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Outline

Testing applications
 Why do we test applications?
 How do we test applications?

Testing Java EE applications
 Problems
 Useful tools
 Testing Java EE the JBoss way
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Why do we test applications?

 Developers tend to see their application often as a 
perfect piece of code
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Why do we test applications?

 But often...
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Why do we test applications?

 Last fix was a two-liner... 



Testing Java EE applications | Karel Piwko6

Why do we test applications?

 Ensure the software contains the least bugs possible
 Verification vs. validation

 complies with specifications and conditions specified in a 
development phase

 accomplishes expected requirements

 Sooner means cheaper
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How do we test applications?

 Test approach
 white box testing
 black box testing
 gray box testing

 Test type
 code analysis
 unit test
 integration test
 functional test
 system test 



Testing Java EE applications | Karel Piwko8

White box testing

 Tests internal structure of the application
 branching, control flow, data flow

 Usually unit level

 Drawback
 can't test code which is not written
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White box testing
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Black box testing

 Internal structure of the application not known or not 
required

 Specification and requirements are used to validate 
functional behavior

 Usually integration or functional level

 Drawback
 results can be influenced by state of the black-box 

component
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Black box testing

GET /index.jsp

black-box

<html>...

Does application 
welcome page
contain our logo?

yes /no
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Code analysis

 Code verification
 Static analysis

 type analysis, bug pattern searching
 Dynamic analysis

 code coverage
 debuggers, profilers

 Formal methods 
 based on mathematical theories
 full automation, soundness, completeness, termination
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Code coverage

 Determine how much of the code is tested
=> use the information to add test cases

 Tool: EMMA, Cobertura 
 branch, live, method, class, package coverage reports

 Unit versus integration tests
 generally the possible coverage result will decrease with test 

level  
 test coverage results can be misleading if we sum different 

levels
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Unit tests

 Tests individual units of source code in isolation
 enforces code style
 stubs and mock objects

 Usually created by programmers
 test driven development possible

 Can run in an IDE
 The granularity of unit matters
 It is difficult to cover all execution paths of the 

application
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Unit test granularity

We coupled two units together!
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Unit test granularity

 Solution
 Decouple contracts and its implementation (constructor)
 Provide better interface for Quest

We cannot easily find out what happened inside!
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Integration and functional tests

 Tests groups of verified units together
 Complex
 Cannot be easily run in an IDE

 Continuous integration testing
 run unit and integration tests after each modification
 version control system (SVN, Git, Hq, ...)
 automation of the process (Hudson)

=> feature and nightly builds
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System tests

 Compliance of the system to its specified requirements
 Smoke tests

 Verification of the system before performance tests
 Load tests

 Behavior under load
 Stress tests

 Behavior under load beyond usual expectations
 Soak tests

 Behavior with a long period of the time
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Testing Java EE applications

 Problems
 Java EE applications are complex, thus it is difficult to isolate 

components
 application server (JBoss AS, GlassFish, WebSphere, ...)
 communication (JMS, HornetQ, ...)
 UI (web based - JSF, JSP, RichFaces, ...)
 database layer (JPA, Hibernate, ...)
 ...

 Testing is highly time consuming, not enjoyable and hard to 
be done properly

=> Leads to even more stubbing, mocking and 
innovative approaches
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What do we need to test Java EE applications?

 Build tool
 Maven, Ant, Ivy, Gradle

 Test framework
 TestNG, JUnit

 Mock framework
 Mockito, jMock, JMockit, EasyMock

 UI testing frameworks
 Selenium, WebDriver, JSFUnit, Ajocado, HTMLUnit

... and lot of others
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Testing Java EE the JBoss way

 Goal
 make active mocks easier to use
 configure applications to use test data sources 
 deal with classpath isolation in container
 create/deploy application archive
 handle “too many frameworks involved” problem

=> give developers tools to make Java EE testing fun 
again
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ShrinkWrap

 Simple API to assemble 
archives like JARs, WARs and EARs
 allows building integration bits directly in the code
 keeps the isolation in test execution

 Used by Arquillian internally

http://community.jboss.org/wiki/Shrinkwrap
Skip the Build!

http://community.jboss.org/wiki/Shrinkwrap
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ShrinkWrap 

 How to build WAR in application?

 Many other ways how to include files in an Archive
 by package, class name, file, stream, zip
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ShrinkWrap extensions

 ShrinkWrap dependencies
 Resolves dependencies from Maven repositories
 Can reuse information in POM file to reduce verbosity



Testing Java EE applications | Karel Piwko25

Arquillian

 Brings you the way to write 
integration tests in a same way as you do for unit tests
 manages lifecycle of a container
 bundles and deploys test archive
 enriches test classes
 captures test results and

 Does not bind a build to the test, configuration is kept 
externally

Arquillian makes integration testing a breeze!
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Arquillian

 Can be used within multiple build tools, containers and 
test frameworks, specialized on EE testing

 Expendable via SPI interface
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Arquillian and @Inject (In-container testing)
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Arquillian and @EJB (In-container testing)
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Arquillian As-Client Testing (Out of container)
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Questions?

kpiwko@redhat.com | www.redhat.com
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