Major Joseph Mauborgne).

If used with the English alphabet, it is simply a polyalphabetic substitution
cryptosystem of VIGENERE with the key being a randomly chosen English word of
the same length as the plaintext.

Proof of perfect secrecy: by the proper choice of the key any plaintext of the
same length could provide the given cryptotext.

Did we gain something? The problem of secure communication of the plaintext got
transformed to the problem of secure communication of the key of the same length.

Yes: 1. ONE-TIME PAD cryptosystem is used in critical applications

2. It suggests an idea how to construct practically secure cryptosystems.

32




sition Cryptosystems )

The basic idea is very simple: permutate the plaintext to get the cryptotext. Less
clear it is how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then
read it by columns to get cryptotext.

Example I N J EDEMME N
S CHENGE S I C
HTESTEHT S E
I NE G E S CH I C
HTETUOTIJEONO

Cryptotexts obtained by transpositions, called anagrams, were popular among
scientists of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibnitz
a7c2dze14f2i7l3m1 n804q3rzs4t8v12x1
what stands for: "data aequatione quodcumque fluentes quantitates involvente,
fluxiones invenire et vice versa”
Example a’cdefg?i’jkmnéo’prs?tiu’z

Solution:

33




D CAESAR cryptosystem

)

most 25 with all letters different.

The keyword is then written bellow the English alphabet letters,
beginning with the k-symbol, and the remaining letters are written in
the alphabetic order and cyclicly after the keyword.

Example: keyword: HOW MANY ELKS, k =8

0 8
ABCDEFGHI JKLMNOPQRSTUVWXY Z
PQRTUVXZHOWMANYELKSBCDFGTIJ

hoose an integer 0 < k < 25 and a string, called keyword, of length at

34
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RD CAESAR cryptosystem

| V D

Exercise Decrypt the following cryptotext encrypted using the

KEYWORD CAESAR and determine the keyword and k




RD CAESAR cryptosystem

Number Number Number
Step 1. Make the U 32 X 8 W 3
cl 31 K | 7 Y | 2
frequency counts: a| 2 N7 G| 1
F 22 E 6 H 1
v 20 M 6 J 0
P 15 R 6 L 0
T 15 B 5 o] 0
| 14 z 5 s 0
A 8 D 4 7=2.90%
180=74.69% 54=22.41%

Step 2. Cryptotext contains two one-letter words T and Q. They must be A and I.
Since T occurs once and Q three times it is likely that T is | and Q is A.

The three letter word UPC occurs 7 times and all other 3-letter words occur only
once. Hence

UPC is likely to be THE.
Let us now decrypt the remaining letters in the high frequency group: F,V,|

From the words TU, TF = F=S
From UV = V=0
From VI = I=N

The result after the remaining guesses

A B C D E F G H I J] K L M

N O
L vV Ew P S KMN ? Y ? R U ?

Q R
E F

— =
= C
o <
w =
(@I
Q <
O N

P
H
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Y DISTANCE of CRYPTOSYSTEMS j

Redundancy of natural languages is of the key importance for
cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a

character would carry Ig 26 = 4.7 bits of Information.

The estimated average amount of information carried per letter
iIn @ meaningful English text is 1.5 bits.

The unicity distance of a cryptosystem is the minimum number
of cryptotext (number of letters) required to a computationally
unlimited adversary to recover the unique encryption key.

Empirical evidence indicates that if any simple cryptosystem is

applied to a meaningful English message, then about 25
cryptotext characters is enough for an experienced
cryptanalyst to recover the plaintext.
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S - EXAMPLES

German:

IRI BRATER, GENF Brieftragerin
FRANK PEKL, REGEN

PEER ASSSTIL, MELK

INGO DILMR, PEINE

EMIL REST, GERA

KARL SORDORT, PEINE

English:

algorithms logarithms
antagonist stagnation
compressed decompress
coordinate decoration
creativity reactivity
deductions discounted
descriptor predictors
impression permission
introduces reductions

procedures reproduces




APPENDIX

39




EAM CRYPTOSYSTEMS |

Two basic types of cryptosystems are:

 Block cryptosystems (Hill cryptosystem,...) — they are used
to encrypt simultaneously blocks of plaintext.
« Stream cryptosystems (CAESAR, ONE-TIME PAD,...) — they

encrypt plaintext letter by letter, or block by block, using an encryption that
may vary during the encryption process.

Stream cryptosystems are more appropriate in some applications
(telecommunication), usually are simpler to implement (also in hardware),
usually are faster and usually have no error propagation (what is of
importance when transmission errors are highly probable).

Two basic types of stream cryptosystems: secret key cryptosystems
(ONE-TIME PAD) and public-key cryptosystems (Blum-Goldwasser)
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ersus stream cryptosystems }

In block cryptosystems the same key is used to encrypt arbitrarily long
plaintext — block by block - (after dividing each long plaintext w into a
sequence of subplaintexts (blocks) w,w,w; ).

In stream cryptosystems each block is encryptyd using a different key

« The fixed key k is used to encrypt all blocks. In such a
case the resulting cryptotext has the form

C = C,CyC3... = €,(W,) e, (W,) e, (W,)...

« A stream of keys is used to encrypt subplaintexts. The
basic idea is to generate a key-stream K=k, k,,k,,... and
then to compute the cryptotext as follows

C = CiCxC3... =€44(W;) €4x(W,) €43(Ws).
41




OSYSTEMS WITH STREAMS OF KEYS

Various techniques are used to compute a sequence of keys. For
example, given a key k

kK =1 (k ki Ky, ..., K_4)

In such a case encryption and decryption processes generate the
following sequences:

Encryption: To encrypt the plaintext w,w,w; ... the sequence
Ky, C4, Ky, Cy, K3, C3, ...
of keys and sub-cryptotexts is computed.

Decryption: To decrypt the cryptotext c,c,c; ... the sequence
Ky, Wy, Ky Wy, Kg, W, ...
of keys and subplaintexts is computed.
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LES

A keystream is called synchronous if it is independent of the plaintext.

KEYWORD VIGENERE cryptosystem can be seen as an example of a
synchronous keystream cryptosystem.

Another type of the binary keystream cryptosystem is specified by an initial
sequence of keys k, k,, k; ... k,,

and a initial sequence of binary constants b, by b; ... b, 4
and the remaining keys are computed using the rule

Kivm = fbij ,mod 2
=0
A keystrem is called periodic with peric;d p if k;., = k; for all .
Example Let the keystream be generated by the rule
Kirq = K U Kiiq

If the initial sequence of keys is (1,0,0,0), then we get the following keystream:

1,0,0,0,1,0,0,1,1,0,1,0 1,1,1, ...
of period 15.
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CT SECRECY - BASIC CONCEPTS ]

Let P, K and C be sets of plaintexts, keys andcryptotexts.

Let pi(k) be the probability that the key k is chosen from K and let a priory
probability that plaintext w is chosen is p,(w).

If for a key k0K, C(k)={e,(w)|wOP}, then for the probability P(y) that ¢ is the
cryptotext that is transmitted it holds

> pilk)py(d(c))

{kleOC (k)}

Pc (c)

For the conditional probability p.(c|w) that ¢ is the cryptotext if w is the plaintext it
holds
pC(C | W) = ZPK(k)-
{klw=d, (c)}

Using Bayes' conditional probability formula p(y)p(x|y) = p(x)p(y|x) we get for
probability pp(w]c) that w is the plaintext if ¢ is the cryptotext the expression

_ PP (W)Z{Mw:dk(c)}pK (k)
Py e Wpelde )
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ECT SECRECY - BASIC RESULTS }

Definition A cryptosystem has perfect secrecy if
pp(w| c) = pp(w)for all wlOP and cJC.

(That is, the a posteriori probability that the plaintext is w,given that the cryptotext is
c is obtained, is the same as a priori probability that the plaintext is w.)

Example CAESAR cryptosystem has perfect secrecy if any of the26 keys is used
with the same probability to encode any symbol of the plaintext.

Proof Exercise.

An analysis of perfect secrecy: The condition pp(w|c) = pp(w) is for all wlJP and
cC equivalent to the condition p(c|w) = ps(c).

Let us now assume that ps(c) > 0 for all cCIC.

Fix wOP. For each cJC we have p.(c|w) = ps(c) > 0. Hence, for each c€C there
must exists at least one key k such that e, (w) = c. Consequently, |[K| >=|C| >= |P]|.

In a special case |K| = |C| = |P]. the following nice characterization of the perfect
secrecy can be obtained:

Theorem A cryptosystem in which |P| = |K| = |C| provides perfect secrecy if and
only if every key is used with the same probability and for every wlIP and every
c€C there is a unique key k such that e, (w) = c.
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UCT CRYPTOSYSTEMS ]

A cryptosystem S = (P, K, C, e, d) with the sets of plaintexts P, keys K and
cryptotexts C and encryption (decryption) algorithms e (d) is called endomorphic if
P=_C.

IfS,=(P,K, P,e, d) and S, = (P, K,, P, e (4, d () are endomorphic
cryptosystems, then the product cryptosystem is
S1DSZ=(P!K1DK2!PJeJd)J
where encryption is performed by the procedure
€ k1, k2)(W) = €x(€44(W))
and decryption by the procedure
d( k1, k2 )( c) = d,4(dy(c)).
Example (Multiplicative cryptosystem):
Encryption: e (w) = aw mod p; decryption: d,(c) = a'c mod 26.

If M denote the multiplicative cryptosystem, then clearly CAESAR x M is actually
the AFFINE cryptosystem.

Exercise Show that also M [0 CAESAR is actually the AFFINE cryptosystem.
Two cryptosystems S, and S, are called commutative if S, 0 S, =S, 0 S..
A cryptosystem S is called idempotentif SO S = S.
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