R'9: User identification and message

Most of today's applications of cryptography ask for authentic data rather than
secret data. A practically very important problem is therefore how to protect data
and communication against an active attacker (and noise).

Main related problems to deal with are:
1. User identification (authentication): How can a person prove his (her) identity?

2. Message authentication: Can tools be provided to decide, for the recipient, that
the message is from the person who is supposed to send it?

3. Message integrity (authentication): Can tools be provided to decide for the
recipient whether or not the message was changed on the fly?

Important practical objectives are to find identification schemes that are so simple
that it can be implemented on smart cards - they are essentially credit cards
equipped with a chip that can perform arithmetical operations and communications.

E-commerce: One of the main new application of the cryptographic techniques is to
establish secure and convenient manipulation with digital money (e-money),
especially for e-commerce.




IDENTIFICATION (AUTHENTICATION) |

User identification (authentication) is a process at which one party
(often referred to as a Prover or Alice) convinces a second party
often referred to as a Verifier or Bob) of Prover’s identity.

(Namely, that the Prover has actually participated in the identication
process. In other words that the Prover has been active in the time
the confirmative evidence of identity has been recquired).

The purpose of any identification (authentication) process is to
preclude (vylucit) some impersonation (zosobnenie) of one person
(the Prover) by someone else.

|dentication usually serves to control access to a resource (often a
resource should be accessed only by privileged users).




TIVES of IDENTICATIONS

User identification process has to satisfy the following objectives:

« The Verifier has to accept Prover’s identity if both parties are honest;

« The Verifier cannot later, after a successful identication, pose as the
Prover and identicate himself (as the Prover) to another Verifier;

« A dishonest party that would claim to be the other party has only
negligible chance to identicate itself successfully;

« Each of the above conditions remains true even if an attacker has
observed or has participated in several identification protocols.




IDENTIFICATION PROTOCOLS

Identification protocols have to satisfy two security
conditions:

1. If one party, say Bob (a verifier), gets a message
from the other party, say Alice (a prover), then Bob
is able to verify that the sender was indeed Alice.

2. There is no way to pretend, for a third party, say
Charles, when communicating with Bob, that he is
Alice without Bob having a large chance to find out
that.




cation system based on a PKC

- Alice chooses a random rand sends e ;(r) to Bob.
- Alice identifies a communicating person as Bob if he can send her back r.
- Bob identifies a communicating person as Alice if she can send him r.

A misuse of the above system

We show that (any non-honest) Alice could misuse the above identification
scheme.

Indeed, Alice could intercept a communication of a Jane ( a new “player") with
Bob, and get a cryptotext e ; (w), the one Jana has been sending to Bob, and
then Alice could send e ; (w) to Bob.

Honest Bob, who follows fully the protocol, would then return w to Alice and
she would get this way the plaintext w.




NTARY AUTHENTICATION PROTOCOLS

USER IDENTIFICATION

Static means of identification: People can be identified by their attributes
(fingerprints), possessions (passports), or knowledge.

Dynamic means of identification: Challenge and respond protocols.
Both Alice and Bob share a key k and a one-way function f .

1. Bob sends Alice a random number or string RAND.
2. Alice sends Bob P/ =1, (RAND).
3. If Bob gets P/, then he verifies whether P/ =, (RAND).

If yes, he starts to believe that the person he has communicated with is Alice.

The process can be repeated to increase probability of a correct identification.

Message authentication — to be discussed later

MAC - method (Message Authentication Code) Alice and Bob share a key kand a
encoding algorithm A,

1. With a message m, Alice sends (m, A, (m)) -- MAC is here A, (m)
2. If Bob gets (m', MAC), then he computes A , (m') and compares it with MAC.




ay authentication and also key agreement

A PKC will be used with encryption/decryption algorithms (e, d) and
DSS with pairs (s, v). Alice and Bob will have their identity strings /,
and /.

1. Alice chooses a random r,, sets t = (I, r,), signs sigSA(t) and sends
m, = (t, sigSA(t)) to Bob.

2. Bob verifies Alice’s signature, chooses random rz and a random
session key k. He encrypts k with Alice’s public key, EeA(k) = C,
sets

t;= (g, ra I C),
signs it with sigSB(t1). Then he sends m, = (t,, sigSB(t1)) to Alice.




-way authentication and key agreement

3. Alice verifies Bob's signature, and checks that the r, she just got
matches the one she generated in Step 1. Once verified, she is
convinced that she is communicating with Bob. She gets k via

DdA(C) = DdA(EeA(k)) = K,
sets t,= (/g rg) and signs it with sigSA(tZ). Then she sends m; = (t,,
sigSA(tZ)) to Bob.

4. Bob verifies Alice’s signature and checks that rg he just got
matches his choice in Step 2. If both verifications pass, Alice and
Bob have mutually authenticated each other identity and have
agreed upon a session key k.




TA AUTHENTICATION |

The goal of data authentication schemes (protocols) is to
handle the case that data are sent through insecure
channels.

By creating so-called Message Authentication Code (MAC)
a sending this MAC, together with a message through an
insecure channel, one can create possibility to verify
whether data were not changed in the channel.

The price to pay is that communicating parties need to
share a secret random key that need to be transmitted
through a very secure channel.l




es for Data Authentication )

Basic difference between MACs and digital signatures is that MACs are symmetric in the
following sense: Anyone who is able to verify MAC of a message is also able to
generate the same MAC, and vice versa.

A scheme (M, T, K) for data authentication is given by:
— M is a set of possible messages (data)
— T is a set of possible MACs
— Kiis a set of possible keys
Moreover, it is required that
— to each k from K there is a single and easy to compute authentication mapping
auth,: {0,1}*xM - T
— and a single easy to compute verification mapping
ver, M x T - {true, false}
Two conditions should be satisfied for such a scheme:

Correctness: For each m from M and k from K it holds ver,(m, c) = true, if there
exists an r from {0, 1}* such that c = aut,(r, m)

Security: For any m from M and k from K it is computationally unfeasible, without
a knowledge of k, to find c from T such that ver,(m, c) = true
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ILOCK CIPHERS to MAC — CBC-MAC ]

Let C be an encryption algorithm that maps k-bit strings into k-bit strings.

If a message
m=m,mm,...m,
is divided into blocks of length k, then so-called CBC-mode of encryption
assumes a choice (random) of a special block y, of length k, and performs

the following computations fori =17, ...,/
yi=C(y., U m)
and then
Yally2 Il - - - [ly,

is the encryption of m and
y,is MAC for m.

A modification of this method is to use another crypto-algoritm to encrypt the
last block m,.
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SS of the CBS-MAC METHOD

Let us have three pairs and in each: a message and its MAC
(M4, ¢4), (My, C5), (M3, C3)
Where m, and m; have the same length k and
my, = m,||B||m’,.
and let the length of B be also k. The encryption of the block B within m, is
C(B U cy).
If we now define
B'=BUc,Ucs, my=my||B’||m’,,
then, during the encryption of m,, we get
C(B’ [ cy) = C(B U cy),
This implies that MAC's for m, and m, are the same.
One can therefore forge a new valid pair

(my, Cy).
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LYSIS of CBC-MAC — a view ]

Theorem Given are two independent random permutations C, and C, on the set of
message blocks M of cardinality n. Let us define

MAC(m,, m,, ..., m)=C,C,(...C4,(C4(m,) L m,) ... U m_ LIm,).

Let us assume that the MAC function be implemented by an oracle, and
consider an adversary who can send queries to the oracle with a limited total
length of q. If m,, ..., m, denote the finite block sequences on M which are sent
by the adversary to the oracle and let the total number of blocks be less than q.
Let the purpose of the adversary be to output a message m which is different
from all m, together with its MAC value c. Then the probability of success of the
adversary (i.e. the probability that his MAC value is correct) is smaller than

q(q+1)x 1 N 1 |
2 n—q n-—d

When q = 6n'2, this is approximately a = 62/2 (which is greater than 1 —e2)

Implication: if the total length of all authenticated messages is negligible against
# n, then there is no better way than the brute force attack to get collisions on
the CBC-MAC.

13




HASH FUNCTIONS TO MAC

So called HMAC was published as the internet standard RFC2104.

Let a hash function h processes messages by blocks of b bytes and

HMAC of a message m with a key k is computed as follows:

« If k has more than b bytes replace k with h(k).
Append zero bytes to k to have exactly b bytes.
« Compute (using strings opad and ipad defined later)
h(k O opad||h(k O ipad||m)).
and truncate the results to its t leftmost bytes to get
HMAX, (m).

In HMAX ipad (opad) consists of b bytes equal to 0x36 (0x5c)
hexadecimal.

produces a digest of | bytes and let t be the size of MAC, in bytes.
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ITY of HMAC )

It can be shown that if

« h(k [J ipad||m) defines a secure MAC on fixed length messages,
and

« his collision free,
then HMAC is a secure MAC on variable length messages
with two independent keys. More precisely:

Theorem Let h be a hash function which hashes into | bits. Given k., k,
from {0, 1} consider the following MAC algorithm
MAC,, o(m) = h(k,||h(k;|[m))
If h is collision free and m — h(k,||m) is a secure MAC algorithm for

messages m of the fixed length |, then the MAC is a secure MAC
algorithm for messages of arbitrary length.
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antage of static user identification schemes )

Everybody who knows your password or PIN can
Impersonate you.

Using so called zero-knowledge identification
schemes, discussed in the next chapter, you can
identify yourself without giving to the identificator
the ability to impersonate you.
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ied Fiat-Shamir identification scheme )

A trusted authority (TA) chooses: large random primes p,q , computes n = pq;
and chooses a quadratic residue v [ QR ,,, and s such that s 2= v (mod n).
public-key: v

private-key: s (that Alice knows, but not Bob)

Challenge-reponse Ildentification protocol

(1) Alice chooses a random r < n, computes x = r 2mod n and sends x to Bob.
(2) Bob sends to Alice a random bit (a challenge) b.

(3) Alice sends Bob (a response) y = rs ®mod n
(4)

4) Bob identifies the sender as Alice if and only if y 2= xv ® mod n, what is taken
as a proof that the sender knows square roots of x and of v.

This protocol is a so-called single accreditation protocol

Alice proves her identity by convincing Bob that she knows square root s of v
(without revealing s to Bob).

If protocol is repeated f times, Alice has a chance 2 - to fool Bob if she does not
known s.
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of Fiat-Shamir identification |

public-key: v
private-key: s (of Alice) such that s?=v.

Protocol

(1) Alice chooses a random r < n, computes x = r 2 mod n and sends x (her
commitment) to Bob.
(2) Bob sends to Alice a random bit b (a challenge).

(3) Alice sends to Bob (a response) y = rs ®.

(4) Bob verifies if and only if y 2= xv® mod n, proving that Alice knows a
square root of x.
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is of Fiat-Shamir identification II }

Analysis
1. The first message is a commitment by Alice that she knows square root of x.
2. The second message is a challenge by Bob.

- If Bob sends b = 0, then Alice has to open her commitment and reveals r.
- If Bob sends b = 1, the Alice has to show her secret s in an “encrypted form".

3. The third message is Alice's response to the challenge of Bob.

Completeness If Alice knows s, and both Alice and Bob follow the protocol, then the
response rs ° is the square root of xv °.

It can be shown that Eve can cheat with probability of success %2 as follows:

- Eve chooses random r 0 Z_*, random b , [1{0,1} and sends x = r 2 v -*1, to Bob.
- Bob chooses b [1{0,1} at random and sends it to Alice.
« Alice sends r to Bob.
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' CAN A BAD EVE CHEAT |

. . 2
Eve can send, tc; f(lnol Bob, as her commitment, either = for a
randomror rv

In the first case Eve can respond correctly to the Bob’s challenge b=0,
by sending r; but cannot respond correctly to the challenge b = 1.

In the second case Eve can respond correctly to Bob’s challenge

b =1, by sending r again; but cannot respond correctly to the
challenge b = 0.

Eve has therefore a 50% chance to cheat.
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amir identification scheme parallel version )

In the following parallel version of Fiat-Shamir idenitification scheme the probability
of false identification is decreased.

Choose primes p,q, compute n = pq.
Choose quadratic residues v 4,...,v , [1 QR .
Compute s 4,...,S such that s, = \/;imodn

public-key: v 4,...,v
secret-key: s 4,...,5 , of Alice

(1) Alice chooses a random r < n, computes a = r 2mod n and sends a to Bob.
(2) Bob sends Alice a random k-bit string b ,... b .
(3) Alice sends to Bob

—k
y=r||.s modn

1=

(4) Bob accepts if and only if .
v =a o v, modn

1

Alice and Bob repeat this protocol t times, until Bob is convinced that Alice knows
S1,...,Sk .

The chance that Alice fools Bob is 2 <, a decrease comparing with the chance 1/2
of the previous version of the identification scheme.
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norr identification scheme - setting j

This is a practically attractive and computationally efficient (in time, space + communication)
scheme which minimizes storage + computations performed by Alice (to be a smart card).

Scheme requires also a trusted authority (TA) which
(1) chooses: a large prime p < 2 %12,

a large prime q dividing p -1 and g < 2 149,

ano []Z p* of order q,

a security parameter t such that 2 ' < g,

p, q, d, t are made public.

(2) establishes: a secure digital signature scheme with a secret signing algorithm sig ;, and a
public verification algorithm ver ;4.

Protocol for issuing a certificate to Alice
1. TA establishes Alice's identity by conventional means and forms a string ID(Alice) which
contains identification information.
2. Alice chooses a secret random 0 < a < g -1 and computes
v=a2modp
and sends v to the TA.
3. TA generates signature
s = sig 1 (ID(Alice), v)
and sends to Alice the certificate C (Alice) = (ID(Alice), v ,s)
22




dentification scheme

1. Alice chooses a random 0 < k < g and computes

y= o kmod p.
2. Alice sends her certificate C (Alice) = (ID(Alice), v, s) and y to Bob.
3. Bob verifies the signature of the TA by checking that

ver 15 (ID(Alice), v, s) = true.
4. Bob chooses a random 1< r< 2t where t < |g q is a security parameter and sends it to Alice
(often t < 40).
5. Alice computes and sends to Bob
y = (k+ ar) mod q.

6. Bob verifies that
y=a’v' modp

This way Alice shows her identity to Bob. Indeed,
a’v =a"”a ™ mod p

=" mod p

= ymod p.
Total storage: 512 bits for ID(Alice), 512 bits for v, 320 bits for s (if DSS is used), total - 1344
bits.
Total communication: Alice - Bob 1996 bits,
Bob - Alice 40 bits.
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yto identification scheme )

The disadvantage of the Schnorr identification scheme is that there is no proof of
its security. For the modification of the Schnorr identification scheme presented
below, for Okamoto identification scheme, a proof of security exists.

Basic setting: To set up the scheme the TA chooses:

- alarge prime p < 2 2,

- a large prime q = 2 %0 dividing p -1;

- two elements o ;, a , [I Z * of order q.

TA makes public p, g, a , a , and keeps secret (also before Alice and Bob)

c=1Ig, O 5.
Finally, TA chooses a signature scheme and a hash function.

Issuing a certificate to Alice
 TA establishes Alice's identity and issues an identification string ID(Alice).
- Alice secretly and randomly chooses 0 < a , a ,< g -1 and sends to TA
v=a,2a ,22 mod p.
- TA generates a signature s = sig A(ID(Alice), v) and sends to Alice the certificate
C (Alice) = (ID(Alice), v, ).
24




) identification scheme — basics once more J

Basic setting

TA chooses: a large prime p < 2 2 large prime g = 2 40 dividing p -1; two
elements a ;, a , I Z " of order q. TA keep secret (also from Alice and Bob)

C= Iga1 a o

Issuing a certificate to Alice

« TA establishes Alice's identity and issues an identification string ID(Alice).
« Alice randomly chooses0<a,, a,<q-1andsendsto TA.

v=a,2a ,3 mod p.

- TA generates a signature s = sig +,(ID(Alice), v) and sends to Alice the
certificate

C (Alice) = (ID(Alice), v, s).
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dentification scheme

Okamoto identification scheme

« Alice chooses random O < k,, k, < g -1 and computes
y =0, Ka .k mod p.

« Alice sends to Bob her certificate (ID(Alice), v, s) and v.

- Bob verifies the signature of TA by checking that
verr, (ID(Alice), v, s) = true.

« Bob chooses a random 1< r < 2 tand sends it to Alice.

« Alice sends to Bob

- Bob verifies
y=o,Ya ,Y2 v (mod p)

¥y = (kq + a;r) mod gq; Yo = (k, + @, r) mod q.
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ication codes j

They provide methods of ensuring integrity of messages - that a message has not
been tampered/changed, and that message originated with the presumed sender.

The goal is to achieve authentication even in the presence of Mallot, a man in the
middle, who can observe transmitted messages and replace them by messages of
his own choise.

Formally, an authentication code consists:

A set M of possible messages.

« A set T of possible authentication tags.

« A set K of possible keys.

« A set R of authentication algorithms a ,: M — T, one for each k [ K

Transmission process

« Alice and Bob jointly choose a secret key k.
- If Alice wants to send a message w to Bob, she sends (w, ), where t = a , (w).

- If Bob receives (w, t) he computes t' = a , (w) and if { = ' Bob accepts the
message as authentic.

27




s and deception probabilities }

There are two basic types of attacks Mallot, the man in the middle,can do.

Impersonation. Mallot introduces a message (w, t) into the channel expecting
that message will be received as being sent by Alice.

Substitution. Mallot replaces a message (w, t) in the channel by a new one,
(w', t'), expecting that message will be accepted as being sent by Alice.

With any impersonation (substitution) attack a probability P, (P .) is associated
that Mallot will deceive Bob, if Mallot follows an optimal strategy.

In order to determine such probabilities we need to know probability
distributions p ., on messages and p , on keys.

In the following so called |K]| x |[M| authentication matrice will tabulate all
authenticated tags. The item in a row corresponding to a key k and in a column
corresponding to a message w will contain the authentication tag ¢, (w).

The goal of authentication codes, to be discussed next, is to decrease
probabilities that Mallot performs successfully impersonation or substitution.

28




LetM=T=2;, K=2;x Z,.
For (i, j) U Kand w U M, let f;(w) = (iw + j) mod 3.
The matrix key x message of authentication tags has the form

Key 0 1 2
(0,001 O 0 0
0,1) | 1 1 1
(0,2) | 2 2 2
(1,0) | O 1 2
(1,1) |1 1 2 0
(1,2) | 2 0 1
(20) ] O 2 1
2,1) | 1 0 2
(2,2) | 2 1 0

Impersonation attack: Mallot picks a message w and tries to guess the correct authentication
tag.
However, for each message w and each tag a there are exactly three keys k such that

t,.(w)=a.Hence P,=1/3.
Substitution attack: By checking the table one can see that if Mallot observes an authenticated
messages (w, t), then there are only three possibilities for the key that was used.

Moreover, for each choice (W', t'), w # w', there is exactly one of the three possible keys for
(w,1) that can be used. Therefore P = 1/3.
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ation of deception probabilities | )

Probability of impersonation: For w L M, t I T, let us define payoff(w, t) to be the
probability that Bob accepts the message (w, f) as authentic. Then

payoff (w,t)=Prlt = a, (w)) (4)
Pr
{kmmzk: fo) ) )
In other words, payoff(w, t) is computed by selecting the rows of the authentication
matrix that have entry t in column w and summing probabilities of the
corresponding keys.

Therefore P = max {payoff (w, t), | w O M, t ] A}.

Probability of substitution: Define, for w, w'l1 M, w # w' and t,£']1 A, payoff(w't ,w,t)
to be the probability that a substitution of (w, ) with (w', t) will succeed to deceive

Bob. Hence payoﬁ(w’,t’,w,l‘): PI'(l" =a; \wW ( ’}t = (W))
= ( _ako(( )Qt )‘;ko ) (6)
Pr\r=a;, (w (7)
_ Zisatmal e} ) (8)

payoﬂ(w,t)
Observe that the numerator in the last fraction is found by selecting rows of the
authentication matrix with value t in column w and t' in column w'.
30




tation of deception probabilities Ii )

Since Mallot wants to maximize his chance of deceiving Bob, he needs to
compute

P i = max {payofiw', t, w, t) | WO M, wzw,t A}

p . therefore denotes the probability that Mallot can deceive Bob with a
substitution in the case (w, f) is the message observed.

If Pry,,(w, t) is the probability of observing a message (w, t) in the channel, then

PS = Z PrMa (W9 t)pw,t

(w,t)OMa

Pr,, (w, t) =Pr, (w) Pr, (t‘w) =Pr, (w) X payoff (w, t).

The next problem is to show how to construct an authentication code such that
the deception probabilities are as low as possible.

and

The concept of orthogonal arrays, introduced next, serves well such a
purpose.
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ynal arrays j

Definition An orthogonal array OA(n, k, A) is a An ? x k array of n symbols, such that
in any two columns of the array every one of the possible n 2 pairs of symbols
occurs in exactly A rows.

Example OA(3,3,1) obtained from the authentication matrix presented before;

(e
(=]
(e]

S N = = O N

N = O N = O N
— O N O N =N

Theorem Suppose we have an orthogonal array OA(n, k, A).Then there is an
authentication code with |M| = k, |A| =n, |K|=An?and P,= P, = 1/n.

Proof Use each row of the orthogonal array as an authentication rule (key) with
equal probability. Therefore we have the following correspondence:

| orthogonal array | authentication code |
row | authentication rule
column | message
symbol | authentication tag
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ction and bounds for OAs )

In an orthogonal array OA(n, k, A)

- n determines the number of authenticators (security of the code);
* k is the number of messages the code can accommodate;

- A relates to the number of keys - An 2.

The following holds for orthogonal arrays.
- If p is prime, then OA(p, p, 1) exits.
- Suppose there exists an OA(n, k, A). Then
k(n-1)+1
n 2 ’
- Suppose that p is a prime and d < 2 an integer. Then there is an orthogonal
array OA(p, (p @-1)/(p -1), p *2).
- Let us have an authentication code with [A|=nand P, =P _ = 1/n.Then
|K| = n 2. Moreover, |K| = n 2 if and only if there is an orthogonal array

OA(n, k,1), where [M| = kand P (k) = 1/n 2 for every key k [ K.

The last claim shows that there are no much better approaches to
authentication codes with deception probabilities as small as possible than
orthogonal arrays.

A=
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aring between two parties )

A moderator distributes a binary-string secret s, between two parties
P, and P, by choosing a random binary string b, of the same length
as s, and

* by sending b to P, and

* by sending s [J b to P,.

This way, none of the parties P, and P, alone has a slightest idea

about s, but both together easily recover s by computing
bl (sUb)=s.
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old secret sharing schemes )

Secret sharing schemes distribute a “secret” among several users in such a way
that only predefined sets of users can “assemble" the secret.

For example, a vault in the bank can be opened only if at least two out of three
responsible employees use their knowledge and tools to open the vault.

An important special simple case of secret sharing schemes are threshold secret
sharing schemes at which a certain threshold of participant is needed and sufficient
to assemble the secret.

Definition Let t < n be positive integers. A (n, f)-threshold scheme is a method of
sharing a secret S among a set P of n participants, P={ P | 1 <i< n}, in such
away that any f, or more, participants can compute the value S, but no group of
-1, or less, participants can compute S.

Secret S is chosen by a “dealer” D [ P.

It is assumed that the dealer “distributes" the secret to participants secretly and in
such a way that no participant knows shares of other participants.
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's (n,f)-threshold scheme )

Initial phase:

Dealer D chooses a prime p, ndistinct x;, 1 </i<nand D gives randomly chosen
values x ; to the user P ..

The values x, are then public.

Share distribution: Suppose D wants to share a secret S [1 Z ; among the users. D
randomly chooses ¢ -1 elements of Z ,, a ;,...,a 4.

For 1 <i<n, D computes the “shares" y .= a(x ),
t—1
where a(x):S"'Z a x’ mod p.

=1
For1 <i<n, D sends the share y, to théa participant P ..
Secret cumulation: Let participants P ,,,..., P ;, want to determine secret S. Since
a(x) has degree t-1, a(x) has the form
ax)=agtaqx+..+a.xt,
and coefficients a ; can be determined from ¢ equations a (x ;) = y ;, where all
arithmetic is done modulo p.

It can be easily shown that equations obtained this way are linearly independent
and the system has a unique solution.

In such a case S=a,.
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‘s scheme - technicalities )

Shamir's scheme uses the following result concerning polynomials over fields
Z,, where p is prime.

t—1
Theorem Let f (x)= > a,X 'O Z ,[X ] be a polynomial of degree ¢ -1 and let

S bea set{(x, f(x,)) | x, 02, i=1,..t x,#x,ifi#j}. Forany QO S, let
Pqo={gUZ,[x]| deg(g) =t-1, g(x) = yforall (x,y) U Q}. Then it holds:

« P = {f(x)}, i.e. f is the only polynomial of degree { -1, whose graph contains all
t points in P.

- If Q is a proper subset of Sand x # 0 for all (x, y) [l Q, theneach a1 Z
appears with the same frequency as the constant coefficient of polynomials in
Pq-

t—1
Corollary (Lagrange formula) Let f (X )=> a,x'0Z,[x] bea
polynomial and let P = {(x , f(x ) | i=1,....t. X, #x ,, i #}. Then
X — X

r()=3 76 ]

1< j<t,jzi X; T X
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s (n,tf)-threshold scheme - summary j

To distributes n shares of a secret S among users P ,,..., P a trusted
authority TA proceeds as follows:

- TA chooses a prime p > max{S, n} and sets a ;= S. .
» TA selects randomly a 4,..., a 4, U Z ; and creates polynomial / (x)= > ax'.

« TA computes s, =f (i), i=1,..., n and transfers each (/, s,) to the user If’:ioin a
secure way.

Any group J of f or more users can compute the secret. Indeed, from the
previous corollary we have

=a, = f(0)= ;J f(i)clJ_l-,ti J

In case |J| < {, then each a, € Z  is equally likely to be the secret.

j .
-1
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T SHARING - GENERAL CASE )

A serious limitation of the threshold secret sharing schemes is that all groups
of users with the same number of users have the same access to secret.
Practical situations usually require that some (sets of) users are more
important than others.

Let P be a set of users. To deal with above situation such concepts as
authorized set of user and access structure are used.

An authorized set of users 4 [0 P is a set of users who can together
construct the secret.

An unauthorized set of users U [] P is a set of users who alone cannot
learn anything about the secret.

Let P be a set of users. The access structure [ []2F isasetsuchthat 4 O T
for all authorized sets A and U [02° —T for all unauthorized sets U.

Theorem: For any access structure there exists a secret sharing scheme
realizing this access structure.
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ot Sharing Schemes with Verification }

« Secret sharing protocols increase security of a secret
information by sharing it between several subjects.

« Some secret sharing scheme are such that they work
even in case some participants behave incorrectly.

« A secret sharing scheme with verification is such a
secret sharing scheme that:

— Each P, is capable to verify correctness of his/her
share s,

— No participant P, is able to provide incorrect
iInformation and to convince others about its
correctness
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Iman’s (n,k)-Protocol ]

Feldman’s protocol is an example of the secret sharing scheme with
verification. The protocol is a generalization of Shamir's protocol.
It is assumed that all n participants can broadcast messages to all
others and each of them can determine all senders..

Given are large primes p, q, ql(p - 1), 9 > nand h < p - a generator of
Z*, . All these numbers, and also the number g = h®V/a mod p,

are public.
As in Shamir's scheme, the dealer assigns to each participant P, a
specific x; from {1, . ., g — 1} and generates a random polynomial
f(x) = Z;?;& aj-;r:j mod ¢ (1)

such that f(0) = s and sends to each Pi' value y, = f(x;). In addition,
using a broadcasting scheme, the dealer sends to each P, all values
v, = g3 mod p.

41




an’s (n,k)-Protocol (cont.)

Each P, verifies that
- |
g% = 10 (v;) mod p, (1)
]=
If (1) does not hold, P, asks, using the broadcasting
scheme, the dealer to broadcast correct value of y.. If
there are at least k such requests, or some of the new
values of y; does not satisfies (1), the dealer is
considered as not reliable.

One can easily verify that if the dealer works correcitly,
then all relations (1) hold
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MERCE )

Very important is to ensure security of e-money transactions needed
for e-commerce.

In addition to providing security and privacy, the task is also to prevent alterations
of purchase orders and forgery of credit card information.

Basic requirements for e-commerce system:

Authenticity: Participants in transactions cannot be impersonated and signatures
cannot be forged.

Integrity: Documents (purchase orders, payment instructions,...) cannot be forged.
Privacy: Details of transaction should be kept secret.

Security: Sensitive information (as credit card numbers) must be protected.
Anonymity: Anonymity of money senders should be guaranteed.

Additional requirement: In order to allow an efficient fighting of the organized crime
a system for processing e-money has to be such that under well defined conditions
it has to be possible to revoke customer's identity and flow of e-money.

(Secure Electronic Transaction) protocol was created to standardize the exchange
of credit card information. Development os SET initiated in 1996 the credit card
companies MasterCard and Visa.
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SIGNATURE PROTOCOL }

We present a protocol to solve the following security and privacy problem in
e-commerce: shoppers banks should not know what cardholders are ordering
and shops should not learn credit cards numbers.

Participants of our e-commerce protocol: a bank, a cardholder, a shop

The cardholder uses the following information:

« GSO - Goods and Service Order (cardholder's name, shop's name, items
being ordered, their quantity,...)

- Pl - Payment instructions (shop's name, card number, total price,...)
Protocol uses a public hash function h.

RSA cryptosystem is used and
« e ., e gand e g are public keys of cardholder, shop, bank and
«d ., dgand d g are their secret keys.
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OLDER and SHOP ACTIONS ]

A cardholder performs the following procedure--GSO-goods and service order

1.Computes HEGSO = h (e 4(GSO)) - hash value of the encryption of GSO.

2.Computes HEPI = h (e gz(Pl)) - hash value of the encryption of the payment
iInstructions.

3.Computes HPO = h (HEPI || HEGSO) - Hash values of the Payment Order.
4.Signs HPO by computing “Dual Signature" DS = d (HPO).
5.Sends e 4(GSO), DS, HEPI, and e z(PI) to shop.

Shop does the following: (payment instructions)

« Calculates h (e 4(GSO)) = HEGSO;

« Calculates h (HEPI || HEGSO) and e -(DS). If they are equal, shop has
verified by that the cardholder signature;

« Computes d 5(e 5(GSO)) to get GSO.
« Sends HEGSO, HEPI, e 3(PI), and DS to the bank.
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nd SHOP ACTIONS ]

Bank has received HEPI, HEGSO, e ;z(Pl), and DS and performs the following
actions.

1. Computes h (e gz(Pl)) - what should be equal to HEPI.

2. Computes h (h (e g(PI)) || HEGSO) what should be equal to e (DS) = HPO.
3. Computes d (e g(Pl)) to obtain PI;

4. Returns an encrypted (with e ¢) digitally signed authorization to shop,
guaranteeing the payment.

Shop completes the procedure by encrypting, with e . the receipt to the
cardholder, indicating that transaction has been completed.

It is easy to verify that the above protocol fulfils basic requirements concerning
security, privacy and integrity.
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MONEY )

|s it possible to have electronic (digital) money?

It seems that not, because copies of digital information are indistinguishable
from their origin and one could therefore hardly prevent double spending,....

T. Okamoto and K. Ohia formulated six properties digital money systems
should have.

1. One should be able to send e-money through e-networks.
2. It should not be possible to copy and reuse e-money.

3. Transactions using e-money should be done off-line - that is no
communication with central bank should be needed during translation.

4. One should be able to sent e-money to anybody.
5. An e-coin could be divided into e-coins of smaller values.

Several system of e-money have been created that satisfy all or at least some
of the above requirements.
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) SIGNATURES - applications

Blind digital signatures allow the signer (bank) to sign a message without
seeing its content.

be signed by a Bank. Shop must be able to verify Bank's signature. Later,

it signed these e-money for Bob. Bank has therefore to sign money blindly.

Shnorr blind signature protocol described on the next slide.

Basic setting

Bank chooses large primes p, q | (0 -1) and an g [ Z ; of order q.
Let h: {0,1}" — Z , be a collision-free hash function.

Bank's secret will be a randomly chosen x [1{0,..., p -1}.

Public information: (p, q, g, y = g *).

Scenario: Customer Bob would like to give e-money to Shop. E-money have to

when Shop sends e-money to Bank, Bank should not be able to recognize that

Bob can obtain a blind signature for a message m from Bank by executing the
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SIGNATURES - protocols )

1. Shnorr's simplified identification protocol in which Bank proves its identity by
proving that it knows x.

- Bank chooses a random r [1{0,...,q -1} and send a = g "to Bob. {By that Bank
““commits” itself to r}.

- Bob sends to Bank a random c [ {0,...,q -1} {a challenge}.

- Bank sends to Bob b = r— cx {a response}.

- Bob accepts the proof that bank knows xifa=gP° yc¢. {because y=g*
2. Transfer of the identification scheme to a signature scheme:

Bob chooses as ¢ = h (m || a), where m is message to sign.

Signature: (c, b); Verification rule: a = g © y ¢; Transcript: (a, ¢, b).

3. Shnorr's blind signature scheme

- Bank sends to Bob a’ = g " with random r’ (1 {0,...,q -1}.

« Bob chooses random u,v,w [J{0,...,q -1}, u Z#0, computesa=a Yg "y,
c=h (m||a), ¢ = (c - w)u -" and sends ¢’ to Bank.

« Bank sends to Bob b’ =r - ¢'x.

Bob verifies whether a’ = g °y ¢, computes b = ub’ + v and gets blind signature a(m)
= (c, b) of m.

Verification condition for the blind signature: c=h (m || g° y ©).
Both (a,c,b) and (a’,c¢’,b’) are valid transcripts.
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