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Quantum cryptography has a potential to be cryptography 
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Quantum cryptography has a potential to be cryptography 
of 21st century.

An important new feature of quantum cryptography is that 
security of quantum cryptographic protocols  is based on security of quantum cryptographic protocols  is based on 
the laws of nature – of quantum physics, and not on the 
unproven assumptions of computational complexity .unproven assumptions of computational complexity .

Quantum cryptography is the first area of information Quantum cryptography is the first area of information 
processing and communication in which quantum particle 
physics laws are directly exploited to bring an essential physics laws are directly exploited to bring an essential 
advantage in information processing.
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MAIN OUTCOMES MAIN OUTCOMES –– so farso farIV054 MAIN OUTCOMES MAIN OUTCOMES –– so farso far

♦ It has been shown that would we have quantum computer, we 
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♦ It has been shown that would we have quantum computer, we 
could design absolutely secure quantum generation of shared and 
secret random classical keys.

•• It has been proven that even without quantum computers 
unconditionally secure quantum generation of classical secret and  
shared keys is possible (in the sense that any eavesdropping is shared keys is possible (in the sense that any eavesdropping is 
detectable).

• Unconditionally secure basic quantum cryptographic primitives, • Unconditionally secure basic quantum cryptographic primitives, 
such as bit commitment and oblivious transfer, are impossible.

♦ Quantum zero-knowledge proofs exist for all NP-complete 
languageslanguages

♦ Quantum teleportation and  pseudo-telepathy are possible.

• Quantum cryptography and quantum networks are  already in • Quantum cryptography and quantum networks are  already in 
advanced experimental stage.
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BASICS of QUANTUM INFORMATION PROCESSINGBASICS of QUANTUM INFORMATION PROCESSING

As an introduction to quantum cryptography As an introduction to quantum cryptography 

the very basic motivations, experiments, 
principles, concepts and results of quantum principles, concepts and results of quantum 
information processing and communication 

will be presented in the next few slideswill be presented in the next few slides.
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BASIC MOTIVATIONBASIC MOTIVATION

In quantum information processing we witness an In quantum information processing we witness an 
interaction between the two most important areas 
of science and technology of 20-th century, of science and technology of 20-th century, 
between

quantum physics and informatics.quantum physics and informatics.

This is very likely to have important consequences 
for 21th century.for 21th century.
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QUANTUM  PHYSICSQUANTUM  PHYSICS

Quantum physics deals with fundamental entities of physics –Quantum physics deals with fundamental entities of physics –
particles (waves?) like

• protons, electrons and neutrons (from which matter is built);

• photons (which carry electromagnetic radiation)

• various “elementary particles” which mediate other interactions in 
physics.physics.

•We call them particles in spite of the fact that some of their properties 
are totally unlike the properties of what we call particles in our ordinary are totally unlike the properties of what we call particles in our ordinary 
classical world.

For example, a quantum particle can go through two places at the For example, a quantum particle can go through two places at the 
same time and can interact with itself.

Because of that quantum physics is full of counterintuitive, weird, 

mysterious and even paradoxical events.
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FEYNMAN’s VIEWFEYNMAN’s VIEW

I am going to tell you what Nature behaves like…..I am going to tell you what Nature behaves like…..

However, do not keep saying to yourself, if you can possibly avoid it,

BUT HOW CAN IT BE LIKE THAT?BUT HOW CAN IT BE LIKE THAT?

Because you will get ``down the drain’’ into a blind alley from which nobody has yet Because you will get ``down the drain’’ into a blind alley from which nobody has yet 
escaped

NOBODY KNOWS HOW IT CAN BE LIKE THAT

Richard Feynman (1965): The character of physical law.
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CLASSICAL versus QUANTUM INFORMATIONCLASSICAL versus QUANTUM INFORMATION

Main properties of classical information:Main properties of classical information:

1. It is easy to store, transmit and process classical information in time 1. It is easy to store, transmit and process classical information in time 
and space.

2. It is easy to make (unlimited number of) copies of classical 
informationinformation

3. One can measure classical information without disturbing it.

Main properties of quantum information:

1. It is difficult to store, transmit and process quantum information

2. There is no way to copy unknown quantum information2. There is no way to copy unknown quantum information

3. Measurement of quantum information destroys it, in general.
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Classical versus quantum computingClassical versus quantum computingIV054 Classical versus quantum computingClassical versus quantum computing

The essense of the difference between

classical computers and quantum computers

IV054

classical computers and quantum computers

is in the way information is stored and processed.

In classical computers, information is represented on macroscopic level by 
bits, which can take one of the two values

0 or 1

In quantum computers, information is represented on microscopic level usingIn quantum computers, information is represented on microscopic level using
qubits, (quantum bits) which can take on any from the following uncountable 
many values

α | 0 〉 + β | 1 〉

where α, β are arbitrary complex numbers such that

| α | 2 + | β | 2 = 1.
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CLASIICAL versus QUANTUM REGISTERSCLASIICAL versus QUANTUM REGISTERS

An n bit classical register can store at any moment exactly An n bit classical register can store at any moment exactly 
one n-bit string.

An n-qubit quantum register can store at any moment a 
superposition of all 2n n-bit strings.superposition of all 2n n-bit strings.

Consequently, on a quantum computer one can compute 
in a single step with 2n  values.

This enormous massive parallelism is one reason why This enormous massive parallelism is one reason why 
quantum computing can be so powerful.

Quantum cryptography 9



CLASSICAL EXPERIMENTSCLASSICAL EXPERIMENTSIV054 CLASSICAL EXPERIMENTSCLASSICAL EXPERIMENTSIV054

Figure 1: Experiment with bullets Figure 2: Experiments with wavesFigure 1: Experiment with bullets Figure 2: Experiments with waves
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QUANTUM EXPERIMENTSQUANTUM EXPERIMENTSIV054 QUANTUM EXPERIMENTSQUANTUM EXPERIMENTSIV054

Figure 3: Two-slit experiment Figure 4: Two-slit experiment with an observationFigure 3: Two-slit experiment Figure 4: Two-slit experiment with an observation
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THREE BASIC PRINCIPLESTHREE BASIC PRINCIPLESIV054 THREE BASIC PRINCIPLESTHREE BASIC PRINCIPLES

P1P1 To each transfer from a quantum state φ to a state ψ a complex number
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P1P1 To each transfer from a quantum state φ to a state ψ a complex number

〈 ψ | φ 〉
is associated. This number is called the probability amplitude of the transfer and

|〈 ψ | φ 〉||〈 ψ | φ 〉| 2

is then the probability of the transfer.

P2P2 If a transfer from a quantum state φ to a quantum state ψ can be decomposed 
into two subsequent transfers

ψ ← φ′ ← φψ ← φ′ ← φ
then the resulting amplitude of the transfer is the product of amplitudes of 

subtransfers: 〈 ψ | φ 〉 = 〈 ψ | φ′ 〉 〈 φ′ | φ 〉

P3P3 If a  transfer from a state φ to a state ψ has two independent alternatives

ψ ϕ
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then the resulting amplitude is the sum of amplitudes of two subtransfers.



QUANTUM SYSTEMS = HILBERT SPACEQUANTUM SYSTEMS = HILBERT SPACEIV054 QUANTUM SYSTEMS = HILBERT SPACEQUANTUM SYSTEMS = HILBERT SPACE

Hilbert space Hn is n-dimensional complex vector space with
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Hilbert space Hn is n-dimensional complex vector space with

scalar product

11 ψφ
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BRABRA--KET NOTATIONKET NOTATIONIV054 BRABRA--KET NOTATIONKET NOTATION

Dirack introduced a very handy notation, so called bra-ket notation, to 
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Dirack introduced a very handy notation, so called bra-ket notation, to 
deal with amplitudes, quantum states and linear functionals f: H → C.

If ψ, φ ∈ H, thenIf ψ, φ ∈ H, then

〈ψ|φ〉 - scalar product of ψ and φ
(an amplitude of going from φ to ψ).

|φ〉 - ket-vector (a column vector) - an equivalent to φ|φ〉 - ket-vector (a column vector) - an equivalent to φ

〈ψ| - bra-vector (a row vector) a linear functional on H

such that 〈ψ|(|φ〉) = 〈ψ|φ〉such that 〈ψ|(|φ〉) = 〈ψ|φ〉

14Quantum cryptography



QUANTUM  EVOLUTION / COMPUTATIONQUANTUM  EVOLUTION / COMPUTATIONIV054 QUANTUM  EVOLUTION / COMPUTATIONQUANTUM  EVOLUTION / COMPUTATION

EVOLUTION COMPUTATION

in in
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in in

QUANTUM SYSTEM HILBERT SPACE

is described by

SchrSchröödinger linear equationdinger linear equationSchrSchröödinger linear equationdinger linear equation

>Φ=
∂

>Φ∂
)(|)(

)(|
ttH

t

t
ih

where h is Planck constant, H(t) is a Hamiltonian (total energy)  of the system that can 
be represented by a Hermitian matrix and Φ(t) is the state of the system in time t. 

If the Hamiltonian is time independent then the above Shrödinger equation has solution 

∂ t

If the Hamiltonian is time independent then the above Shrödinger equation has solution 

where  
>Φ>=Φ )0(|)()(| tUt

is the evolution operator that can be represented by a unitary matrix. A step of such an
evolution is therefore  a multiplication of a unitary matrix A with a vector |ψ〉, i.e. A |ψ〉

hiHtetU /)( =

A matrix A is unitary if

A · A* = A* · A = I
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PAULI MATRICESPAULI MATRICES

Very important one-qubit unary operators are the following Pauli operators, 

PAULI MATRICESPAULI MATRICES

Very important one-qubit unary operators are the following Pauli operators, 
expressed in the standard basis as follows;
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Observe that Pauli matrices transform a qubit state                                    as 
follows

1|0|| βαφ +=

1|0|)1|0|( αββασ +=+x

1|0|)1|0|( βαβασ −=+z

Operators              and        represent therefore a bit error, a sign error and a 

1|0|)1|0|( βαβασ −=+z

1|0|)1|0|( αββασ −=+y

zx σσ , yσOperators              and        represent therefore a bit error, a sign error and a 
bit-sign error.

zx σσ , yσ
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QUANTUM (PROJECTION) MEASUREMENTSQUANTUM (PROJECTION) MEASUREMENTSIV054 QUANTUM (PROJECTION) MEASUREMENTSQUANTUM (PROJECTION) MEASUREMENTS

A quantum state is always observed (measured) with respect to an observable O - a 
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A quantum state is always observed (measured) with respect to an observable O - a 
decomposition of a given Hilbert space into orthogonal subspaces (where each vector can be 
uniquely represented as a sum of vectors of these subspaces).

There are two outcomes of a projection measurement of a state |φ〉 with respect to O:

1. Classical information into which subspace projection of |φ〉 was made.

2. Resulting quantum projection (as a new state) |φ′〉 in one of the above subspaces.2. Resulting quantum projection (as a new state) |φ′〉 in one of the above subspaces.

The subspace into which projection is made is chosen randomly and the corresponding 
probability is uniquely determined by the amplitudes at the representation of |φ〉 as a sum of 
states of the subspaces.
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QUANTUM STATES and PROJECTION MEASUREMENTQUANTUM STATES and PROJECTION MEASUREMENT

In case an orthonormal basis              is chosen in Ηn, any state 

QUANTUM STATES and PROJECTION MEASUREMENTQUANTUM STATES and PROJECTION MEASUREMENT

n

ii 1}{ =β nH∈φ|In case an orthonormal basis              is chosen in Ηn, any state 

can be expressed in the form
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are called probability amplitudes

and 
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and 

their squares provide probabilities

that if the state        is measured with respect to the basis            , then the 
state      collapses into the state         with probability         .

φ| n

ii 1}{ =β
φ| β| 2|| astate      collapses into the state         with probability         .

The classical “outcome” of a measurement of the state        with respect to 

ii 1=
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φ|The classical “outcome” of a measurement of the state        with respect to 
the basis             is the index i of that state            into which the state      
collapses.

φ|
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QUBITSQUBITSIV054 QUBITSQUBITS

A qubit is a quantum state in H2

IV054

|φ〉 = α|0〉 + β|1〉

where α, β ∈ C are such that |α|2 + |β|2 = 1 and

{ |0〉, |1〉 } is a (standard) basis of H{ |0〉, |1〉 } is a (standard) basis of H2

EXAMPLE:EXAMPLE: Representation of qubits by

(a) electron in a Hydrogen atom(a) electron in a Hydrogen atom

(b) a spin-1/2 particle

Figure 5: Qubit representations by energy levels of an electron in a hydrogen atom and by  a spin-1/2 
particle. The condition |α|2 + |β|2 = 1 is a legal one if |α|2 and |β|2 are to be the probabilities of being in one of 
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particle. The condition |α|2 + |β|2 = 1 is a legal one if |α|2 and |β|2 are to be the probabilities of being in one of 
two basis states (of electrons or photons).



HILBERT SPACE HILBERT SPACE HH22IV054 HILBERT SPACE HILBERT SPACE HH22

STANDARD BASIS DUAL BASIS

|0〉, |1〉 |0’〉, |1’〉

IV054

|0〉, |1〉 |0’〉, |1’〉
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transforms one of the basis into another one.transforms one of the basis into another one.

General form of a unitary matrix of degree 2General form of a unitary matrix of degree 2General form of a unitary matrix of degree 2General form of a unitary matrix of degree 2
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QUANTUM MEASUREMENTQUANTUM MEASUREMENTIV054 QUANTUM MEASUREMENTQUANTUM MEASUREMENT

of a qubit state
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A qubit state can “contain” unboundly large amount of classical information. 
However, an unknown  quantum state cannot be identified.

By a measurement of the qubit stateBy a measurement of the qubit state

α|0〉 + β|1〉
with respect to the basis {|0〉, |1〉}
we can obtain only classical information and only in the following random way:

0   with probability   |α|2 1   with probability   |β|2
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MIXED STATES MIXED STATES –– DENSITY MATRICESDENSITY MATRICES

A probability distribution                              on pure states is called a mixed 

MIXED STATES MIXED STATES –– DENSITY MATRICESDENSITY MATRICES

k

iiip 1)}|,{( =φA probability distribution                              on pure states is called a mixed 
state to which it is assigned a density operator
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One interpretation of a mixed state                                is that a source X 
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ii

i
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iiip 1)}|,{( =φOne interpretation of a mixed state                                is that a source X 
produces the state          with probability pi .

iiip 1)}|,{( =φ
iφ|

Any matrix representing a density operator is called density matrix.

Density matrices are exactly Hermitian, positive matrices with trace 1.Density matrices are exactly Hermitian, positive matrices with trace 1.

To two different mixed states can correspond the same density matrix.To two different mixed states can correspond the same density matrix.

Two mixes states with the same density matrix are physically undistinguishable.  
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Two mixes states with the same density matrix are physically undistinguishable.  



MAXIMALLY MIXED STATESMAXIMALLY MIXED STATES

To the maximally mixed state

MAXIMALLY MIXED STATESMAXIMALLY MIXED STATES

To the maximally mixed state
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Surprisingly, many other mixed states have density matrix that is the same as Surprisingly, many other mixed states have density matrix that is the same as 
that of the maximally mixed state.
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QUANTUM ONEQUANTUM ONE--TIME PAD CRYPTOSYSTEMTIME PAD CRYPTOSYSTEM

CLASSICAL ONE-TIME PAD cryptosystem

plaintext:        an n-bit string c

QUANTUM ONEQUANTUM ONE--TIME PAD CRYPTOSYSTEMTIME PAD CRYPTOSYSTEM

plaintext:        an n-bit string c

shared key:    an n-bit string c

cryptotext:      an n-bit string ccryptotext:      an n-bit string c

encoding: 

decoding: kcp ⊕=
kpc ⊕=

QUANTUM ONE-TIME PAD cryptosystem 

plaintext:        an n-qubit string 
nppp |...|| 1=

shared key:    two n-bit strings k,k’

cryptotext:      an n-qubit string 

encoding: 
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UNCONDITIONAL SECURITY of QUANTUM ONEUNCONDITIONAL SECURITY of QUANTUM ONE--TIME PADTIME PAD

In the case of encryption of a qubit 

UNCONDITIONAL SECURITY of QUANTUM ONEUNCONDITIONAL SECURITY of QUANTUM ONE--TIME PADTIME PAD

In the case of encryption of a qubit 

1|0|| βαφ +=

by QUANTUM ONE-TIME PAD cryptosystem, what is being transmitted is the 
mixed state
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SHANNON’s THEOREMSSHANNON’s THEOREMS

Shannon classical encryption theorem says that n bits are 

SHANNON’s THEOREMSSHANNON’s THEOREMS

Shannon classical encryption theorem says that n bits are 
necessary and sufficient to encrypt securely n bits.

Quantum version of Shannon encryption theorem says that 
2n classical bits are necessary and sufficient to encrypt 2n classical bits are necessary and sufficient to encrypt 
securely n qubits.
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COMPOSED QUANTUM SYSTEMS (1)COMPOSED QUANTUM SYSTEMS (1)

Tensor product of vectors

COMPOSED QUANTUM SYSTEMS (1)COMPOSED QUANTUM SYSTEMS (1)

Tensor product of vectors

Tensor product of matrices
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COMPOSED QUANTUM SYSTEMS (2)COMPOSED QUANTUM SYSTEMS (2)

Tensor product of Hilbert spaces                    is the complex vector space 
spanned by tensor products of vectors from H and H . That corresponds to 

COMPOSED QUANTUM SYSTEMS (2)COMPOSED QUANTUM SYSTEMS (2)

21 HH ⊗Tensor product of Hilbert spaces                    is the complex vector space 
spanned by tensor products of vectors from H1 and H2 . That corresponds to 
the quantum system composed of the quantum systems corresponding to 
Hilbert spaces H1 and H2.

21 HH ⊗

An important difference between classical and quantum systems

A state of a compound classical (quantum) system can be (cannot be) always 
composed from the states of the subsystem.
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QUANTUM REGISTERSQUANTUM REGISTERSIV054 QUANTUM REGISTERSQUANTUM REGISTERS

A general state of a 2-qubit register is:
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A general state of a 2-qubit register is:

|φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉
where

|α00〉 2 + |α01〉 2 + |α10〉 2 + |α11〉 2 = 1

and |00〉, |01〉, |10〉, |11〉 are vectors of the “standard” basis of H4, i.e.
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An important unitary matrix of degree 4, to transform states of 2-qubit registers:





















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









 1

0

0

1

0

0

0

0

An important unitary matrix of degree 4, to transform states of 2-qubit registers:











==
0010

0001

XORCNOT

It holds:











==

1000

0100

0010
XORCNOT
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CNOT : |x, y〉 ⇒ |x, x ⊕ y〉



QUANTUM MEASUREMENTQUANTUM MEASUREMENTIV054 QUANTUM MEASUREMENTQUANTUM MEASUREMENT

of the  states of 2-qubit registers
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|φ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

1. Measurement with respect to the basis { |00〉, |01〉, |10〉, |11〉 }
RESULTS:RESULTS:

|00> and 00 with probability   |α00|
2

|01> and 01 with probability   |α01|
2|01> and 01 with probability   |α01|
2

|10> and 10   with probability   |α10|
2

|11> and 11 with probability   |α11|
2

2. Measurement of particular qubits:

By measuring the first qubit we get

0 with probability  |α00|
2 + |α01|

2

and |φ〉 is reduced to the vector
22

0100 0100

αα

αα

+

+
and |φ〉 is reduced to the vector

1 with probability |α10|
2 + |α11|

2

and |φ〉 is reduced to the vector

2

01

2

00 αα +

1110 1110 αα +
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and |φ〉 is reduced to the vector
2

11

2

10

1110 1110

αα

αα

+
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NONO--CLONING THEOREMCLONING THEOREMIV054 NONO--CLONING THEOREMCLONING THEOREM

INFORMAL VERSION: Unknown quantum state cannot be cloned.
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INFORMAL VERSION: Unknown quantum state cannot be cloned.

FORMAL VERSION: There is no unitary transformation U such that for any qubit 
state |ψ〉state |ψ〉

U (|ψ〉|0〉) = |ψ〉|ψ〉

PROOF: Assume U exists and for two different states |α〉 and |β〉PROOF: Assume U exists and for two different states |α〉 and |β〉

U (|α〉|0〉) = |α〉|α〉 U (|β〉|0〉) = |β〉|β〉
LetLet

Then

( )βαγ +=
2

1

Then

However, CNOT can make copies of basis states |0〉, |1〉:

( ) ( ) ( )αββαββααγγββααγ +++=≠+=
2

1

2

1
0U

However, CNOT can make copies of basis states |0〉, |1〉:

CNOT (|x〉|0〉) = |x〉|x〉
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States
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States

( ) ( )1100
2

1
        ,1100

2

1 −=Φ+=Φ −+

( ) ( )1001
2

1
        ,1001

2

1 −=Ψ+=Ψ −+

form an orthogonal (Bell) basis in H4 and play an important role in 
quantum computing.

Theoretically, there is an observable for this basis. However, no one 
has been able to construct a measuring device for Bell  measurement has been able to construct a measuring device for Bell  measurement 
using linear elements only.
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QUANTUM nQUANTUM n--qubit REGISTERqubit REGISTERIV054 QUANTUM nQUANTUM n--qubit REGISTERqubit REGISTER

A general state of an n-qubit register has the form:
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A general state of an n-qubit register has the form:

and |φ〉 is a vector in H .

{ }
1      where,
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and |φ〉 is a vector in H2^n.

Operators on n-qubits registers are unitary matrices of degree 2n.

Is it difficult to create a state of an n-qubit register?Is it difficult to create a state of an n-qubit register?

In general yes, in some important special cases not.  For example, if  n-qubit Hadamard Hadamard 
transformationtransformation

.1HH n

in =⊗=
transformationtransformation

is used then

1in =

( ) ( ) ∑∑
−n 12 11

and, in general, for x ∈ {0,1}n
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and, in general, for x ∈ {0,1}

( )
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QUANTUM PARALLELISMQUANTUM PARALLELISMIV054 QUANTUM PARALLELISMQUANTUM PARALLELISM

If
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If

f : {0, 1,…,2n -1} ⇒ {0, 1,…,2n -1}

then the mapping

f ‘ :(x, 0) ⇒ (x, f(x))f ‘ :(x, 0) ⇒ (x, f(x))

is one-to-one and therefore there is a unitary transformation Uf such that.

〉 〉 ⇒ 〉 〉Uf (|x〉|0〉) ⇒ |x〉|f(x)〉

Let us have the state 

∑
−

=
12

0
1

n

iψ

With a single applicationsingle application of the mapping Uf we then get

∑
=

=
0

0
2 i
n

iψ

( )∑
−121

n

OBSERVE THAT IN A SINGLE COMPUTATIONAL STEP 2OBSERVE THAT IN A SINGLE COMPUTATIONAL STEP 2nn VALUES VALUES 

( )∑
−

=

=
12

02

1
n

i
n

f ifiU ψ

OBSERVE THAT IN A SINGLE COMPUTATIONAL STEP 2OBSERVE THAT IN A SINGLE COMPUTATIONAL STEP 2nn VALUES VALUES 
OF OF ff ARE COMPUTED!ARE COMPUTED!
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IN WHAT LIES POWER OF QUANTUM COMPUTING?IN WHAT LIES POWER OF QUANTUM COMPUTING?IV054 IN WHAT LIES POWER OF QUANTUM COMPUTING?IN WHAT LIES POWER OF QUANTUM COMPUTING?

In quantum superposition or in quantum parallelism?

IV054

In quantum superposition or in quantum parallelism?

NOT,

in QUANTUM ENTANGLEMENT!in QUANTUM ENTANGLEMENT!

Let

be a state of two very distant particles, for example on two planets

( )1100
2

1 +=ψ

be a state of two very distant particles, for example on two planets

Measurement of one of the particles, with respect to the standard basis, makes  
the above state to collapse to one of the states

|00>  or  |11>. 

This means that subsequent measurement of other particle (on another planet) 
provides the same result as the measurement of the first particle. This indicate provides the same result as the measurement of the first particle. This indicate 
that in quantum world non-local influences, correlations, exist.
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POWER of ENTANGLEMENTPOWER of ENTANGLEMENT

Quantum state |Ψ> of a composed bipartite quantum system A ⊗ B is Quantum state |Ψ> of a composed bipartite quantum system A ⊗ B is 
called entangled if it cannot be decomposed into tensor product of 
the states from A and B.

Quantum entanglement is an important quantum resource that allows

• To create phenomena that are impossible in the classical world (for 
example teleportation)

To create quantum algorithms that are asymptotically more efficient • To create quantum algorithms that are asymptotically more efficient 
than any classical algorithm known for the same problem.

• To create communication protocols that are asymptotically more • To create communication protocols that are asymptotically more 
efficient than classical communication protocols for the same task

• To create, for two parties, shared secret binary keys

• To increase capacity of quantum channels
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CLASSICAL versus QUANTUM CRYPTOGRAPHYCLASSICAL versus QUANTUM CRYPTOGRAPHYIV054 CLASSICAL versus QUANTUM CRYPTOGRAPHYCLASSICAL versus QUANTUM CRYPTOGRAPHY

• Security of classical cryptography is based on unproven assumptions 
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• Security of classical cryptography is based on unproven assumptions 
of computational complexity (and it can be jeopardize by progress in 
algorithms and/or technology).

Security of quantum cryptography is based on laws of quantum 
physics that allow to build systems where undetectable eavesdropping 
is impossible.is impossible.

• Since classical cryptography is volnurable to technological • Since classical cryptography is volnurable to technological 
improvements it has to be designed in such a way that a secret is 
secure with respect to future technology, during the whole period in 
which the secrecy is required.which the secrecy is required.

Quantum key generation, on the other hand, needs to be designed 
only to be secure against technology available at the moment of key only to be secure against technology available at the moment of key 
generation.
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QUANTUM KEY GENERATIONQUANTUM KEY GENERATIONIV054 QUANTUM KEY GENERATIONQUANTUM KEY GENERATION

Quantum protocols for using quantum systems to achieve unconditionally 
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Quantum protocols for using quantum systems to achieve unconditionally 
secure generation of secret (classical) keys by two parties are one of the main 
theoretical achievements of quantum information processing and 
communication research.communication research.

Moreover, experimental systems for implementing such protocols are one of 
the main achievements of experimental quantum information processing the main achievements of experimental quantum information processing 
research.

It is believed and hoped that it will beIt is believed and hoped that it will be

quantum key generation (QKG)

another  term isanother  term is

quantum key distribution (QKD)

where one can expect the firstwhere one can expect the first

transfer from the experimental to the development stage.

38Quantum cryptography



QUANTUM KEY GENERATION QUANTUM KEY GENERATION -- EPR METHODEPR METHODIV054 QUANTUM KEY GENERATION QUANTUM KEY GENERATION -- EPR METHODEPR METHOD

Let Alice and Bob share n pairs of particles in the entangled EPR-state. 

IV054

Let Alice and Bob share n pairs of particles in the entangled EPR-state. 

( ). 1100
2

1 +
2

If both of them measure their particles in the standard basis, then they get, as  
the classical outcome of their measurements the same random, shared and the classical outcome of their measurements the same random, shared and 
secret binary key of length n.

39Quantum cryptography



POLARIZATION of PHOTONSPOLARIZATION of PHOTONSIV054 POLARIZATION of PHOTONSPOLARIZATION of PHOTONS

Polarized photons are currently  mainly used for experimental quantum key 
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Polarized photons are currently  mainly used for experimental quantum key 
generation. 

Photon, or light quantum, is a particle composing light and other forms of 
electromagnetic radiation.electromagnetic radiation.

Photons are electromagnetic waves and their electric and magnetic fields are 
perpendicular to the direction of propagation and also to each other.perpendicular to the direction of propagation and also to each other.

An important property of photons is polarization - it refers to the bias of the electric 
field in the electromagnetic field of the photon.

Figure 6: Electric and magnetic fields of a linearly polarized photon
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POLARIZATION of PHOTONSPOLARIZATION of PHOTONSIV054 POLARIZATION of PHOTONSPOLARIZATION of PHOTONSIV054

Figure 6: Electric and magnetic fields of a linearly polarized photon

If the electric field vector is always parallel to a fixed line we have linear If the electric field vector is always parallel to a fixed line we have linear 
polarization (see Figure).
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POLARIZATION of PHOTONSPOLARIZATION of PHOTONSIV054 POLARIZATION of PHOTONSPOLARIZATION of PHOTONS

There is no way to determine exactly polarization of a single photon.

IV054

There is no way to determine exactly polarization of a single photon.

However, for any angle θ there are θ-polarizers – “filters” - that  produce θ-
polarized photons from an incoming stream of photons and they let θ1-polarized 
photons to get through with  probability  cos2(θ - θ ).photons to get through with  probability  cos2(θ - θ1).

Figure 6: Photon polarizers and measuring devices-80%

Photons whose electronic fields oscillate in a plane at either 0O or 90O to some Photons whose electronic fields oscillate in a plane at either 0 or 90 to some 
reference line are called usually rectilinearly polarized and those whose electric 
field oscillates in a plane at 45O or 135O as diagonally polarized. Polarizers that 
produce only vertically or horizontally polarized photons are depicted in  Figure   6 
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produce only vertically or horizontally polarized photons are depicted in  Figure   6 
a, b.



POLARIZATION of PHOTONSPOLARIZATION of PHOTONSIV054 POLARIZATION of PHOTONSPOLARIZATION of PHOTONS

Generation of orthogonally polarized photons.
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Generation of orthogonally polarized photons.

Figure 6: Photon polarizers and measuring devices-80%Figure 6: Photon polarizers and measuring devices-80%

For any two orthogonal polarizations there are generators that produce photons of 
two given orthogonal polarizations. For example, a calcite crystal, properly two given orthogonal polarizations. For example, a calcite crystal, properly 
oriented, can do the job.

Fig. c - a calcite crystal that makes θ-polarized photons to be horizontally 
(vertically) polarized  with probability cos2 θ (sin2 θ).(vertically) polarized  with probability cos2 θ (sin2 θ).

Fig. d - a calcite crystal can be used to separate horizontally and vertically 
polarized photons.
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QUANTUM KEY GENERATION QUANTUM KEY GENERATION -- PROLOGUEPROLOGUEIV054 QUANTUM KEY GENERATION QUANTUM KEY GENERATION -- PROLOGUEPROLOGUEIV054

Very basic settingVery basic setting Alice tries to send a quantum system to Bob and an 
eavesdropper tries to learn, or to change, as much as possible, without being 
detected.detected.

Eavesdroppers have this time especially hard time, because quantum states 
cannot be copied and cannot be measured without causing, in general, a 
disturbance.

Key problem:Key problem: Alice prepares a quantum system in a specific way, unknown to the 
eavesdropper, Eve, and sends it to Bob.eavesdropper, Eve, and sends it to Bob.

The question is how much information can Eve extract of that quantum system 
and how much it costs in terms of the disturbance of the system.

Three special casesThree special cases

1. Eve has no information about the state |ψ〉 Alice sends.1. Eve has no information about the state |ψ〉 Alice sends.

2. Eve knows that |ψ〉 is one of the states of an orthonormal basis {|φi〉}n
i=1.

3. Eve knows that |ψ〉 is one of the states |φ 〉,…, |φ 〉 that are not mutually 
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3. Eve knows that |ψ〉 is one of the states |φ1〉,…, |φn〉 that are not mutually 
orthonormal and that pi is the probability that |ψ〉 = |φi〉.



TRANSMISSION ERRORSTRANSMISSION ERRORSIV054 TRANSMISSION ERRORSTRANSMISSION ERRORS

If Alice sends randomly chosen bit
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If Alice sends randomly chosen bit

0 encoded randomly as |0〉 or |0'〉

or

〉 〉1 encoded as randomly as |1〉 or $|1'〉

and Bob measures the encoded bit by choosing randomly the standard or the dual 
basis, then the probability of error is ¼=2/8basis, then the probability of error is ¼=2/8

If Eve measures the encoded bit, sent by Alice, according to the randomly chosen 
basis, standard or dual, then she can learn the bit sent with the probability 75% .basis, standard or dual, then she can learn the bit sent with the probability 75% .

If she then sends the state obtained after the measurement to Bob and he
measures it with respect to the standard or dual basis, randomly chosen, then the measures it with respect to the standard or dual basis, randomly chosen, then the 
probability of error for his measurement is 3/8 - a 50% increase with respect to the 
case there was no eavesdropping.

Indeed the error is

8

3

4

3

2

1

4

1

2

1

2
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2
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
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BB84 QUANTUM KEY GENERATION PROTOCOLBB84 QUANTUM KEY GENERATION PROTOCOLIV054 BB84 QUANTUM KEY GENERATION PROTOCOLBB84 QUANTUM KEY GENERATION PROTOCOL

Quantum key generation protocol BB84 (due to Bennett and Brassard), for 
generation of a key of length n, has several phases:

IV054

generation of a key of length n, has several phases:

Preparation phasePreparation phase

Alice is assumed to have four transmitters of photons in one of the following four 
polarizations 0, 45, 90 and 135 degrees

Figure 8: Polarizations of photons for BB84 and B92 protocols

Expressed in a more general form, Alice uses for encoding states from the set   Expressed in a more general form, Alice uses for encoding states from the set   
{|0〉, |1〉,|0'〉, |1'〉}.

Bob has a  detector that can be set up to distinguish  between rectilinear 
polarizations (0 and  90 degrees) or  can be quickly reset to distinguish between 
diagonal polarizations (45 and 135 degrees).
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BB84 QUANTUM KEY GENERATION PROTOCOLBB84 QUANTUM KEY GENERATION PROTOCOLIV054 BB84 QUANTUM KEY GENERATION PROTOCOLBB84 QUANTUM KEY GENERATION PROTOCOL

(In accordance with  the laws of quantum physics, there is no detector that could 
distinguish between unorthogonal polarizations.)
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distinguish between unorthogonal polarizations.)

(In a more formal setting, Bob can measure the incomming photons either in the 
standard basis B = {|0〉,|1〉} or in the dual basis D = {|0'〉, |1'〉}.standard basis B = {|0〉,|1〉} or in the dual basis D = {|0'〉, |1'〉}.

To send a bit 0 (1) of her first random sequence through a quantum channel Alice 
chooses, on the basis of her second random sequence, one of the encodings |0〉 or 
|0'〉 (|1〉 or |1'〉), i.e., in the standard or dual basis,|0'〉 (|1〉 or |1'〉), i.e., in the standard or dual basis,

Bob chooses, each time on the base of his private random sequence, one  of the 
bases B or D to measure the photon he is to receive and he records the results of 
his measurements and keeps them secret.his measurements and keeps them secret.

Alice’s Bob’s Alice’s state The result Correctness

encodings observables relative to Bob and its probability

0 → |0〉 0 → B |0〉 0 (prob. 1) correct0 → |0〉 0 → B |0〉 0 (prob. 1) correct

1 → D 1/sqrt2 (|0'〉 + |1'〉) 0/1 (prob. ½) random

0 → |0'〉 0 → B 1/sqrt2 (|0〉 + |1〉) 0/1 (prob. ½) random

1 → D |0'〉 0 (prob. 1) correct

1 → |1〉 0 → B |1〉 1 (prob. 1) correct

Figure 9: Quantum cryptography with BB84 protocol

1 → D 1/sqrt2 (|0'〉 − |1'〉) 0/1 (prob. ½) random

1 → |1'〉 0 → B 1/sqrt2 (|0〉 − |1〉) 0/1 (prob. ½) random

1 → D |1'〉 1 (prob. 1) correct
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Figure 9: Quantum cryptography with BB84 protocol

Figure 9 shows the possible results of the measurements and their probabilities.



BB84 QUANTUM KEY GENERATION PROTOCOLBB84 QUANTUM KEY GENERATION PROTOCOLIV054 BB84 QUANTUM KEY GENERATION PROTOCOLBB84 QUANTUM KEY GENERATION PROTOCOL

An example of an encoding - decoding process is in the Figure 10.
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An example of an encoding - decoding process is in the Figure 10.

Raw key extractionRaw key extraction

Bob makes public the sequence of bases he used to measure the   photons he Bob makes public the sequence of bases he used to measure the   photons he 
received - but  not the results of the measurements - and Alice tells Bob, through a 
classical channel, in which cases he has chosen the same basis for  measurement 
as she did for encoding. The corresponding bits then form the basic raw key.as she did for encoding. The corresponding bits then form the basic raw key.

1 0 0 0 1 1 0 0 0 1 1 Alice’s random sequence

|1〉 |0'〉 |0〉 |0'〉 |1〉 |1'〉 |0'〉 |0〉 |0〉 |1〉 |1'〉 Alice’s polarizations

0 1 1 1 0 0 1 0 0 1 0 Bob’s random sequence

Figure 10: Quantum transmissions in the BB84 protocol - R stands for the case  that the result of the measurement is 

B D D D B B D B B D B Bob’s observable

1 0 R 0 1 R 0 0 0 R R outcomes

random.
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Test for eavesdroppingTest for eavesdropping

Alice and Bob agree on a sequence of indices of the raw key and make the 
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Alice and Bob agree on a sequence of indices of the raw key and make the 
corresponding bits of their raw keys public.

Case 1. Noiseless channel. If the subsequences chosen by Alice and Bob are not 
completely identical eavesdropping is detected. Otherwise, the remaining bits are completely identical eavesdropping is detected. Otherwise, the remaining bits are 
taken as creating the final key.

Case 2. Noisy channel. If the subsequences chosen by Alice and Bob contains Case 2. Noisy channel. If the subsequences chosen by Alice and Bob contains 
more errors than the admitable error of the channel (that has to be determined from 
channel characteristics), then eavesdropping is assumed. Otherwise, the remaining 
bits are taken as the next result of the raw key generation process.

Error correction phaseError correction phase

In the case of a noisy channel for transmission it may  happen that Alice and Bob 
have different raw keys after the key generation phase.have different raw keys after the key generation phase.

A way out is to use qa special error correction techniques and at the end of this 
stage both Alice and Bob  share identical keys.stage both Alice and Bob  share identical keys.
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Privacy amplification phasePrivacy amplification phase
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Privacy amplification phasePrivacy amplification phase

One problem remains. Eve can still have quite a bit of information about the key 
both Alice and Bob share. Privacy amplification is a tool to deal with such a case.both Alice and Bob share. Privacy amplification is a tool to deal with such a case.

Privacy amplification is a method how  to select a short and very secret binary 
string s from a longer but less secret string s'. The  main idea  is simple. If |s| = n, string s from a longer but less secret string s'. The  main idea  is simple. If |s| = n, 
then one picks up n random subsets S1,…, Sn of bits of s' and let si, the i-th bit of S,  
be the parity of Si. One way to do it is to take a random binary matrix of size 
|s| × |s'| and to perform multiplication Ms'T, where s'T is the binary column vector |s| × |s'| and to perform multiplication Ms' , where s' is the binary column vector 
corresponding to s'.

The point is that even in the case where an eavesdropper knows quite a few bits of The point is that even in the case where an eavesdropper knows quite a few bits of 
s', she will have almost no information about s.

More exactly, if Eve knows  parity bits of k subsets of s', then if a random subset of 
bits of s' is chosen, then the probability that Eve has any information about its bits of s' is chosen, then the probability that Eve has any information about its 
parity bit is less than 2 - (n - k - 1) / ln 2.
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SuccessesSuccesses
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SuccessesSuccesses

1. Transmissions using optical fibers to the distance of 120 km.

2. Open air transmissions to the distance 144 km at day time (from 2. Open air transmissions to the distance 144 km at day time (from 
one pick of Canary Islands to another).

3. Next goal: earth to satellite transmissions.3. Next goal: earth to satellite transmissions.

All current systems use optical means for quantum state transmissionsAll current systems use optical means for quantum state transmissions

Problems and tasksProblems and tasksProblems and tasksProblems and tasks

1. No single photon sources are available. Weak laser pulses currently 
used contains in average 0.1 - 0.2 photons.used contains in average 0.1 - 0.2 photons.

2. Loss of signals in the fiber. (Current error rates: 0,5 - 4%)

3. To move from the experimental to the developmental stage.
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QUANTUM TELEPORTATIONQUANTUM TELEPORTATIONIV054 QUANTUM TELEPORTATIONQUANTUM TELEPORTATION

Quantum teleportation allows to transmit unknown quantum information to a very 
distant place in spite of impossibility to measure or to broadcast information to be 
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distant place in spite of impossibility to measure or to broadcast information to be 
transmitted.

Total state
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Total state

Measurement of the first two qubits is done with respect to the “Bell basis”:
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Measurement of the first two qubits is done with respect to the “Bell basis”:
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Total state of three particles:
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Total state of three particles:

can be expressed as follows:
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and therefore Bell measurement of the first two particles projects the state of Bob's 
particle into a “small modification” |ψ1〉 of the state  |ψ〉 =  α|0〉 + β|1〉, 

( ) ( )10
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1
                             αββα +−Ψ+−Φ+ −−

|Ψ1> = either  |Ψ>   or   σx|Ψ>   or   σz|Ψ>   or  σxσz|ψ>

The unknown state |ψ〉 can therefore be obtained from |ψ1〉 by applying one of the The unknown state |ψ〉 can therefore be obtained from |ψ1〉 by applying one of the 
four operations

σx, σy, σz, I

and the result of the Bell measurement provides two bits specifying whichand the result of the Bell measurement provides two bits specifying which

of the above four operations should be applied.

These four bits Alice needs to send to Bob using a classical channel (by email, for 
example).
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QUANTUM TELEPORTATION IIQUANTUM TELEPORTATION IIIV054 QUANTUM TELEPORTATION IIQUANTUM TELEPORTATION II

If the first two particles of the state

IV054

( ) ( )11
If the first two particles of the state

( ) ( )

( ) ( )10
1

10
1

                             

10
2

1
10

2

1
 

αββα

αββαψ

+−Ψ+−Φ+

+Ψ++Φ=−

−−

++pairEPR

are measured with respect to the Bell basis then Bob's particle gets into the mixed 
state
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to which corresponds the density matrix
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to which corresponds the density matrix

The resulting density matrix is identical to the density matrix for the mixed state
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The resulting density matrix is identical to the density matrix for the mixed state
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Indeed, the density matrix for the last mixed state  has the form
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• Alice can be seen as dividing information contained in |ψ〉 into

IV054

• Alice can be seen as dividing information contained in |ψ〉 into

quantum information - transmitted through EPR channel

classical information - transmitted through a classical cahnnel

• In a quantum teleportation an unknown quantum state |φ〉 can be disambled into, 
and later reconstructed from, two classical bit-states and an maximally entangled 
pure quantum state.pure quantum state.

• Using quantum teleportation an unknown quantum state can be teleported from 
one place to another by a sender who does not need to know - for teleportation one place to another by a sender who does not need to know - for teleportation 
itself - neither the state to be teleported nor the location of the intended receiver.

• The teleportation procedure can not be used to transmit information faster than 
lightlight

but

it can be argued that quantum information presented in unknown state is it can be argued that quantum information presented in unknown state is 
transmitted  instanteneously (except two random bits to be transmitted at the speed 
of light at most).

• EPR channel is irreversibly destroyed during the teleportation process.
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DARPA NetworkDARPA Network

•In Cambridge connecting Harward, Boston Uni, and BBN Technology (10,19 
and 29 km).

DARPA NetworkDARPA Network

and 29 km).

•Currently 6 nodes, in near future 10 nodes.•Currently 6 nodes, in near future 10 nodes.

•Continuously operating since March 2004Continuously operating since March 2004

•Three technologies: lasers through optic fibers, entanglement through fiber 
and free-space QKD (in future two versions of it).and free-space QKD (in future two versions of it).

•Implementation of BB84 with authentication, sifting error correction and •Implementation of BB84 with authentication, sifting error correction and 
privacy amplification.

One 2x2 switch to make sender-receiver connections•One 2x2 switch to make sender-receiver connections

•Capability to overcome several limitations of stand-alone QKD systems.
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WHY IS QUANTUM INFORMATION PROCESSING SO IMPORTANTWHY IS QUANTUM INFORMATION PROCESSING SO IMPORTANT

•QIPC is believed to lead to new Quantum Information Processing 
Technology that could have broad impacts.

WHY IS QUANTUM INFORMATION PROCESSING SO IMPORTANTWHY IS QUANTUM INFORMATION PROCESSING SO IMPORTANT

Technology that could have broad impacts.

• Several areas of science and technology are approaching such points 
in their development where they badly need expertise with storing, in their development where they badly need expertise with storing, 
transmision and processing of particles.

•It is increasingly believed that new, quantum information processing •It is increasingly believed that new, quantum information processing 
based, understanding of (complex) quantum phenomena and systems 
can be developed.

•Quantum cryptography seems to offer new level of security and be 
soon feasible.

•QIPC has been shown to be more efficient in interesting/important •QIPC has been shown to be more efficient in interesting/important 
cases.
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UNIVERSAL SETS of QUANTUM GATESUNIVERSAL SETS of QUANTUM GATES

The main task at quantum computation is to express solution of a given 

UNIVERSAL SETS of QUANTUM GATESUNIVERSAL SETS of QUANTUM GATES

The main task at quantum computation is to express solution of a given 
problem P as a unitary matrix U and then to construct a circuit CU with 
elementary quantum gates from a universal sets of quantum gates to realize 
U.U.

A simple universal set of quantum gates consists of gates.
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FUNDAMENTAL RESULTSFUNDAMENTAL RESULTS

The first really satisfactory results, concerning universality of gates, have been 

FUNDAMENTAL RESULTSFUNDAMENTAL RESULTS

The first really satisfactory results, concerning universality of gates, have been 
due ti Barenco et al. (1995)

Theorem 0.1 CNOT gate and all one-qubit gates from a universal set of gates.

The proof is in principle a simple modification of the RQ-decomposition from 
linear algebra. Theorem 0.1 can be easily improved:linear algebra. Theorem 0.1 can be easily improved:

Theorem 0.2 CNOT gate and elementary rotation gates

for( ) αα σθθθ
2

sin
2

cos iIR −= { }zyx ,,∈α

form a universal set of gates.

22
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QUANTUM ALGORITHMSQUANTUM ALGORITHMS

Quantum algorithms are methods of using quantum circuits and processors to 

QUANTUM ALGORITHMSQUANTUM ALGORITHMS

Quantum algorithms are methods of using quantum circuits and processors to 
solve algorithmic problems.

On a more technical level, a design of a quantum algorithm can be seen as a 
process of an efficient decomposition of a complex unitary transformation into 
products of elementary unitary operations (or gates), performing simple local products of elementary unitary operations (or gates), performing simple local 
changes.

The four main features of quantum mechanics that are exploited in quantum The four main features of quantum mechanics that are exploited in quantum 
computation:

•Superposition;

•Interference;

Entanglement;•Entanglement;

•Measurement.
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EXAMPLES of QUANTUM ALGORITHMSEXAMPLES of QUANTUM ALGORITHMS

Deutsch problem: Given is a black-box function  f: {0,1}     {0,1},    how many →Deutsch problem: Given is a black-box function  f: {0,1}     {0,1},    how many 
queries are needed to find out whether f is constant or balanced:

Classically: 2

Quantumly: 1Quantumly: 1

Deutsch-Jozsa Problem: Given is a black-box function                             and a 
promise that f is  either constant or balanced, how many querries are needed to 

}1,0{}1,0{: →nf
promise that f is  either constant or balanced, how many querries are needed to 
find out whether f is constant or balanced.

Classically: nClassically: n

Quantumly  1

Factorization of integers: all classical algorithms are exponential.  Factorization of integers: all classical algorithms are exponential.  

Peter Shor developed polynomial time quantum algorithm

Search of an element in an unordered database of n elements:

Clasically n queries are needed in the worst case

Lov Grover showen  that quantumly       queries are enough n
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