3 Distance in Graphs

While the previous lecture studied just the connectivity properties of a graph, now we are going to investigate how "long" (short, actually) a connection in a graph is.
This naturally leads to the concept of graph distance, which has two variants: the simple one considering only the number of edges, while the weighted one having a "length" for each edge.

Brief outline of this lecture

- Distance in a graph, basic properties, triangle inequality.
- Graph metrics: all-pairs shortest distances.
- Dijkstra's algorithm for the shortest weighted distance in a graph.
- Route planning: a sketch of some advanced ideas.

3.1 Graph distance (unweighted)

Recall that a walk of length n in a graph G is an alternating sequence of vertices and edges $v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{n}, v_{n}$ such that each e_{i} has the ends v_{i-1}, v_{i}.

Definition 3.1. Distance $d_{G}(u, v)$ between two vertices u, v of a graph G is defined as the length of the shortest walk between u and v in G. If there is now walk between u, v, then we declare $d_{G}(u, v)=\infty$.

Informally and naturally, the distance between u, v equals the least possible number of edges traversed from u to v. Specially $d_{G}(u, u)=0$.
Recall, moreover, that the shortest walk is always a path - Theorem 2.2.

Fact: The distance in an undirected graph is symmetric, i.e. $d_{G}(u, v)=d_{G}(v, u)$.
Lemma 3.2. The graph distance satisfies the triangle inequality:

$$
\forall u, v, w \in V(G): \quad d_{G}(u, v)+d_{G}(v, w) \geq d_{G}(u, w) .
$$

Proof. Easily; starting with a walk of length $d_{G}(u, v)$ from u to v, and appending a walk of length $d_{G}(v, w)$ from v to w, results in a walk of length $d_{G}(u, v)+d_{G}(v, w)$ from u to w. This is an upper bound on the real distance from u to w.

How to find the distance

Theorem 3.3. Let u, v, w be vertices of a connected graph G such that $d_{G}(u, v)<d_{G}(u, w)$. Then the breadth-first search algorithm on G, starting from u, finds the vertex v before w.

Proof. We apply induction on the distance $d_{G}(u, v)$: If $d_{G}(u, v)=0$, i.e. $u=v$, then it is trivial that v is found first. So let $d_{G}(u, v)=d>0$ and v^{\prime} be a neighbour of v closer to u, which means $d_{G}\left(u, v^{\prime}\right)=d-1$. Analogously choose w^{\prime} a neighbour of w closer to u. Then

$$
d_{G}\left(u, w^{\prime}\right) \geq d_{G}(u, w)-1>d_{G}(u, v)-1=d_{G}\left(u, v^{\prime}\right),
$$

and so v^{\prime} has been found before w^{\prime} by the inductive assumption. Hence v^{\prime} has been stored into U before w^{\prime}, and (cf. FIFO) the neighbours of $v^{\prime}(v$ among them, but not w) are found before the neighbours of w^{\prime} (such as w).

Corollary 3.4. The breadth-first search algorithm on G correctly determines graph distances from the starting vertex.

Other related terms

Definition. Let G be a graph. We define, with respect to G, the following notions:

- The excentricity of a vertex $\operatorname{exc}(v)$ is the largest distance from v to another vertex; $\operatorname{exc}(v)=\max _{x \in V(G)} d_{G}(v, x)$.
- The diameter $\operatorname{diam}(G)$ of G is the largest excentricity over its vertices, and the radius $\operatorname{rad}(G)$ of G is the smallest excentricity over its vertices.
- The center of G is the subset $U \subseteq V(G)$ of vertices such that their excentricity equals $\operatorname{rad}(G)$.

3.2 All-pairs shortest distances

Definition: The metrics of a graph is the collection of distances between all pairs of its vertices. In other words, the metrics is a matrix $d[$,$] such that d[i, j]$ is the distance from i to j.

Method 3.5. Dynamic programming for all-pairs distances in a graph G on the vertex set $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{N-1}\right\}$.

- Initially, let $\mathrm{d}[\mathrm{i}, \mathrm{j}]$ be 1 (alternatively, the edge length of $\left\{v_{i}, v_{j}\right\}$), or ∞ if v_{i}, v_{j} are not adjacent.
- After step $t \geq 0$ let it hold that $\mathrm{d}[\mathrm{i}, \mathrm{j}]$ is the shortest length of a walk between v_{i}, v_{j} such that its internal vert. are from $\left\{v_{0}, v_{1}, \ldots, v_{t-1}\right\}$ (empty for $t=0$).
- Moving from step t to $t+1$, we update all the distances as:
- Either $\mathrm{d}[i, j]$ from the previous step is still optimal (the vertex v_{t} does not help to obtain a shorter walk from v_{i} to v_{j}), or
- there is a shorter v_{i} to v_{j} walk using (also) the vertex v_{t} which is, by the assumption at step t, of length $d[i, t]+d[t, j] \rightarrow d[i, j]$.

Theorem 3.6. Method 3.5 correctly computes the distance $d[i, j]$ between each pair of vertices v_{i}, v_{j} in $N=|V(G)|$ steps.

Remark: In a practical implementation we may use, say, MAX_INT/2 in place of ∞.

```
Algorithm 3.7. Floyd-Warshall algorithm (cf. 3.5)
input < the adjacency matrix G[,] of an N-vertex graph,
    such that the vertices of G are indexed as 0...N-1,
    and G[i,j]=1 if i,j adjacent and G[i,j]=0 otherwise;
for (i=0; i<N; i++) for (j=0; j<N; j++)
    d[i,j] = (i==j?0: (G[i,j]? 1: MAX_INT/2));
for (t=0; t<N; t++) {
    for (i=0; i<N; i++) for (j=0; j<N; j++)
        d[i,j] = min(d[i,j], d[i,t]+d[t,j]);
}
return 'The distance matrix d[,]';
```

Notice that this Algorithm 3.7 is extremely simple and relatively fast -it needs about N^{3} steps to get the whole distance matrix.
Its only problem is that all-pairs distances must be computed at the same time, even if we need to know just one distance...

3.3 Weighted distance in graphs

Definition: A weighted graph is a graph G together with a weighting w of the edges by real numbers $w: E(G) \rightarrow \boldsymbol{R}$ (edge lengths in this case).
A positively weighted graph G, w is such that $w(e)>0$ for all edges e.
Definition 3.8. (Weighted distance) Consider a positively weighted graph G, w. The length of the weighted walk $S=v_{0}, e_{1}, v_{1}, e_{2}, v_{2}, \ldots, e_{n}, v_{n}$ in G is the sum

$$
d_{G}^{w}(S)=w\left(e_{1}\right)+w\left(e_{2}\right)+\cdots+w\left(e_{n}\right) .
$$

The weighted distance in G, w between a pair of vertices u, v is

$$
d_{G}^{w}(u, v)=\min \left\{d_{G}^{w}(S): S \text { is a walk from } u \text { to } v\right\} .
$$

All these terms naturally extend from graphs to directed graphs.
Analogously to Section 3.1 we get:
Fact: The shortest walk in a positively weighted (di)graph is always a path.
Lemma 3.9. The weighted distance in a positively weighted (di)graph satisfies the triangle inequality.

See an example...

The distances between $a-c$ and between $b-c$ are 3. What about the $a-b$ distance? Is it 6 ? No, the distance from a to b in the graph is 5 (traverse the "upper path").

Negative edge-lengths?
What is the reason we are avoiding negative edge lengths?

Hence, what is the $x-y$ distance this graph? Say, 3 or 1 ?
No, it is $-\infty$, precisely by Definition 3.8, and this answer does not sound nice...
Hence we have got a good reason not to consider negative edges in general.

3.4 Single-source shortest paths problem

This section deals with the more specific problem of finding the shortest distance between one pair of terminals in a graph (or, from a single source to all other vertices).

Remark: The coming Dijkstra's algorithm is, on one hand, slightly more involved than Algorithm 3.7, but it is significantly faster in the computation of single-source shortest distances, on the other hand.

Dijkstra's algorithm:

- Is a variant of graph searching (related to BFS), in which every discovered vertex carries a variable keeping its temporary distance - the length of the shortest so far discovered walk reaching this vertex from the starting vertex.
- We always pick from the depository the vertex with the shortest temporary distance. This is because no shorter walk may reach this vertex (assuming nonnegative edge lengths).
- At the end of processing, the temporary distances become final shortest distances from the starting vertex (cf. Theorem 3.12).

Algorithm 3.10. Computing the single-source shortest paths (Dijkstra),

 i.e. finding the shortest walk from u to v, or from u to all other vertices. input < N-vertex graph given by adjacency mat. G[,] and cor. lengths len [,]; input $<\mathrm{u}, \mathrm{v}$, where u is the starting vertex and v the destination;// state[i] records the vertex processing state, dist [i] is the temporary distance for (i=0; i<N; i++) \{ dist[i] = MAX_INT; state[i] = 'init'; \} dist $[\mathrm{u}]=0$; depository $\mathrm{D}=\{\mathrm{u}\}$; while (state[v]!='processed') \{
if ($D==(\emptyset)$ return ' No path';
select $\mathrm{m} \in \mathrm{D}$ with minimal dist [m];
// now updating all neighbours of m and their temporary distances
for ($\mathrm{i}=0$; $\mathrm{i}<\mathrm{N}$; i++) if ($\mathrm{G}[\mathrm{m}, \mathrm{i}]$) \{ $D=D \cup\{i\} ;$
if (dist[m]+len[m,i]<dist[i]) \{
income[i] $=m$;
dist[i] = dist[m]+len[m,i];
\}
\}
state $[\mathrm{m}]=$ 'processed'; $\mathrm{D}=\mathrm{D} \backslash\{\mathrm{m}\}$;
\}
return ' A u-v path of length dist [v], stored in incm [] reversely';

Remark: Notice that Algorithm 3.10 works as-is also in directed graphs.

Example 3.11. An illustration run of Dijkstra's Algorithm 3.10 from u to v in the following graph.

Fact: The number of steps performed by Algorithm 3.10 to find the shortest path from u to v is about N^{2} when N is the number of vertices (not so good...).
On the other hand, with a better implementation of the depository, one can achieve on sparse graphs runtime almost linear in the number of edges.

Theorem 3.12. Every iteration of Algorithm 3.10 (since just after finishing the first while() loop) maintains an invariant that

- dist [i] is the length of a shortest path from u to i using only those internal vertices x of state $[\mathrm{x}]==$ 'processed'.

Proof: Briefly using mathematical induction:

- In the first iteration, the first vertex $m=u$ is picked and processed, and its neighbours receive the correct straight distances (edge lengths).
- In every next iteration, the picked vertex m is the nearest unprocessed one to the starting vertex u. Assuming nonnegative costs len [,], this certifies that no shorter walk from u to m may exist in the graph.
On the other hand, any improved path from u to an unfinished vertex i passing through m has $m i$ as the last edge (since the distance of m is not smaller than of the other finished vertices). Hence dist [i] is updated correctly in the algorithm.

3.5 Advanced route planning

In some situations, there is a better alternative to ordinary Dijkstra's algorithm — the Algorithm A^{*} which uses a suitable potential function to direct the search "towards the destination". Whenever we have a good "sense of direction" (e.g. in a topo-map navigation), A^{*} can perform much better!

Algorithm A^{*}

- It re-implements Dijkstra with suitably modified edge costs.
- Let $p_{v}(x)$ be a potential function giving an arbitrary lower bound on the distance from x to the destination v. E.g., in a map navigation, $p_{v}(x)$ may be the Euclidean distance from x to v.
- Each directed(!) edge $x y$ of the weighted graph G, w gets a new cost

$$
w^{\prime}(x y)=w(x y)+p_{v}(y)-p_{v}(x)
$$

The potential p_{v} is admissible when all $w^{\prime}(x y) \geq 0$, i.e. $w(x y) \geq p_{v}(x)-p_{v}(y)$. The above Euclidean potential is always admissible.

- The modified length of any $u-v$ walk S then is $d_{G}^{w^{\prime}}(S)=d_{G}^{w}(S)+p_{v}(v)-p_{v}(u)$, which is a constant difference from $d_{G}^{w}(S)$! Hence some S is optimal for the weighting w iff S is optimal for w^{\prime}.
Here the Euclidean potential "strongly prefers" edges in the dest. direction.

