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A protocol is an algorithm two (or more) parties have to follow to 
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A protocol is an algorithm two (or more) parties have to follow to 

perform a communication/cooperation.

A cryptographical protocol is a protocol to achieve secure

communication during some goal oriented cooperation.

In this  chapter we deal with a variety of cryptographical protocols that 

allow to solve seemingly unsolvable problems.allow to solve seemingly unsolvable problems.

We present several cryptographic protocols for such basic We present several cryptographic protocols for such basic 

cryptographic primitives as bit commitment and oblivious transfer.

Of special importance are zero-knowledge protocols we discuss in 

second half of this chapter.
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COINCOIN--FLIPPING BY PHONE PROTOCOLSFLIPPING BY PHONE PROTOCOLS--EXAMPLEEXAMPLEIV054 COINCOIN--FLIPPING BY PHONE PROTOCOLSFLIPPING BY PHONE PROTOCOLS--EXAMPLEEXAMPLE

Coin-flipping by telephone: Alice and Bob got divorced and they do not trust 
each other any longer. They want to decide, communicating by phone only, who 
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each other any longer. They want to decide, communicating by phone only, who 
gets the car.

Protocol 1 Alice sends Bob messages head and tail encrypted by a one-way Protocol 1 Alice sends Bob messages head and tail encrypted by a one-way 
function f. Bob guesses which one of them is encryption of head. Alice tells Bob 
whether his guess was correct. If Bob does not believe her,  Alice  sends f to Bob. 

Protocol 2 Alice chooses two large primes p,q, sends Bob n = pq and keeps p, qProtocol 2 Alice chooses two large primes p,q, sends Bob n = pq and keeps p, q
secret. 

Bob chooses a random number y ∈ {1,…, n / 2},  sends Alice x = y2 mod n and tells 
Alice: if you will guess y correctly, car is yours. Alice: if you will guess y correctly, car is yours. 

Alice computes four square roots (x1, n - x1) and (x2, n - x2) of x.

Let

x1‘ = min(x1, n - x1), x2‘ = min(x2, n - x2).

Since y ∈ {1,…,n / 2}, either y = x1' or y = x2'.

Alice then guesses whether y = x ' or y = x ' and tells Bob her choice (for example Alice then guesses whether y = x1' or y = x2' and tells Bob her choice (for example 
by reporting the position and value of the leftmost bit in which x1' and x2' differ).

Bob tells Alice whether her guess was correct. 
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(Later, if necessary, Alice reveals p and q, and Bob reveals y.)



COIN TOSSINGCOIN TOSSINGIV054 COIN TOSSINGCOIN TOSSING

• In any coin tossing protocol both parties should influence outcome 
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• In any coin tossing protocol both parties should influence outcome 

and should accept  the outcome. Both outcomes should have the 

same probability.

• Requirements for a coin tossing protocol are sometimes generalized 

as follows: 

– The outcome of the protocol is an element from the set {0, 1, – The outcome of the protocol is an element from the set {0, 1, 

reject}

– If both parties behave correctly, the outcome should be from – If both parties behave correctly, the outcome should be from 

the set {0, 1}

– If it is not the case that both parties behave correctly, the – If it is not the case that both parties behave correctly, the 

outcome should be reject

Problem: In some coin tossing protocols one party can find out the 

outcome sooner than second party and in such a case can disrupt outcome sooner than second party and in such a case can disrupt 

the protocol - to produce reject. A way out is to require that in case 

of correct behavior no outcome should have probability > 1/2.
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of correct behavior no outcome should have probability > 1/2.



COIN TOSSING  USING  ONECOIN TOSSING  USING  ONE--WAY FUNCTION WAY FUNCTION ffIV054 COIN TOSSING  USING  ONECOIN TOSSING  USING  ONE--WAY FUNCTION WAY FUNCTION ff

Protocol:
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_      Alice chooses a one-way function f and informs Bob     
about  the definition domain of f.

– Bob chooses randomly r , r from dom(f) and sends them to – Bob chooses randomly r1 , r2 from dom(f) and sends them to 
Alice 

– Alice sends to Bob one of the values f(r1) or f(r2)– Alice sends to Bob one of the values f(r1) or f(r2)

– Bob announces Alice his guess which of the two values he 
received 

– Alice announces Bob whether his guess was correct (0) or not – Alice announces Bob whether his guess was correct (0) or not 
(1)

– If one needs to verify correctness, Alice should send to Bob – If one needs to verify correctness, Alice should send to Bob 
specification of f

The protocol is computationally secure. Indeed, to cheat, Alice should The protocol is computationally secure. Indeed, to cheat, Alice should 
be able to find, for randomly chosen r1, r2 such a one-way function f
that f(r1) = f(r2).

4Protocols to do seemingly impossible

that f(r1) = f(r2).



BIT COMMITMENT PROTOCOLS (BCP)BIT COMMITMENT PROTOCOLS (BCP)IV054 BIT COMMITMENT PROTOCOLS (BCP)BIT COMMITMENT PROTOCOLS (BCP)

Basic ideas and solutions IBasic ideas and solutions I
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In a bit commitment protocol Alice chooses a bit b and gets committed to b, in the 

following sense: 

Bob has no way of knowing which commitment  Alice has made, and Alice has no Bob has no way of knowing which commitment  Alice has made, and Alice has no 

way of changing her commitment once she has made it; say after Bob announces 

his guess as to what Alice has chosen.

An example of a “pre-computer era'' bit commitment protocol is that Alice writes her

commitment on a paper, locks it in a box, sends the box to Bob and, later, in the 

opening phase, she sends also the key to Bob.opening phase, she sends also the key to Bob.

Complexity era solution I. Alice chooses a one-way function f and an even (odd) x if 

she wants to commit herself to 0 (1) and sends to Bob f(x) and f.

Problem: Alice may know an even x1 and an odd x2 such that f(x1) = f(x2).

Complexity era solution II. Alice chooses a one-way function f, two random x1, x2

and a bit b she wishes to commit to, and sends to Bob (f (x , x , b), x ) - a and a bit b she wishes to commit to, and sends to Bob (f (x1, x2, b), x1) - a 

commitment.

When times comes for Alice to reveal her bit she sends to Bob f and the triple (x1,
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When times comes for Alice to reveal her bit she sends to Bob f and the triple (x1,

x2, b).



BIT COMMITMENT SCHEMES IBIT COMMITMENT SCHEMES IIV054 BIT COMMITMENT SCHEMES IBIT COMMITMENT SCHEMES I

The basis of bit commitment protocols are bit commitment schemes:
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The basis of bit commitment protocols are bit commitment schemes:

A bit commitment scheme is a mapping f: {0,1} x X → Y, where X and 

Y are finite sets.

A commitment to a b ∈ {0,1}, or an encryption of b,  is any value 

(called  a blow)  f(b, x), x ∈ X.(called  a blow)  f(b, x), x ∈ X.

Each bit commitment protocol has  two phases:Each bit commitment protocol has  two phases:

Commitment phase: The sender sends a bit b he wants to commit to, Commitment phase: The sender sends a bit b he wants to commit to, 

in an encrypted form, to the receiver.

Opening phase: If required, the senders sends to the receiver 

additional information that enables the receiver to get b.
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additional information that enables the receiver to get b.
.



BIT COMMITMENT SCHEMES IIBIT COMMITMENT SCHEMES IIBIT COMMITMENT SCHEMES IIBIT COMMITMENT SCHEMES II

Each bit commitment scheme should have three properties:Each bit commitment scheme should have three properties:

Hiding (privacy): For no b ∈ {0,1} and no x ∈ X, it is feasible for Bob  to Hiding (privacy): For no b ∈ {0,1} and no x ∈ X, it is feasible for Bob  to 

determine b from B = f(b, x).

Binding: Alice can “open'' her commitment b, by revealing (opening)  x

and b such that B = f(b, x), but she  should not be able to open a 

commitment (blow) B as both 0 and 1.commitment (blow) B as both 0 and 1.

Correctness: If both, the sender and the receiver, follow the protocol, Correctness: If both, the sender and the receiver, follow the protocol, 

then the receiver will always learn (recover) the committed value b.
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Bit Commitment with OneBit Commitment with One--Way FunctionWay FunctionIV054 Bit Commitment with OneBit Commitment with One--Way FunctionWay Function

Commitment phase:
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Commitment phase:

– Alice and Bob choose a one-way function f

– Bob sends a randomly chosen r to Alice– Bob sends a randomly chosen r1 to Alice

– Alice chooses random r2 and her committed bit b

and sends to Bob f (r , r , b).and sends to Bob f (r1 , r2 , b).

Opening phase: 

– Alice sends to Bob r2 and b

– Bob computes f (r1 , r2 , b) and compares with the – Bob computes f (r1 , r2 , b) and compares with the 

value he has already received.
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Hash functions and commitmentsHash functions and commitments

A commitment to a data w, without revealing w, using a 

hash function h, can be done as follows:hash function h, can be done as follows:

Commitment phase:  To commit to a w choose a random rCommitment phase:  To commit to a w choose a random r

and make public   h(wr).

Opening phase:   reveal r and w.

For this application the hash function h has to be one-way: For this application the hash function h has to be one-way: 

from h(wr) it should be unfeasible to determine wr
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TWO SPECIAL BIT COMMITMENT SCHEMESTWO SPECIAL BIT COMMITMENT SCHEMESIV054 TWO SPECIAL BIT COMMITMENT SCHEMESTWO SPECIAL BIT COMMITMENT SCHEMES

Bit commitment scheme I. Let p, q be large primes, n = pq, m ∈ QNR(n),
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Bit commitment scheme I. Let p, q be large primes, n = pq, m ∈ QNR(n),

X = Y = Zn*. Let n,m be public.

Commitment: f(b, x) = m bx 2 mod n for a random x from X.

Since computation of quadratic residues is in general infeasible, this bit Since computation of quadratic residues is in general infeasible, this bit 

commitment scheme is hiding.

Since m ∈ QNR(n), there are no x1, x2 such that mx1
2 = x2

2 mod n and therefore  

the scheme is binding.

Bit commitment scheme II. p is a large Blum prime, X = {0,1,…, p-1} = Y, is a

primitive element of Zp*.

1 2 1 2

the scheme is binding.

α
primitive element of Zp*.
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Binding property of this bit commitment scheme follows from the fact that in the 

case of discrete logarithms modulo Blum primes there is no effective way to 

determine second least significant bit (SLB) of the discrete logarithm.

( ).4mod 3,2 if 1             ≡= x
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determine second least significant bit (SLB) of the discrete logarithm.



MAKING COIN TOSSING FROM BIT COMMITMENTMAKING COIN TOSSING FROM BIT COMMITMENTIV054 MAKING COIN TOSSING FROM BIT COMMITMENTMAKING COIN TOSSING FROM BIT COMMITMENT

Each bit commitment  scheme can be used to solve coin tossing problem as 
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Each bit commitment  scheme can be used to solve coin tossing problem as 
follows:

1. Alice tosses a coin, and commits itself to its outcome bA

(say heads = 0, tails = 1) and sends the commitment to Bob.(say heads = 0, tails = 1) and sends the commitment to Bob.

2. Bob also tosses a coin and sends the outcome bB to Alice.

3. Alice opens her commitment.3. Alice opens her commitment.

4. Both Alice and Bob compute b = bA ⊕ bB.

Observe that if at least one of the parties follows the protocol, that is it tosses a 
random coin, the outcome is indeed a random bit.

Note: Observe that after step 2 Alice knows what will be Note: Observe that after step 2 Alice knows what will be 
the outcome, but Bob not. So Alice can disrupt the protocol 
if the outcome is to be not good for her. This is  a weakif the outcome is to be not good for her. This is  a weak

point of this protocol.
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BASIC TYPES of HIDING and BINDINGBASIC TYPES of HIDING and BINDINGIV054 BASIC TYPES of HIDING and BINDINGBASIC TYPES of HIDING and BINDINGIV054

If the hiding or the binding property of a commitment If the hiding or the binding property of a commitment 
protocol depends on the complexity of a computational 
problem, we speak about computational hiding and problem, we speak about computational hiding and 
computational binding.

In case, the binding or the hiding property does not depend 
on the complexity of a computational problem, we speak 
about unconditional hiding or unconditional binding.about unconditional hiding or unconditional binding.
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A commitment scheme based on discret logarithmA commitment scheme based on discret logarithmIV054 A commitment scheme based on discret logarithmA commitment scheme based on discret logarithm

Alice wants to commit herself to an m ∈ {0,…,q - 1}.
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Alice wants to commit herself to an m ∈ {0,…,q - 1}.

Scheme setting:Scheme setting:

Bob randomly chooses primes p and q such that

q | (p - 1).

Bob chooses random generators  of the subgroup G of order q ∈ Zn*.

Bob sends p, q, g and v to Alice.

vg ≠≠1
Bob sends p, q, g and v to Alice.

Commitment phase:Commitment phase:

To commit to an m ∈ {0,…,q - 1}, Alice chooses a random r ∈ {0,…,q - 1}, and To commit to an m ∈ {0,…,q - 1}, Alice chooses a random r ∈ {0,…,q - 1}, and 

sends c= g rv m to Bob.

Opening phase:Opening phase:Opening phase:Opening phase:

Alice sends r and m to Bob who then verifies whether c = g rv m.
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COMMENTSCOMMENTSIV054 COMMENTSCOMMENTSIV054

mm ≠• If Alice, committed to an m, could open her commitment as , then 

and therefore

mm ≠
mrmr vgvg =

( )( ) .lg
1−

−−= mmrrv

Hence, Alice could compute lg g v of a randomly chosen element v ∈G, what 

contradicts the assumption that computation of discrete logarithms in G is 

( )( ) .lg −−= mmrrvg

contradicts the assumption that computation of discrete logarithms in G is 

infeasible.

• Since g and v are generators of G, then g r is a uniformly chosen random • Since g and v are generators of G, then g is a uniformly chosen random 

element in G, perfectly hiding v m and m in g rv m, as in the encryption with 

ONE-TIME PAD cryptosystem.

14Protocols to do seemingly impossible



BIT COMMITMENT using ENCRYPTIONSBIT COMMITMENT using ENCRYPTIONS

Commit phase:Commit phase:

1. Bob generates a random string r and sends it to AliceBob generates a random string r and sends it to Alice

2. Alice commit herself to a bit b using a key k through  an encryption 

Ek(rb)

and sends it to Bob.and sends it to Bob.

Opening phase:

1. Alice sends the key k to Bob.

2. Bob decrypts the message to learn b and to verify r.2. Bob decrypts the message to learn b and to verify r.

Comment: without Bob’s random string r Alice could find a different key l

such that e (b)=e (¬b).such that ek(b)=el(¬b).
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COMMITMENTS and ELECTRONIC VOTINGCOMMITMENTS and ELECTRONIC VOTINGIV054 COMMITMENTS and ELECTRONIC VOTINGCOMMITMENTS and ELECTRONIC VOTING

Let com(r, m) = g rv m denote commitment to m in the commitment scheme based on discrete 
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Let com(r, m) = g v denote commitment to m in the commitment scheme based on discrete 

logarithm. If r 1, r 2, m 1, m 2 ∈ {0,…,q - 1}, then

com(r 1, m 1) × com(r 2, m 2) = com(r 1 + r 2, m 1 + m 2).

Commitment schemes with such a property are called homomorphic commitment schemes.Commitment schemes with such a property are called homomorphic commitment schemes.

Homomorphic schemes can be use to cast yes-no votes of n voters V 1,…, V n, by the trusted 

authority TA for whom e T and d T are ElGamal encryption and decryption algorithms.

Each voter V chooses his vote m ∈ {0,1}, a random r ∈ {0,…, q - 1} and computes his voting Each voter V i chooses his vote m i ∈ {0,1}, a random r I ∈ {0,…, q - 1} and computes his voting 

commitment c I = com(r i, m i). Then V i makes c i public and sends e T(g
r
i) to TA and TA

computes  ( ) ,r
n

rr
n

TT ggged ii ∏∏ ==
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Now, anybody can compute the result s of voting from publicly known c i and g r since
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s can now be derived from v by computing v , v , v ,… and comparing with v if the number 

of voters is not too large.
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Trust in cryptographic protocolsTrust in cryptographic protocolsIV054 Trust in cryptographic protocolsTrust in cryptographic protocolsIV054

In any interaction between people, there is a certain level of risk, In any interaction between people, there is a certain level of risk, 

trust, and expected behaviour, that is implicit in the interchanges.

People may behave properly for a variety of reasons: fear from People may behave properly for a variety of reasons: fear from 

prosecution, desire to act in unethical manner due to social 

influences, and so on.influences, and so on.

However, in cryptographic protocols trust has to be kept to the lowest 

possible level.possible level.

In any cryptographic protocol, if there is an absence of a mechanism In any cryptographic protocol, if there is an absence of a mechanism 

for verifying, say autencity, one must assume, as default, that other 

participants can be dishonest (if for no other reason than for self-

preservation).preservation).
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OBLIVIOUS TRANSFER (OT) PROBLEMOBLIVIOUS TRANSFER (OT) PROBLEMIV054 OBLIVIOUS TRANSFER (OT) PROBLEMOBLIVIOUS TRANSFER (OT) PROBLEM

Story: Alice knows a secret and wants to send secret to Bob in such a way that he 
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Story: Alice knows a secret and wants to send secret to Bob in such a way that he 

gets secret with probability 1/2, and he knows whether he got secret, but Alice has 

no idea whether he received secret. (Or Alice has several secrets and Bob wants 

to buy one of them but he does not want that Alice knows which one he bought.)to buy one of them but he does not want that Alice knows which one he bought.)

Oblivious transfer problem: Design a protocol for sending a message from Alice to 

Bob in such a way that Bob receives the message with probability 1/2 and Bob in such a way that Bob receives the message with probability 1/2 and 

“garbage'' with the probability 1/2. Moreover, Bob knows whether he got the 

message or garbage, but Alice has no idea which one he got.

An Oblivious transfer protocol:

(1) Alice chooses two large primes p and q and sends n = pq to Bob.

(2) Bob chooses a random number x and sends y = x 2 mod n to Alice.

(3) Alice computes four square roots ± x 1, ± x 2 of y (mod n) and sends one of them 

to Bob. (She can do it, but has no idea which of them is x.)to Bob. (She can do it, but has no idea which of them is x.)

(4) Bob checks whether the number he got is congruent to x. If yes, he has 

received no new information. Otherwise, Bob has two different square roots 

modulo n and can factor n. Alice has no way of knowing whether this is the case.
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modulo n and can factor n. Alice has no way of knowing whether this is the case.



1-OUT-OF-2 oblivious transfer problem1-OUT-OF-2 oblivious transfer problem

The 1-out-of-2 oblivious transfer problem: Alice sends two messages to Bob in The 1-out-of-2 oblivious transfer problem: Alice sends two messages to Bob in 

such a way that Bob can choose which of the messages he receives (but he 

cannot choose  both), but Alice cannot learn Bob’s decision.

A generalization of 1-out-of-2 oblivious transfer problem is two-party oblivious

circuit evaluation problem:

Alice has a secret i and Bob has a secret j and they both know  some function f.

At the end of protocol the following conditions should hold:

1. Bob knows the value f(i,j), but he does not learn anything about i.

2. Alice learns nothing about j and nothing about f(i,j).

Note: The 1-out-of-2 oblivious transfer problem is the instance of the oblivious 

circuit evaluation problem for i=(b0,b1), f(i,j)=bj.
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1-out-2 oblivious transfer box1-out-2 oblivious transfer box

1-out-of-two oblivious transfer can be imagine as a 1-out-of-two oblivious transfer can be imagine as a 

box with three inputs and one output.

INPUTS: Alice inputs:   x0 and x1;                                                    INPUTS: Alice inputs:   x0 and x1;                                                    

………….Bob inputs a bit c

OUTPUT: Bob gets as the output: xcOUTPUT: Bob gets as the output: xc

Protocols to do seemingly impossible 20



Implementation of oblivious transferImplementation of oblivious transferIV054 Implementation of oblivious transferImplementation of oblivious transferIV054

• Alice generates two key pairs for a PKC P and sends their public • Alice generates two key pairs for a PKC P and sends their public 

keys to Bob.

• Bob chooses a to-be random secret key k for a SKC S, encrypts it 

by one of Alice’s public keys and sends it to Alice.by one of Alice’s public keys and sends it to Alice.

• Alice uses her two secret keys to decrypt the message she 

received. One of outcome is garbage g, another one is k, but she received. One of outcome is garbage g, another one is k, but she 

does not know which one.

• Alice encrypts her two secret messages, one with k, another with g• Alice encrypts her two secret messages, one with k, another with g

and sends them to Bob.

• Bob uses S with k to decrypt both messages he got and one of the 

attempts is successful. Alice has no idea which one.
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Power of Oblivious TransfersPower of Oblivious TransfersIV054 Power of Oblivious TransfersPower of Oblivious Transfers

• C. Crépeau (1988) showed that both versions of oblivious transfer are 
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• C. Crépeau (1988) showed that both versions of oblivious transfer are 

equivalent - a protocol for each version can be realized using any protocol 

for the other version, using a cryptographic reduction

• Original definition of the oblivious transfer is due to J. Halpern and M. O. • Original definition of the oblivious transfer is due to J. Halpern and M. O. 

Rabin (1983); 1-out-of-2 olivious transfer suggested S. Even, O. Goldreich 

and A. Lempel in 1985.

• J. Kilian (1988) showed that oblivious transfers are very powerful protocols 

that allow secure computation of the value f(x, y) of any binary function f , 

where x is a secret value known only by Alice, and y is a secret value where x is a secret value known only by Alice, and y is a secret value 

known only by Bob, in such a way that it holds: 

– Both, Alice and Bob, learn f(x, y)– Both, Alice and Bob, learn f(x, y)

– Alice learns about y only so much she can learn from x and f(x, y)

– Bob learns about x only so much he can learn from y and    f(x, y)– Bob learns about x only so much he can learn from y and    f(x, y)
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BIT COMMITMENT from 1-out-2 oblivious transferBIT COMMITMENT from 1-out-2 oblivious transfer

Using 1-out-of-2 oblivious transfer box (OT-box) one can design bit commitment:Using 1-out-of-2 oblivious transfer box (OT-box) one can design bit commitment:

COMMITMENT PHASE:

1.Alice selects a random bit r and her commitment bit b;

2. Alice inputs x0 = r and  x1 =r  xor b into the OT-box.2. Alice inputs x0 = r and  x1 =r  xor b into the OT-box.

3. Alice sends a message to Bob telling him it is his turn.

4. Bob selects a random bit c, inputs c into the OT-box and records the output xc.

OPENING PHASE:

1. Alice sends r and b to Bob.

2. Bob checks to see if xc =r xor bc

Protocols to do seemingly impossible 23



Mental poker playing by phone Mental poker playing by phone -- two playerstwo playersIV054 Mental poker playing by phone Mental poker playing by phone -- two playerstwo players

Basic requirements:
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Basic requirements:

• All hands (sets of 5 cards) are equally likely.

• The hands of Alice and Bob are disjoint.

• Both players know their own hand but not that of the opponent.• Both players know their own hand but not that of the opponent.

• Each player can detect eventual cheating of the other player.

A commutative cryptosystem is used with all functions kept secret.

Players agree on numbers w ,…,w as the names of 52 cards.Players agree on numbers w 1,…,w 52 as the names of 52 cards.

Protocol:

(1) Bob shuffles cards, encrypts them with e , and tells e (w ),…, e (w ), in a (1) Bob shuffles cards, encrypts them with e B, and tells e B (w 1),…, e B (w 52), in a 
randomly chosen order, to Alice.

(2) Alice chooses five of the items e B (w i) as Bob's hands and tells them Bob.

(3) Alice chooses another five of e (w ), encrypt them with e and sends to Bob.(3) Alice chooses another five of e B (w i), encrypt them with e A and sends to Bob.

(4) Bob applies d B to five values e A (e B (w i)) he got from Alice and sends e A (w i)
to Alice as Alice's hands.

Remarque: The cryptosystem that is used cannot be public-key in the normal 
sense. Otherwise Alice could compute e B (w i) and deal with the cards accordingly 
- a good hand for B but slightly better for herself.
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- a good hand for B but slightly better for herself.



Mental poker with three playersMental poker with three playersIV054 Mental poker with three playersMental poker with three players

1. Alice encrypts 52 cards w 1,…,w 52 with e A and sends them in a random order to 
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1. Alice encrypts 52 cards w 1,…,w 52 with e A and sends them in a random order to 
Bob. 

2. Bob, who cannot read the cards, chooses 5 of them, randomly. He encrypts them 
with e B, and sends e B (e A (w i)) to Alice and the remaining 47 encrypted cards e Awith e B, and sends e B (e A (w i)) to Alice and the remaining 47 encrypted cards e A

(w i) to Carol.

3. Carol, who cannot read any of the messages, chooses five at random, encrypts 
them with her key and sends Alice e C (e A (w_i)).C A _i

4. Alice, who cannot read encrypted messages from Bob and Carol, decrypt them 
with her key and sends back to the senders, 

five d A (e B (e A (w i))) = e B (w i) to Bob,five d A (e B (e A (w i))) = e B (w i) to Bob,

five d A (e C (e A (w i))) = e C (w i) to Carol.

5. Bob and Carol decrypt the messages to learn their hands. 

6. Carol chooses randomly 5 other messages e A (w i) from the remaining 42 and 6. Carol chooses randomly 5 other messages e A (w i) from the remaining 42 and 
sends them to Alice.

7. Alice decrypt messages to learn her hands. 

Additional cards can be dealt with in a similar manner. If either Bob or Carol wants 
a card, they take an encrypted message e A (w i) and go through the protocol with 
Alice. If Alice wants a card, whoever currently has the deck sends her a card.
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Alice. If Alice wants a card, whoever currently has the deck sends her a card.
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ZZeroero--knowledgeknowledge proofproof protocolsprotocols
To the most important primitives for cryptographic protocols, and at the same 

IV054

To the most important primitives for cryptographic protocols, and at the same 

time  very counterintuitive primitives,  belong so-called zero-knowledge proof 

protocols (of knowledge).

Very informally, a zero-knowledge proof protocol allows one party, usually 

called PROVER, to convince another party, called VERIFIER, that PROVER 

knows some fact (a secret, a proof of a theorem,...) without revealing to the knows some fact (a secret, a proof of a theorem,...) without revealing to the 

VERIFIER ANY information about his knowledge (secret, proof,...).

In the rest of this chapter we present and illustrate very basic ideas of zero-In the rest of this chapter we present and illustrate very basic ideas of zero-

knowledge proof protocols and their importance for cryptography.

Zero-knowledge proof protocols are a special type of so-called interactive Zero-knowledge proof protocols are a special type of so-called interactive 

proof systems.

By a theorem we  understand in the following a claim that a specific object has By a theorem we  understand in the following a claim that a specific object has 

a specific property. For example, that a specific graph is 3-collorable.
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Illustrative exampleIllustrative exampleIV054 Illustrative exampleIllustrative example

(A cave with a door opening on a secret word)

IV054

(A cave with a door opening on a secret word)

Alice knows a secret word opening the door in cave. How  can she convince Bob 

about it without revealing this secret word?

27Protocols to do seemingly impossible



ZERO-KNOWLEDGE PROOFSZERO-KNOWLEDGE PROOFS

Informally speaking, an interactive proof systems has the property of being zero-Informally speaking, an interactive proof systems has the property of being zero-

knowledge if the Verifier, that interacts with the honest Prover of the system, learns 

nothing from the interaction beyond the validity of the statement being proved.

There are several variants of zero-knowledge protocols that differ in the specific 

way the notion of learning nothing is formalized. 

In each variant it is viewed that a particular Verifier learns nothing if there exists a 

polynomial time simulator whose output is indistinguishable from the output of the polynomial time simulator whose output is indistinguishable from the output of the 

Verifier  after interacting with the Prover on any possible instant of the problem.

The different variants of zero-knowledge proof systems concern the strength of this 

distinguishability. In particular, perfect or statistical zero-knowledge refer to the distinguishability. In particular, perfect or statistical zero-knowledge refer to the 

situation where the simulator’s output and the Verifier’s output are indistinguishable 

in an information theoretic sense.

Computational zero-knowledge refer to the case there is  no polynomial time 

distinguishability.
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INTERACTIVE PROOF PROTOCOLSINTERACTIVE PROOF PROTOCOLSIV054 INTERACTIVE PROOF PROTOCOLSINTERACTIVE PROOF PROTOCOLS

In an interactive proof system there are two parties

IV054

In an interactive proof system there are two parties

• An (all powerful) Prover, often called Peggy (a randomized algorithm that uses a 
private random number generator);

• A (little (polynomially)  powerful) Verifier, often called Vic (a polynomial time • A (little (polynomially)  powerful) Verifier, often called Vic (a polynomial time 
randomized algorithm that uses a private random number generator).

Prover knows some secret, or a knowledge, or a fact about a specific object, and 
wishes to convince Vic, through a communication with him, that he has the above wishes to convince Vic, through a communication with him, that he has the above 
knowledge.

For example, both Prover and Verifier posses an input x and Prover wants to 
convince Verifier that x has a certain Property and that Prover knows how to proof convince Verifier that x has a certain Property and that Prover knows how to proof 
that.

The interactive proof system consists of several rounds. In each round Prover and 
Verifier alternatively do the following.Verifier alternatively do the following.

1. Receive a message from the other party.

2. Perform a (private) computation.2. Perform a (private) computation.

3. Send a message to the  other party.

Communication starts usually by a challenge of Verifier and a response of Prover.

At the end, Verifier either accepts or rejects Prover's attempts to convince Verifier.
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At the end, Verifier either accepts or rejects Prover's attempts to convince Verifier.
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Example Example -- GRAPH NONGRAPH NON--ISOMORPHISMISOMORPHISM

A simple interactive proof protocol exists  for a computationally very hard           

IV054

A simple interactive proof protocol exists  for a computationally very hard           
graph non-isomorphism problem.

Input: Two graphs G 1 and G 2, with the set of nodes {1,…,n }

ProtocolProtocol: Repeat n times the following steps:ProtocolProtocol: Repeat n times the following steps:

1. Vic chooses  randomly an integer i ∈ {1,2} and a permutation π of {1,…,n }. Vic 
then  computes the image H of G i under permutation π and sends H to Peggy.then  computes the image H of G i under permutation π and sends H to Peggy.

2. Peggy determines the value j such that G J is isomorphic to H, and sends j to Vic.

3. Vic checks to see if i = j.

Vic accepts Peggy's proof if i = j in each of  n rounds.

CompletenessCompleteness: If G 1 is not isomorphic to G 2, then probability that Vic accepts is CompletenessCompleteness: If G 1 is not isomorphic to G 2, then probability that Vic accepts is 
clearly 1.

SoundnessSoundness: If G 1 is  isomorphic to G 2, then Peggy can deceive Vic if and only if 
she correctly guesses n times the i Vic choosed randomly. Probability that this she correctly guesses n times the i Vic choosed randomly. Probability that this 
happens is 2 -n.

Observe  that Vic's computations can be performed in polynomial time (with 
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Observe  that Vic's computations can be performed in polynomial time (with 
respect to the size of graphs).



INTERACTIVE PROOF SYSTEMSINTERACTIVE PROOF SYSTEMSIV054 INTERACTIVE PROOF SYSTEMSINTERACTIVE PROOF SYSTEMS

An interactive proof protocol is said to be an interactive proof system for a 
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An interactive proof protocol is said to be an interactive proof system for a 

secret/knowledge or a decision problem Π if the following properties are satisfied.

Assume that  Prover and Verifier posses an input x (or Prover has secret 

knowledge) and Prover wants to convince Verifier that x has a certain properties knowledge) and Prover wants to convince Verifier that x has a certain properties 

and that Prover knows how to proof that (or that Prover knows the secret).

(Knowledge) Completeness(Knowledge) Completeness: If x is a yes-instance of Π, or Peggy knows the secret, (Knowledge) Completeness(Knowledge) Completeness: If x is a yes-instance of Π, or Peggy knows the secret, 

then Vic always accepts Peggy's “proof'' for sure.

(Knowledge) Soundness(Knowledge) Soundness: If x is a no-instance of Π, or Peggy does not know the 

secret,  then Vic accepts Peggy's “proof'' only with very small probability.secret,  then Vic accepts Peggy's “proof'' only with very small probability.

CHEATINGCHEATING

• If the Prover and the Verifier of an interactive proof system fully follow the protocol

they are called honest Prover and honest Verifier.

• A Prover who does not know secret or proof and tries to convince the Verifier is • A Prover who does not know secret or proof and tries to convince the Verifier is 

called cheating Prover. 

• A Verifier who does not follow the behaviour specified in the protocol is called a 
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cheating verifier.



ZeroZero--knowledge proof protocols informallyknowledge proof protocols informallyIV054 ZeroZero--knowledge proof protocols informallyknowledge proof protocols informally

Very informallyVery informally An interactive “proof protocol’’ at which a Prover tries to convince a 
Verifier about the truth of a statement, or about possession of a knowledge, is 

IV054

Verifier about the truth of a statement, or about possession of a knowledge, is 
called “zero-knowledge” protocol if the Verifier does not learn from communication 
anything more except that the statement is true or that Prover has  knowledge 
(secret) she claims to have.(secret) she claims to have.

Example The proof n = 670592745 = 12345 × 54321 is not a zero-knowledge proof 
that n is not a prime.

InformallyInformally A zero-knowledge proof is an interactive proof protocol that provides InformallyInformally A zero-knowledge proof is an interactive proof protocol that provides 
highly convincing evidence that a statement is true or that Prover has certain 
knowledge (of a secret) and that Prover knows a (standard) proof of it while 
providing not a single bit of information about the proof (knowledge or secret). (In providing not a single bit of information about the proof (knowledge or secret). (In 
particular, Verifier who got convinced about the correctnes of a statement cannot 
convince the third person about that.)

More formallyMore formally A zero-knowledge proof of a theorem T is an interactive two party More formallyMore formally A zero-knowledge proof of a theorem T is an interactive two party 
protocol, in which Prover is able to convince Verifier who follows the same protocol, 
by the overhelming statistical evidence, that T is true, if T is indeed true, but no 
Prover is not able to convince Verifier that T is true, if this is not so. In additions, Prover is not able to convince Verifier that T is true, if this is not so. In additions, 
during interactions, Prover does not reveal to Verifier any other information, except 
whether T is true or not. Consequently, whatever Verifier can do after he gets 
convinced, he can do just believing that T is true.
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convinced, he can do just believing that T is true.

Similar arguments hold for the case Prover posseses a secret.



AGE DIFFERENCE FINDING PROTOCOLSAGE DIFFERENCE FINDING PROTOCOLSIV054 AGE DIFFERENCE FINDING PROTOCOLSAGE DIFFERENCE FINDING PROTOCOLS

Alice and Bob wants to find out who is older without disclosing any other information about 
their age.

IV054

their age.

The following protocol is based on a public-key cryptosystem, in which it is  assumed that 
neither Bob nor Alice are older than 100 years. 

ProtocolProtocol Age of Bob: j, age of Alice: i. ProtocolProtocol Age of Bob: j, age of Alice: i. 

1. Bob choose a random x, computes k = e A(x) and sends Alice s = k - j.

2. Alice first computes the numbers y u = d A(s + u);1 ≤ u ≤ 100, then chooses a large random 
prime p and computes numbersprime p and computes numbers

z u = y u mod p, 1 ≤ u ≤ 100 (*)

and verifies that for all u ≠ v

|z - z | ≥ 2 and z ≠ 0 (**)|z u - z v | ≥ 2 and z u ≠ 0 (**)

(If this it not the case, Alice choose a new p, repeats computations in (*) and checks (**)
again.)

Finally, Alice sends Bob the following sequence (order is important).Finally, Alice sends Bob the following sequence (order is important).

z 1,…,z i, z i+1 + 1,…,z 100 + 1, p

z'1,…,z'i, z'i+1,…,z'100

3. Bob checks whether j-th number in the above sequence is congruent to x modulo p. If yes, 
Bob knows that i ≥ j, otherwise i < j.

i ≥ j ⇒ z'J = zJ ≡ yJ= dA(k) ≡ x (mod p)

⇒ ≡ ≡
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i < j ⇒ z'J = zJ + 1 ≡ yJ = dA(k) ≡ x (mod p)



33--COLORABILITY of GRAPHSCOLORABILITY of GRAPHSIV054 33--COLORABILITY of GRAPHSCOLORABILITY of GRAPHS

With the following protocol Peggy can convince Vic that a particular graph G, known to both of 
them, is 3-colorable and that Peggy knows such a coloring, without revealing to Vic any 

IV054

them, is 3-colorable and that Peggy knows such a coloring, without revealing to Vic any 
information how such coloring looks. 

1 red e 1 e 1(red) = y 1

2 green e 2 e 2(green) = y 22 green e 2 e 2(green) = y 2

3 blue e 3 e 3(blue) = y 3

4 red e 4 e 4(red) = y 4

5 blue e 5 e 5(blue) = y 55 blue e 5 e 5(blue) = y 5

6 green e 6 e 6(green) = y 6

(a) (b)

Protocol:Protocol: Peggy colors the graph G = (V, E ) with colors (red, blue, green) and she performs Protocol:Protocol: Peggy colors the graph G = (V, E ) with colors (red, blue, green) and she performs 
with Vic |E| 2- times the following interactions, where v 1,…,v n are nodes of V.

1. Peggy choose a random permutation of colors, recolors G, and encrypts, for i = 1,2,…,n, the 
color c i of node v i by an encryption procedure e i - for each i different.color c i of node v i by an encryption procedure e i - for each i different.

Peggy then removes colors from nodes, labels the i-th node of G with cryptotext y i = e i(c i),
and designs Table (b).

Peggy finally shows Vic the graph with nodes labeled by cryptotexts.Peggy finally shows Vic the graph with nodes labeled by cryptotexts.

2. Vic chooses an edge and asks Peggy to show him coloring of the corresponding nodes.

3. Peggy shows Vic entries of the table corresponding to the nodes of the chosen edge.

4. Vic performs encryptions to verify that nodes really have colors as shown.
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4. Vic performs encryptions to verify that nodes really have colors as shown.



ZeroZero--knowledge proofsknowledge proofs and cryptographic protocolsand cryptographic protocolsIV054 ZeroZero--knowledge proofsknowledge proofs and cryptographic protocolsand cryptographic protocols

The fact that for a big class of statements there are zero-knowledge proofs can be 

IV054

The fact that for a big class of statements there are zero-knowledge proofs can be 
used to design secure cryptographic protocols. (All languages in NP have zero-
knowledge proofs.) 

A cryptographic protocol can be seen as a set of interactive programs to be A cryptographic protocol can be seen as a set of interactive programs to be 
executed by non-trusting parties.

Each party keeps secret a local input.

The protocol specifies the actions parties should take, depending on their local The protocol specifies the actions parties should take, depending on their local 
secrets and previous messages exchanged.

The main problem in this setting is how can a party verify that the other parties 
have really followed the protocol?have really followed the protocol?

The way out: a party A can convince a party B that the transmitted message was 
completed according to the protocol without revealing its secrets .

An idea how to design a reliable protocolAn idea how to design a reliable protocol

1. Design a protocol under the assumption that all parties follow the protocol.

2. Transform protocol, using known methods how to make zero-knowledge proofs 
out of normal ones, into a protocol in which communication is based on zero-
knowledge proofs, preserves both correctness and privacy  and works even if 
some parties display an adversary behavior.
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some parties display an adversary behavior.



ZeroZero--knowledge proof for quadratic residuaknowledge proof for quadratic residuaIV054 ZeroZero--knowledge proof for quadratic residuaknowledge proof for quadratic residua

Input: An integer n = pq, where  p, q are primes and x ∈ QR(n).

IV054

Input: An integer n = pq, where  p, q are primes and x ∈ QR(n).

Protocol:Protocol: Repeat lg n times the following steps:

1. Peggy chooses a random v ∈ Z n* and sends to Vic

y = v 2 mod n.y = v 2 mod n.

2. Vic sends to Peggy a random i ∈ {0,1}.

3. Peggy computes a square root u of x and sends to Vic

z = u iv mod n.

4. Vic checks whether

z 2 ≡ x i y mod n.z ≡ x y mod n.

Vic accepts Peggy's proof that x is QR if he succeeds in  point 4 in each of lg n
rounds.

CompletenessCompleteness is straightforward:

SoundnessSoundness If x is not a quadratic residue, then Peggy can answer only one of two 

possible challenges (only if i = 0), because in such a case y is a quadratic residue if possible challenges (only if i = 0), because in such a case y is a quadratic residue if 

and only if xy is not a quadratic residue.This means that Peggy will be caught in 

any given round of the protocol with probability 1/2 .
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The overall probability that prover deceives Vic is therefore 2 -lg n = 1/n.



ZeroZero--knowledge proof for graph isomorphismknowledge proof for graph isomorphismIV054 ZeroZero--knowledge proof for graph isomorphismknowledge proof for graph isomorphism

Input: Two graphs G 1 and G 2 with the set of nodes {1,…,n }.

Repeat the following steps n times:

IV054

Repeat the following steps n times:

1. Peggy chooses a random permutation π of {1,…,n } and computes H to be the 
image of G 1 under the permutation π, and sends H to Vic.

2. Vic chooses randomly i ∈ {1,2} and sends it to Peggy. {This way Vic asks for 
isomorphism between H and G i.}

3. Peggy creates a permutation ρ of {1,…,n } such that ρ specifies isomorphism 3. Peggy creates a permutation ρ of {1,…,n } such that ρ specifies isomorphism 
between H and G i and Peggy sends ρ to Vic.

{If i =1 Peggy takes ρ = π; if i = 2 Peggy takes ρ = σ ο π, where σ is a fixed 
isomorphic mapping of nodes of G 2 to G 1.}isomorphic mapping of nodes of G 2 to G 1.}

4. Vic checks whether H provides the  isomorphism between G i and H.

Vic accepts Peggy's “proof” if H is the image of G i in each of the n rounds.

Completeness. It is obvious that if G and G are isomorphic then Vic accepts with Completeness. It is obvious that if G 1 and G 2 are isomorphic then Vic accepts with 
probability 1.

Soundness: If graphs G 1 and G 2 are not isomorphic, then Peggy can deceive Vic Soundness: If graphs G 1 and G 2 are not isomorphic, then Peggy can deceive Vic 
only if she is able to guess in each round the i Vic chooses and then sends as H
the graph G i. However, the probability that this happens is 2 -n.

Observe that Vic can perform all computations in polynomial time.However, why is 
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Observe that Vic can perform all computations in polynomial time.However, why is 
this proof a zero-knowledge proof?



Why is the last Why is the last ““proofproof”” a a ““zerozero--knowledgeknowledge proofproof””??IV054 Why is the last Why is the last ““proofproof”” a a ““zerozero--knowledgeknowledge proofproof””??

Because  Vic gets convinced, by the overwhelming statistical evidence, that graphs 
G and G are isomorphic, but he does not get any information (“knowledge”) that 

IV054

G 1 and G 2 are isomorphic, but he does not get any information (“knowledge”) that 
would help him to create isomorphism between G 1 and G 2.

In each round of the proof Vic see isomorphism between H (a random isomorphic In each round of the proof Vic see isomorphism between H (a random isomorphic 
copy of G 1) and G 1 or G 2, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and 
therefore it seems very unlikely that this can help Vic to find an isomorphism therefore it seems very unlikely that this can help Vic to find an isomorphism 
between G 1 and G 2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G and G .• The graphs G 1 and G 2.

• All messages i transmitted during communications by Peggy and Vic.

• Random numbers r used by Peggy and Vic to generate their outputs.• Random numbers r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G 1, G 2); (H 1, i 1, r 1),…,(H n, i n, r n)).

The essential point, which is the basis for the formal definition of zero-knowledge The essential point, which is the basis for the formal definition of zero-knowledge 
proof, is that Vic can forge transcript, without participating in the interactive proof, 
that look like “real transcripts”, if graphs are isomorphic, by means of the following
forging algorithm called simulator.
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forging algorithm called simulator.



SIMULATORSIMULATORIV054 SIMULATORSIMULATORIV054

A simulator for the previous graph isomorphism protocol.

• T = (G 1, G 2),• T = (G 1, G 2),

• for j = 1 to n do

- Chose randomly ii ∈ {1,2}.i

- Chose ρi to be a random permutation of {1,…,n }.

- Compute Hi to be the image of G iJ under ρJ;

- Concatenate (H , i , ρ ) at the end of T.- Concatenate (HJ, iJ, ρJ) at the end of T.
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CONSEQUENCES and FORMAL DEFINITIONCONSEQUENCES and FORMAL DEFINITIONIV054 CONSEQUENCES and FORMAL DEFINITIONCONSEQUENCES and FORMAL DEFINITION

The fact that a simulator can forge transcripts has several important consequences.

IV054

• Anything Vic can compute using the information obtained from the transcript can be 

computed using only a forged transcript and therefore participation in such a 

communication does not increase Vic capability  to perform any computation.

• Participation in such a proof does not allow Vic to prove isomorphism of G 1 and G 2.

• Vic cannot convince someone else that G 1 and G 2 are isomorphic by showing the 

transcript because it is indistinguishable from a forged one.transcript because it is indistinguishable from a forged one.

Formal definition what does it mean that a forged transcript “looks like'' a real one:

Definition Suppose that we have an interactive proof system for a decision problem ΠDefinition Suppose that we have an interactive proof system for a decision problem Π
and a polynomial time simulator S.

Denote by Γ(x) the set of all possible transcripts that could be produced during the 

interactive proof communication for a yes-instance x.interactive proof communication for a yes-instance x.

Denote F(x) the set of all possible forged transcripts produced by the simulator  S.

For any transcript T ∈ Γ(x), let p Γ (T) denote the probability that T is the transcript 

produced during the interactive proof. Similarly, for T ∈ F(x), let p (T) denote the 
Γ 

produced during the interactive proof. Similarly, for T ∈ F(x), let p F(T) denote the 

probability that T is the  transcript produced by S.

Γ(x) = F(x) and, for any T ∈ Γ(x), p Γ (T) = p F(T) , then we say that the interactive proof
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Γ(x) = F(x) and, for any T ∈ Γ(x), p Γ (T) = p F(T) , then we say that the interactive proof

system is a zero-knowledge proof system.



Proof for graph isomorphism protocolProof for graph isomorphism protocolIV054 Proof for graph isomorphism protocolProof for graph isomorphism protocol

TheoremTheorem The interactive proof system for Graph isomorphism is a perfect zero-

IV054

TheoremTheorem The interactive proof system for Graph isomorphism is a perfect zero-

knowledge proof if Vic follows protocol.

ProofProof Let G 1 and G 2 be isomorphic. A transcript (real or forged) contains triplets 

(H , i , ρ ).(HJ, iJ, ρJ).

The set R of such triplets contains 2n! elements (because each pair i, ρ uniquely 

determines H and there are n! permutation ρ.determines H and there are n! permutation ρ.

In each round of the simulator each triplet occurs with the same probability, that is 

all triplets have probability ( ) .!2

1
n

n

Let us now try to determine probability that a triplet (H, i, ρ) occurs at a j-th round of 

the interactive proof.

( )!2n

i is clearly chosen with the same probability. Concerning ρ this is either randomly 

chosen permutation π or a composition π with a fixed permutation. Hence all triplets 

(H, i, ρ) have the same probability ( ) .!2

1
n

n
(H, i, ρ) have the same probability

The next question is whether the above graph isomorphism protocol is zero-

knowledge also if Vic does not follow fully the  protocol.

( ) .!2
n

n
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The case Vic does not follow protocolThe case Vic does not follow protocolIV054 The case Vic does not follow protocolThe case Vic does not follow protocol

It is usually much more difficult to show that an interactive proof system is 
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It is usually much more difficult to show that an interactive proof system is 

zero-knowledge even if Vic does not follow the protocol.

In the case of graph isomorphism protocol the only way Vic can deviate from 

the protocol is that i he does not choose in a completely random way.

The way around this difficulty is to prove that, no matter how a “cheating” Vic 

deviates from the protocol, there exists a polynomial-time simulator that will deviates from the protocol, there exists a polynomial-time simulator that will 

produce forged transcripts that “look like” the transcript T of the communication 

produced by Peggy and (the cheating) Vic during the interactive proof.

As before, the term “looks like'' is formalized by requiring that two probability 

distributions are the same.

DefinitionDefinition Suppose that we have an interactive proof system for a decision 

problem Π.

Let V* be any polynomial time probabilistic algorithm that a (possibly cheating) 

Verifier uses to generate his challenges.
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The case Vic does not follow protocolThe case Vic does not follow protocolIV054 The case Vic does not follow protocolThe case Vic does not follow protocol

Denote  by Γ(V*, x) the set of all possible transcripts that could be produced as 

IV054

Denote  by Γ(V*, x) the set of all possible transcripts that could be produced as 

a result of Peggy and  V* carrying out the interactive proof with a yes-instance 

x of Π.

Suppose that for every such V* there exists an expected polynomial time 

probabilistic algorithm S* = S*(V*) (the simulator) which will produce a forged 

transcript.transcript.

Denote by F(V*, x) the set of possible forged transcripts.

∈ ΓFor any transcript T ∈ Γ(V*, x), let p Γ,V*(T) denote the probability that T is the 

transcript produced by V* taking part in the interactive proof.

Similarly, for T ∈ F(x), let p (T) denote the probability that T is the (forged) Similarly, for T ∈ F(x), let p F,V* (T) denote the probability that T is the (forged) 

transcript produced by S*.

If Γ(V*, x) = F(V*, x) and for any T ∈ Γ(V*, x), p (T) = p (T), then the If Γ(V*, x) = F(V*, x) and for any T ∈ Γ(V*, x), p F,V* (T) = p Γ,V*(T), then the 

interactive proof system is said to be a perfect zero-knowledge protocol.
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ADDITIONSADDITIONSIV054 ADDITIONSADDITIONSIV054

• It can be proved that the graph isomorphism protocol is zero-knowledge even 

in the case Vic cheats.

• If, in an interactive proof system, the probability distributions specified by the 

protocols with Vic and with simulator are the same, then we speak about

perfect zeroperfect zero--knowledge proofknowledge proof systemsystem.perfect zeroperfect zero--knowledge proofknowledge proof systemsystem.

• If, in an interactive proof system, the probability distributions specified by the 

protocols with Vic and with simulator are computationally indistinguishable in protocols with Vic and with simulator are computationally indistinguishable in 

polynomial time , then we speak about computationally zerocomputationally zero--knowledge proofknowledge proof

systemsystem.
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