

Testing Java EE applications

Karel Piwko
JBoss WFK QA

November 2010

Testing Java EE applications | Karel Piwko2

Outline

Testing applications
 Why do we test applications?
 How do we test applications?

Testing Java EE applications
 Problems
 Useful tools
 Testing Java EE the JBoss way

Testing Java EE applications | Karel Piwko3

Why do we test applications?

 Developers tend to see their application often as a
perfect piece of code

Testing Java EE applications | Karel Piwko4

Why do we test applications?

 But often...

Testing Java EE applications | Karel Piwko5

Why do we test applications?

 Last fix was a two-liner...

Testing Java EE applications | Karel Piwko6

Why do we test applications?

 Ensure the software contains the least bugs possible
 Verification vs. validation

 complies with specifications and conditions specified in a
development phase

 accomplishes expected requirements

 Sooner means cheaper

Testing Java EE applications | Karel Piwko7

How do we test applications?

 Test approach
 white box testing
 black box testing
 gray box testing

 Test type
 code analysis
 unit test
 integration test
 functional test
 system test

Testing Java EE applications | Karel Piwko8

White box testing

 Tests internal structure of the application
 branching, control flow, data flow

 Usually unit level

 Drawback
 can't test code which is not written

Testing Java EE applications | Karel Piwko9

White box testing

Testing Java EE applications | Karel Piwko10

Black box testing

 Internal structure of the application not known or not
required

 Specification and requirements are used to validate
functional behavior

 Usually integration or functional level

 Drawback
 results can be influenced by state of the black-box

component

Testing Java EE applications | Karel Piwko11

Black box testing

GET /index.jsp

black-box

<html>...

Does application
welcome page
contain our logo?

yes /no

Testing Java EE applications | Karel Piwko12

Code analysis

 Code verification
 Static analysis

 type analysis, bug pattern searching
 Dynamic analysis

 code coverage
 debuggers, profilers

 Formal methods
 based on mathematical theories
 full automation, soundness, completeness, termination

Testing Java EE applications | Karel Piwko13

Code coverage

 Determine how much of the code is tested
=> use the information to add test cases

 Tool: EMMA, Cobertura
 branch, live, method, class, package coverage reports

 Unit versus integration tests
 generally the possible coverage result will decrease with test

level
 test coverage results can be misleading if we sum different

levels

Testing Java EE applications | Karel Piwko14

Unit tests

 Tests individual units of source code in isolation
 enforces code style
 stubs and mock objects

 Usually created by programmers
 test driven development possible

 Can run in an IDE
 The granularity of unit matters
 It is difficult to cover all execution paths of the

application

Testing Java EE applications | Karel Piwko15

Unit test granularity

We coupled two units together!

Testing Java EE applications | Karel Piwko16

Unit test granularity

 Solution
 Decouple contracts and its implementation (constructor)
 Provide better interface for Quest

We cannot easily find out what happened inside!

Testing Java EE applications | Karel Piwko17

Integration and functional tests

 Tests groups of verified units together
 Complex
 Cannot be easily run in an IDE

 Continuous integration testing
 run unit and integration tests after each modification
 version control system (SVN, Git, Hq, ...)
 automation of the process (Hudson)

=> feature and nightly builds

Testing Java EE applications | Karel Piwko18

System tests

 Compliance of the system to its specified requirements
 Smoke tests

 Verification of the system before performance tests
 Load tests

 Behavior under load
 Stress tests

 Behavior under load beyond usual expectations
 Soak tests

 Behavior with a long period of the time

Testing Java EE applications | Karel Piwko19

Testing Java EE applications

 Problems
 Java EE applications are complex, thus it is difficult to isolate

components
 application server (JBoss AS, GlassFish, WebSphere, ...)
 communication (JMS, HornetQ, ...)
 UI (web based - JSF, JSP, RichFaces, ...)
 database layer (JPA, Hibernate, ...)
 ...

 Testing is highly time consuming, not enjoyable and hard to
be done properly

=> Leads to even more stubbing, mocking and
innovative approaches

Testing Java EE applications | Karel Piwko20

What do we need to test Java EE applications?

 Build tool
 Maven, Ant, Ivy, Gradle

 Test framework
 TestNG, JUnit

 Mock framework
 Mockito, jMock, JMockit, EasyMock

 UI testing frameworks
 Selenium, WebDriver, JSFUnit, Ajocado, HTMLUnit

... and lot of others

Testing Java EE applications | Karel Piwko21

Testing Java EE the JBoss way

 Goal
 make active mocks easier to use
 configure applications to use test data sources
 deal with classpath isolation in container
 create/deploy application archive
 handle “too many frameworks involved” problem

=> give developers tools to make Java EE testing fun
again

Testing Java EE applications | Karel Piwko22

ShrinkWrap

 Simple API to assemble
archives like JARs, WARs and EARs
 allows building integration bits directly in the code
 keeps the isolation in test execution

 Used by Arquillian internally

http://community.jboss.org/wiki/Shrinkwrap
Skip the Build!

http://community.jboss.org/wiki/Shrinkwrap

Testing Java EE applications | Karel Piwko23

ShrinkWrap

 How to build WAR in application?

 Many other ways how to include files in an Archive
 by package, class name, file, stream, zip

Testing Java EE applications | Karel Piwko24

ShrinkWrap extensions

 ShrinkWrap dependencies
 Resolves dependencies from Maven repositories
 Can reuse information in POM file to reduce verbosity

Testing Java EE applications | Karel Piwko25

Arquillian

 Brings you the way to write
integration tests in a same way as you do for unit tests
 manages lifecycle of a container
 bundles and deploys test archive
 enriches test classes
 captures test results and

 Does not bind a build to the test, configuration is kept
externally

Arquillian makes integration testing a breeze!

Testing Java EE applications | Karel Piwko26

Arquillian

 Can be used within multiple build tools, containers and
test frameworks, specialized on EE testing

 Expendable via SPI interface

Testing Java EE applications | Karel Piwko27

Arquillian and @Inject (In-container testing)

Testing Java EE applications | Karel Piwko28

Arquillian and @EJB (In-container testing)

Testing Java EE applications | Karel Piwko29

Arquillian As-Client Testing (Out of container)

Testing Java EE applications | Karel Piwko30

Questions?

kpiwko@redhat.com | www.redhat.com

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30

