

## **Relational Model**

#### Database System Concepts, 5<sup>th</sup> Ed.

©Silberschatz, Korth and Sudarshan See <u>www.db-book.com</u> for conditions on re-use





## **Chapter 2: Relational Model**

- Structure of Relational Databases
- Fundamental Relational-Algebra-Operations
- Additional Relational-Algebra-Operations
- Extended Relational-Algebra-Operations
- Modification of the Database





## **Example of a Relation**

| account_number | branch_name | balance |
|----------------|-------------|---------|
| A-101          | Downtown    | 500     |
| A-102          | Perryridge  | 400     |
| A-201          | Brighton    | 900     |
| A-215          | Mianus      | 700     |
| A-217          | Brighton    | 750     |
| A-222          | Redwood     | 700     |
| A-305          | Round Hill  | 350     |





#### **Basic Structure**

- Formally, given sets D<sub>1</sub>, D<sub>2</sub>, ..., D<sub>n</sub> a relation r is a subset of D<sub>1</sub> x D<sub>2</sub> x ... x D<sub>n</sub> Thus, a relation is a set of *n*-tuples (a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>) where each a<sub>i</sub> ∈ D<sub>i</sub>
- Example: If
  - customer\_name = {Jones, Smith, Curry, Lindsay, ...}

/\* Set of all customer names \*/

- *customer\_street* = {Main, North, Park, ...} /\* set of all street names\*/
- oustomer\_city = {Harrison, Rye, Pittsfield, ...} /\* set of all city names \*/
- Then  $r = \{$  (Jones, Main, Harrison),

(Smith, North, Rye),

(Curry, North, Rye),

(Lindsay, Park, Pittsfield) }

is a relation over

customer\_name x customer\_street x customer\_city





## **Attribute Types**

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be **atomic**; that is, indivisible
  - E.g. the value of an attribute can be an account number, but cannot be a set of account numbers
- Domain is said to be atomic if all its members are atomic
- The special value *null* is a member of every domain
- The null value causes complications in the definition of many operations
  - We shall ignore the effect of null values in our main presentation and consider their effect later





#### **Relation Schema**

- A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub> are attributes
- R = (A<sub>1</sub>, A<sub>2</sub>, ..., A<sub>n</sub>) is a *relation schema* Ordering of attributes is important!
   Example:
   *Customer\_schema* = (*customer\_name, customer\_street, customer\_city*)
- r(R) denotes a relation r on the relation schema R Example: customer (Customer\_schema)





#### **Relation Instance**

- The current values (*relation instance*) of a relation are specified by a table
- An element *t* of *r* is a *tuple*, represented by a *row* in a table







## **Relations are Unordered**

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: *account* relation with unordered tuples

| account_number | branch_name | balance |
|----------------|-------------|---------|
| A-101          | Downtown    | 500     |
| A-215          | Mianus      | 700     |
| A-102          | Perryridge  | 400     |
| A-305          | Round Hill  | 350     |
| A-201          | Brighton    | 900     |
| A-222          | Redwood     | 700     |
| A-217          | Brighton    | 750     |





#### Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information

account : stores information about accounts
 depositor : stores information about which customer owns which account
 customer : stores information about customers

- Storing all information as a single relation such as bank(account\_number, balance, customer\_name, ..) results in
  - repetition of information
    - e.g., if two customers own an account (What gets repeated?)
  - the need for null values
    - e.g., to represent a customer without an account
- Normalization theory (Chapter 7: Relational Database Design) deals with how to design relational schemas





## The customer Relation

| customer_name | customer_street | customer_city |
|---------------|-----------------|---------------|
| Adams         | Spring          | Pittsfield    |
| Brooks        | Senator         | Brooklyn      |
| Curry         | North           | Rye           |
| Glenn         | Sand Hill       | Woodside      |
| Green         | Walnut          | Stamford      |
| Hayes         | Main            | Harrison      |
| Johnson       | Alma            | Palo Alto     |
| Jones         | Main            | Harrison      |
| Lindsay       | Park            | Pittsfield    |
| Smith         | North           | Rye           |
| Turner        | Putnam          | Stamford      |
| Williams      | Nassau          | Princeton     |





#### The depositor Relation

| customer_name | account_number |
|---------------|----------------|
| Hayes         | A-102          |
| Johnson       | A-101          |
| Johnson       | A-201          |
| Jones         | A-217          |
| Lindsay       | A-222          |
| Smith         | A-215          |
| Turner        | A-305          |







#### • Let $K \subseteq R$

- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
  - by "possible r" we mean a relation r that could exist in the enterprise we are modeling.
  - Example: {customer\_name, customer\_street} and {customer\_name}

are both superkeys of *Customer*, if no two customers can possibly have the same name

In real life, an attribute such as *customer\_id* would be used instead of *customer\_name* to uniquely identify customers, but we omit it to keep our examples small, and instead assume customer names are unique.





# Keys (Cont.)

K is a candidate key if K is minimal

Example: {*customer\_name*} is a candidate key for *Customer*, since it is a superkey and no subset of it is a superkey.

- Primary key: a candidate key chosen as the principal means of identifying tuples within a relation
  - Should choose an attribute whose value never, or very rarely, changes.
  - E.g. email address is unique, but may change





## **Query Languages**

- Language in which user requests information from the database.
- Categories of languages
  - Procedural
  - Non-procedural, or declarative
- "Pure" languages:
  - Relational algebra
  - Tuple relational calculus
  - Domain relational calculus
- Pure languages form underlying basis of query languages that people use.





## **Relational Algebra**

- Procedural language
- Six basic operators
  - select: σ
  - project: ∏
  - union:  $\cup$
  - set difference: -
  - Cartesian product: ×
  - rename:  $\rho$
- The operators take one or two relations as inputs and produce a new relation as a result.





## **Select Operation – Example**

Relation *r* 

| A | В | С  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| α | β | 5  | 7  |
| β | β | 12 | 3  |
| β | β | 23 | 10 |

•  $\sigma_{A=B \land D > 5}(r)$ 

| Α | В | С  | D  |
|---|---|----|----|
| α | α | 1  | 7  |
| β | β | 23 | 10 |



Database System Concepts - 5<sup>th</sup> Edition, Oct 5, 2006



## **Select Operation**

- Notation:  $\sigma_p(r)$
- *p* is called the selection predicate
- Defined as:

 $\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$ 

where *p* is a formula in *propositional calculus*: formula := term term <conj> term ( term ) term := expr expr <op> expr ( expr ) expr := attribute constant <conj> is one of:  $\land$  (and),  $\lor$  (or),  $\neg$  (not) <op> is one of: =,  $\neq$ , >,  $\geq$ , <,  $\leq$ 

Example of selection:

 $\sigma_{\textit{branch_name='Perryridge'}}$  (account)





## **Project Operation – Example**

Relation *r*:

| A | В  | С |
|---|----|---|
| α | 10 | 1 |
| α | 20 | 1 |
| β | 30 | 1 |
| β | 40 | 2 |

$$\prod_{\mathrm{A,C}} (r)$$





## **Project Operation**

Notation:

 $\prod_{A_1,A_2,\ldots,A_k}(r)$ 

where  $A_1$ ,  $A_2$  are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the branch\_name attribute of account

 $\Pi_{account\_number, \ balance}$  (account)





#### **Union Operation – Example**

Relations r, s:



r



■ r ∪ s:





Database System Concepts - 5<sup>th</sup> Edition, Oct 5, 2006



## **Union Operation**

- Notation:  $r \cup s$
- Defined as:

 $r \cup s = \{t \mid t \in r \text{ or } t \in s\}$ 

- For  $r \cup s$  to be valid.
  - 1. *r*, *s* must have the *same* **arity** (same number of attributes)
  - The attribute domains must be compatible (example: 2<sup>nd</sup> column of *r* deals with the same type of values as does the 2<sup>nd</sup> column of *s*)
- Example: to find all customers with either an account or a loan  $\Pi_{customer\_name}$  (*depositor*)  $\cup \Pi_{customer\_name}$  (*borrower*)





## **Set Difference Operation – Example**

Relations *r*, *s*:





■ r - s:

| A | В |
|---|---|
| α | 1 |
| β | 1 |



Database System Concepts - 5th Edition, Oct 5, 2006



## **Set Difference Operation**

Notation *r* – *s* 

Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
  - r and s must have the same arity
  - attribute domains of *r* and *s* must be compatible





## **Cartesian-Product Operation – Example**

Relations *r, s*:



| 5 | С       | D  | Ε |
|---|---------|----|---|
|   | α       | 10 | а |
|   | $\beta$ | 10 | а |
|   | β       | 20 | b |
|   | γ       | 10 | b |

r xs

| Α | В | С | D  | E |
|---|---|---|----|---|
| α | 1 | α | 10 | а |
| α | 1 | β | 10 | а |
| α | 1 | β | 20 | b |
| α | 1 | γ | 10 | b |
| β | 2 | α | 10 | а |
| β | 2 | β | 10 | а |
| β | 2 | β | 20 | b |
| β | 2 | γ | 10 | b |





## **Cartesian-Product Operation**

- Notation r ×s
- Defined as:

 $r \times s = \{ tq \mid t \in r \text{ and } q \in s \}$ 

where tq means the concatenation of tuples t and q to produce a single tuple.

- Assume that attributes of r(R) and s(S) are disjoint. (That is,  $R \cap S = \emptyset$ ).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.





## **Composition of Operations**

- Can build expressions using multiple operations
- Example:  $\sigma_{A=C}(r \times s)$
- r xs

$$\begin{array}{|c|c|c|c|c|c|c|} \hline A & B & C & D & E \\ \hline \alpha & 1 & \alpha & 10 & a \\ \hline \alpha & 1 & \beta & 10 & a \\ \hline \alpha & 1 & \beta & 20 & b \\ \hline \alpha & 1 & \gamma & 10 & b \\ \hline \beta & 2 & \alpha & 10 & a \\ \hline \beta & 2 & \beta & 10 & a \\ \hline \beta & 2 & \beta & 20 & b \\ \hline \beta & 2 & \gamma & 10 & b \\ \end{array}$$





•  $\sigma_{A=C}(r \times s)$ 

| A       | В | С       | D  | E |
|---------|---|---------|----|---|
| α       | 1 | α       | 10 | а |
| $\beta$ | 2 | $\beta$ | 10 | а |
| $\beta$ | 2 | $\beta$ | 20 | b |





#### **Rename Operation**

- Allows us to name, and therefore to refer to, the results of relationalalgebra expressions.
- Allows us to refer to a relation by more than one name.
- Example of naming a relation:

 $\rho_x(E)$ 

returns the expression E under the name X

Example of naming a relation and its attributes:

If a relational-algebra expression E has arity n, then

$$\rho_{x(A_1,A_2,...,A_n)}(E)$$

returns the result of expression *E* under the name *X*, and with the attributes renamed to  $A_1, A_2, ..., A_n$ .





## **Banking Example**

branch (branch\_name, branch\_city, assets)

customer (customer\_name, customer\_street, customer\_city)

account (account\_number, branch\_name, balance)

*loan (loan\_number, branch\_name, amount)* 

depositor (customer\_name, account\_number)

*borrower (customer\_name, loan\_number)* 





loan (loan\_number, branch\_name, amount)
depositor (customer\_name, account\_number)
borrower (customer\_name, loan\_number)

Find all loans of over \$1200

 $\sigma_{amount > 1200}$  (loan)

Find the loan number for each loan of an amount greater than \$1200

$$\prod_{loan\_number} (\sigma_{amount > 1200} (loan))$$

Find the names of all customers who have a loan, an account, or both, from the bank

$$\Pi_{customer\_name}$$
 (borrower)  $\cup \Pi_{customer\_name}$  (depositor)





loan (loan\_number, branch\_name, amount)
depositor (customer\_name, account\_number)
borrower (customer\_name, loan\_number)

Find the names of all customers who have a loan at the Perryridge branch.

 $\prod_{customer_name} (\sigma_{branch_name="Perryridge"} (\sigma_{borrower.loan_number = loan.loan_number (borrower \times loan)))$ 

Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

 $\Pi_{customer\_name}$  ( $\sigma_{branch\_name}$  = "Perryridge"

 $(\sigma_{borrower.loan\_number} = loan.loan\_number(borrower \times loan))) - \Pi_{customer\_name}(depositor)$ 





- Find the names of all customers who have a loan at the Perryridge branch.
- Query 1

 $\Pi_{customer\_name} (\sigma_{branch\_name} = "Perryridge" ($  $\sigma_{borrower.loan\_number} = loan.loan\_number (borrower \times loan)))$ 

• Query 2

 $\Pi_{customer\_name}(\sigma_{loan.loan\_number} = borrower.loan\_number ( (\sigma_{branch\_name} = "Perryridge" (loan)) \times borrower))$ 





account (account\_number, branch\_name, balance)

- Find the largest account balance
  - Strategy:
    - Find those balances that are *not* the largest
      - Rename *account* relation as *d* so that we can compare each account balance with all others
    - Use set difference to find those account balances that were *not* found in the earlier step.
  - The query is:

 $\Pi_{balance}(account) - \Pi_{account.balance}$   $(\sigma_{account.balance} < d.balance (account \times \rho_d (account)))$ 





## **Formal Definition**

- A basic expression in the relational algebra consists of either one of the following:
  - A relation in the database
  - A constant relation
- Let E<sub>1</sub> and E<sub>2</sub> be relational-algebra expressions; the following are all relational-algebra expressions:
  - $E_1 \cup E_2$
  - $E_1 E_2$
  - $E_1 \times E_2$
  - $\sigma_p(E_1)$ , P is a predicate on attributes in  $E_1$
  - $\prod_{s}(E_{1})$ , S is a list consisting of some of the attributes in  $E_{1}$
  - $\rho_{X}(E_{1})$ , x is the new name for the result of  $E_{1}$





## **Additional Operations**

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment





## **Set-Intersection Operation**

- Notation:  $r \cap s$
- Defined as:
- $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- Assume:

- *r*, *s* have the *same arity*
- attributes of *r* and *s* are compatible

Note: 
$$r \cap s = r - (r - s)$$





## **Set-Intersection Operation – Example**

Relation *r*, *s*:





S

I' ∩ S





Database System Concepts - 5th Edition, Oct 5, 2006


# **Natural-Join Operation**

- Notation: r 🖂 s
- Let *r* and *s* be relations on schemas *R* and *S* respectively. Then,  $r \bowtie s$  is a relation on schema  $R \cup S$  obtained as follows:
  - Consider each pair of tuples  $t_r$  from r and  $t_s$  from s.
  - If t<sub>r</sub> and t<sub>s</sub> have the same value on each of the attributes in R ∩ S, add a tuple t to the result, where
    - *t* has the same value as  $t_r$  on *r*
    - t has the same value as t<sub>S</sub> on s
- Example:
  - R=(A, B, C, D)
  - S = (E, B, D)
  - Result schema = (A, B, C, D, E)
  - $r \bowtie s$  is defined as:

$$\prod_{r.A, r.B, r.C, r.D, s.E} (\sigma_{r.B} = s.B \land r.D = s.D (r \times s))$$





## **Natural Join Operation – Example**





| В | D | Е        |
|---|---|----------|
| 1 | а | α        |
| 3 | а | $\beta$  |
| 1 | а | γ        |
| 2 | b | $\delta$ |
| 3 | b | E        |

S

■ r⊠s

| Α        | В | С       | D | E        |
|----------|---|---------|---|----------|
| α        | 1 | α       | а | α        |
| α        | 1 | α       | а | γ        |
| α        | 1 | γ       | а | α        |
| α        | 1 | γ       | а | γ        |
| $\delta$ | 2 | $\beta$ | b | $\delta$ |



Database System Concepts - 5<sup>th</sup> Edition, Oct 5, 2006



## **Division Operation**

Notation:  $r \div s$ 

Suited to queries that include the phrase "for all".

Let r and s be relations on schemas R and S respectively where

• 
$$R = (A_1, ..., A_m, B_1, ..., B_n)$$

• 
$$S = (B_1, ..., B_n)$$

The result of  $r \div s$  is a relation on schema

$$R-S-(A_1,\ldots,A_m)$$

$$r \div \mathbf{s} = \{ t \mid t \in \prod_{R-S} (r) \land \forall u \in \mathbf{s} (tu \in r) \}$$

where *tu* means the concatenation of tuples *t* and *u* to produce a single tuple.





## **Division Operation – Example**





#### **Another Division Example**



| r | A                | В           | С | D | E      |  |
|---|------------------|-------------|---|---|--------|--|
|   | α                | а           | α | а | 1      |  |
|   | α                | а           | γ | а | 1      |  |
|   |                  | а           | γ | b | 1      |  |
|   | $\beta$          | а           | γ | а | 1      |  |
|   | $\beta$          |             | γ | b | 3<br>1 |  |
|   | α<br>β<br>β<br>γ | a<br>a<br>a | γ | а | 1      |  |
|   | γ                | а           | γ | b | 1      |  |
|   | γ                | а           | β | b | 1      |  |

s D E a 1 b 1

r ÷ s

| A | В | С |
|---|---|---|
| α | а | γ |
| γ | а | γ |



Database System Concepts - 5<sup>th</sup> Edition, Oct 5, 2006



# **Division Operation (Cont.)**

- Property
  - Let  $q = r \div s$
  - Then q is the largest relation satisfying  $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let r(R) and s(S) be relations, and let  $S \subseteq R$

$$r \div \mathbf{s} = \prod_{R-S} (r) - \prod_{R-S} ((\prod_{R-S} (r) \times \mathbf{s}) - \prod_{R-S,S} (r))$$

To see why

- $\prod_{R-S,S} (r)$  simply reorders attributes of *r*
- $\prod_{R-S} (\prod_{R-S} (r) \times s) \prod_{R-S,S} (r)$  ) gives those tuples t in

 $\prod_{R-S} (r)$  such that for some tuple  $u \in s$ ,  $tu \notin r$ .





# **Assignment Operation**

- The assignment operation (←) provides a convenient way to express complex queries.
  - Write query as a sequential program consisting of
    - a series of assignments
    - followed by an expression whose value is displayed as a result of the query.
  - Assignment must always be made to a temporary relation variable.
- Example: Write  $r \div s$  as

 $temp1 \leftarrow \prod_{R-S} (r)$  $temp2 \leftarrow \prod_{R-S} ((temp1 \times s) - \prod_{R-S,S} (r))$ result = temp1 - temp2

- The result to the right of the ← is assigned to the relation variable on the left of the ←.
- May use variable in subsequent expressions.





## **Bank Example Queries**

Find the names of all customers who have a loan and an account at bank.

 $\Pi_{customer\_name}$  (borrower)  $\cap \Pi_{customer\_name}$  (depositor)

Find the name of all customers who have a loan at the bank and the loan amount

 $\Pi_{customer_name, loan_number, amount}$  (borrower  $\bowtie$  loan)





## **Bank Example Queries**

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
  - Query 1

 $\Pi_{customer\_name} (\sigma_{branch\_name} = "Downtown" (depositor \bowtie account )) \cap \\ \Pi_{customer\_name} (\sigma_{branch\_name} = "Uptown" (depositor \bowtie account))$ 

• Query 2

 $\Pi_{customer\_name, branch\_name} (depositor \bowtie account)$   $\div \rho_{temp(branch\_name)} (\{("Downtown"), ("Uptown")\})$ Note that Query 2 uses a constant relation.





## **Bank Example Queries**

Find all customers who have an account at all branches located in Brooklyn city.

> $\Pi_{customer\_name, branch\_name} (depositor \bowtie account)$  $\div \Pi_{branch\_name} (\sigma_{branch\_city = "Brooklyn"} (branch))$



| -       | 1 |   |
|---------|---|---|
| -       | 4 | 2 |
|         |   |   |
| il kuit |   |   |

# **Extended Relational-Algebra Operations**

- Generalized Projection
- Aggregate Functions
- Outer Join





## **Generalized Projection**

Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$\prod_{F_1,F_2,\ldots,F_n} (E)$$

- E is any relational-algebra expression
- Each of  $F_1, F_2, ..., F_n$  are are arithmetic expressions involving constants and attributes in the schema of *E*.
- Given relation credit\_info(customer\_name, limit, credit\_balance), find how much more each person can spend:

∏customer\_name, limit – credit\_balance (credit\_info)





# **Aggregate Functions and Operations**

- Aggregation function takes a collection of values and returns a single value as a result.
  - avg: average valuemin: minimum valuemax: maximum valuesum: sum of valuescount: number of values

Aggregate operation in relational G algebra

$$_{G_1,G_2,\ldots,G_n}G_{F_1(A_1),F_2(A_2,\ldots,F_n(A_n)}(E)$$

E is any relational-algebra expression

- $G_1, G_2, \ldots, G_n$  is a list of attributes on which to group (can be empty)
- Each  $F_i$  is an aggregate function
- Each  $A_i$  is an attribute name





# **Aggregate Operation – Example**

#### Relation *r*

| A | В       | С  |
|---|---------|----|
| α | α       | 7  |
| α | β       | 7  |
| β | $\beta$ | 3  |
| β | β       | 10 |

• G<sub>sum(C)</sub>(r)







# **Aggregate Operation – Example**

Relation *account* grouped by *branch-name*:

| branch_name | account_number | balance |
|-------------|----------------|---------|
| Perryridge  | A-102          | 400     |
| Perryridge  | A-201          | 900     |
| Brighton    | A-217          | 750     |
| Brighton    | A-215          | 750     |
| Redwood     | A-222          | 700     |

branch\_name  $G_{sum(balance)}(account)$ 

| branch_name | sum(balance) |
|-------------|--------------|
| Perryridge  | 1300         |
| Brighton    | 1500         |
| Redwood     | 700          |





# **Aggregate Functions (Cont.)**

- Result of aggregation does not have a name
  - Can use rename operation to give it a name
    - ρ x(branch\_name,sum\_balance) (

 $branch_name \ G \ sum(balance) \ (account) \ )$ 

For convenience, we permit renaming as part of aggregate operation

branch\_name G sum(balance) as sum\_balance (account)





#### **Outer Join**

- An extension of the join operation that avoids loss of information.
- Example of natural join:

| loan        |             |        |   | borrower      |             |
|-------------|-------------|--------|---|---------------|-------------|
| loan_number | branch_name | amount |   | customer_name | loan_number |
| L-170       | Downtown    | 3000   | ] | Jones         | L-170       |
| L-230       | Redwood     | 4000   |   | Smith         | L-230       |
| L-260       | Perryridge  | 1700   |   | Hayes         | L-155       |

#### *loan* ⋈ *borrower*

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L-170       | Downtown    | 3000   | Jones         |
| L-230       | Redwood     | 4000   | Smith         |





# **Outer Join (cont.)**

- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses *null* values:
  - *null* signifies that the value is unknown or does not exist
  - All comparisons involving *null* are (roughly speaking) false by definition.
    - We shall study precise meaning of comparisons with nulls later





laan

## **Left Outer Join – Example**

#### Left Outer Join

| IOan        |             |        |
|-------------|-------------|--------|
| loan_number | branch_name | amount |
| L-170       | Downtown    | 3000   |
| L-230       | Redwood     | 4000   |
| L-260       | Perryridge  | 1700   |

borrowercustomer\_nameloan\_numberJonesL-170SmithL-230HayesL-155

#### loan 🖂 borrower

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L-170       | Downtown    | 3000   | Jones         |
| L-230       | Redwood     | 4000   | Smith         |
| L-260       | Perryridge  | 1700   | null          |





## **Right Outer Join – Example**

#### Right Outer Join

| loan        |             |        |
|-------------|-------------|--------|
| loan_number | branch_name | amount |
| L-170       | Downtown    | 3000   |
| L-230       | Redwood     | 4000   |
| L-260       | Perryridge  | 1700   |

| borrower      |             |
|---------------|-------------|
| customer_name | loan_number |
| Jones         | L-170       |
| Smith         | L-230       |
| Hayes         | L-155       |

#### loan $\bowtie$ borrower

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L-170       | Downtown    | 3000   | Jones         |
| L-230       | Redwood     | 4000   | Smith         |
| L-155       | null        | null   | Hayes         |





## **Full Outer Join – Example**

#### Full Outer Join

| loan        |             |        |
|-------------|-------------|--------|
| loan_number | branch_name | amount |
| L-170       | Downtown    | 3000   |
| L-230       | Redwood     | 4000   |
| L-260       | Perryridge  | 1700   |

| borrower      |             |
|---------------|-------------|
| customer_name | loan_number |
| Jones         | L-170       |
| Smith         | L-230       |
| Hayes         | L-155       |

#### *loan* ⊐×⊂ *borrower*

| loan_number | branch_name | amount | customer_name |
|-------------|-------------|--------|---------------|
| L-170       | Downtown    | 3000   | Jones         |
| L-230       | Redwood     | 4000   | Smith         |
| L-260       | Perryridge  | 1700   | null          |
| L-155       | null        | null   | Hayes         |





## **Modification of the Database**

- The content of the database may be modified using the following operations:
  - Deletion
  - Insertion
  - Updating
- All these operations are expressed using the assignment operator.





#### **Deletion**

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

 $r \leftarrow r - E$ 

where r is a relation and E is a relational algebra query.





## **Deletion Examples**

Delete all account records in the Perryridge branch. account  $\leftarrow$  account  $-\sigma$  branch name = "Perryridge" (account) Delete all loan records with amount in the range of 0 to 50 loan  $\leftarrow$  loan  $-\sigma$  amount  $\geq$  0 and amount  $\leq$  50 (loan) Delete all accounts at branches located in Needham. branch (branch name, branch city, assets) account (account number, branch name, balance) depositor (customer name, account\_number)  $r_1 \leftarrow \sigma_{branch\ city} = "Needham" (account <math>\bowtie branch)$  $r_2 \leftarrow \prod$  account\_number, branch\_name, balance ( $r_1$ )  $r_3 \leftarrow \prod$  customer name, account number ( $r_2 \bowtie$  depositor) account  $\leftarrow$  account  $-r_2$ depositor  $\leftarrow$  depositor  $-r_3$ 





## Insertion

- To insert data into a relation, we either:
  - specify a tuple to be inserted
  - write a query whose result is a set of tuples to be inserted
- In relational algebra, an insertion is expressed by:

#### $r \leftarrow r \cup E$

where r is a relation and E is a relational algebra expression.

The insertion of a single tuple is expressed by letting *E* be a constant relation containing one tuple.





## **Insertion Examples**

Insert information in the database specifying that Smith has \$1200 in account A-973 at the Perryridge branch.

```
account \leftarrow account \cup {("A-973", "Perryridge", 1200)}
depositor \leftarrow depositor \cup {("Smith", "A-973")}
```

Provide as a gift for all loan customers in the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account.

```
account (account_number, branch_name, balance )
loan (loan_number, branch_name, amount )
depositor (customer_name, account_number )
borrower (customer_name, loan_number )
```

 $r_{1} \leftarrow (\sigma_{branch\_name = "Perryridge"} (borrower \bowtie loan))$ account  $\leftarrow$  account  $\cup \prod_{loan\_number, branch\_name, 200} (r_{1})$ depositor  $\leftarrow$  depositor  $\cup \prod_{customer\_name, loan\_number} (r_{1})$ 





# Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$r \leftarrow \prod_{F_1, F_2, \dots, F_n} (r)$$

- Each  $F_i$  is either
  - the *i*<sup>th</sup> attribute of *r*, if the *i*<sup>th</sup> attribute is not updated, or,
  - if the attribute is to be updated F<sub>i</sub> is an expression, involving only constants and the attributes of r, which gives the new value for the attribute





## **Update Examples**

account (account\_number, branch\_name, balance )

Make interest payments by increasing all balances by 5 percent.

account  $\leftarrow \prod_{account\_number, branch\_name, balance*1.05}$  (account)

Pay all accounts with balances over \$10,000 6 percent interest and pay all others 5 percent

 $account \leftarrow \prod_{account\_number, branch\_name, balance^{*1.06}} (\sigma_{balance > 10000} (account)) \\ \cup \prod_{account\_number, branch\_name, balance^{*1.05}} (\sigma_{balance ≤ 10000} (account))$ 







- In some cases, it is not desirable for all users to see the entire logical model (that is, all the actual relations stored in the database.)
- Consider a person who needs to know a customer's name and loan number, but has no need to see the loan amount. This person should see a relation described, in relational algebra, by

 $\Pi$  customer\_name, loan\_number (borrower  $\bowtie$  loan)

- A view provides a mechanism to hide certain data from the view of certain users.
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.





#### **View Definition**

• A view is defined using the **create view** statement which has the form

create view v as < query expression >

where <query expression> is any legal relational algebra expression. The view name is represented by *v*.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- When a view is created, the *query expression* is stored in the database; the expression is substituted into queries using the view.
  - So view is not the same as creating a new relation by evaluation the query expression.





A view consisting of branches and their customers

#### create view all\_customer as

 $\Pi_{branch_name, customer_name} (depositor \bowtie account) \\ \cup \\ \Pi_{branch_name, customer_name} (borrower \bowtie loan)$ 

Find all customers of the Perryridge branch

 $\prod_{customer_name} (\sigma_{branch_name = 'Perryridge'} (all\_customer))$ 





# **Views Defined Using Other Views**

- One view may be used in the expression defining another view
- A view relation  $v_1$  is said to *depend directly on* a view relation  $v_2$  if  $v_2$  is used in the expression defining  $v_1$
- A view relation v<sub>1</sub> is said to depend on view relation v<sub>2</sub> if either v<sub>1</sub> depends directly to v<sub>2</sub> or there is a path of dependencies from v<sub>1</sub> to v<sub>2</sub>
- A view relation *v* is said to be *recursive* if it depends on itself.





## **View Expansion**

- A way to define the meaning of views defined in terms of other views.
- Let view  $v_1$  be defined by an expression  $e_1$  that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

#### repeat

Find any view relation  $v_i$  in  $e_1$ 

Replace the view relation  $v_i$  by the expression defining  $v_i$ until no more view relations are present in  $e_1$ 

 As long as the view definitions are not recursive, this loop will terminate





## **Update of a View**

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.
- Consider the person who needs to see all loan data in the loan relation except amount. The view given to the person, *branch\_loan*, is defined as:

```
create view loan_branch as
```

 $\prod_{loan_number, branch_name}$  (loan)

Since we allow a view name to appear wherever a relation name is allowed, the user may write:

*loan\_branch* ← *loan\_brach* ∪ {('L-37', 'Perryridge')}





# Update of a View (cont.)

- The previous insertion must be represented by an insertion into the actual relation loan from which the view branch-loan is constructed.
- An insertion into loan requires a value for amount. The insertion can be dealt with by either
  - rejecting the insertion and returning an error message to the user;
  - inserting the tuple

('L-37', 'Perryridge', *null*)

into the *loan* relation.





# **Tuple Relational Calculus**

- A nonprocedural query language, where each query is of the form  $\{t \mid P(t)\}$
- It is the set of all tuples *t* such that predicate *P* is true for *t*
- *t* is a *tuple variable*, *t* [*A*] denotes the value of tuple *t* on attribute *A*
- $t \in r$  denotes that tuple t is in relation r
- P is a *formula* similar to that of the predicate calculus





## **Predicate Calculus Formula**

- 1. Set of attributes and constants
- 2. Set of comparison operators: (e.g., <,  $\leq$ , =,  $\neq$ , >,  $\geq$ )
- 3. Set of connectives: and ( $\land$ ), or (v), not ( $\neg$ )
- 4. Implication ( $\Rightarrow$ ): x  $\Rightarrow$  y, if x if true, then y is true

$$x \Longrightarrow y \equiv \neg x \lor y$$

- 5. Set of quantifiers:
  - ►  $\exists t \in r (Q(t)) \equiv$  "there exists" a tuple in t in relation r such that predicate Q(t) is true
  - ►  $\forall t \in r (Q(t)) \equiv Q$  is true "for all" tuples *t* in relation *r*





- Ioan (loan\_number, branch\_name, amount)
- Find the *loan\_number, branch\_name,* and *amount* for loans of over \$1200

```
\{t \mid t \in loan \land t [amount] > 1200\}
```

- Find the loan number for each loan of an amount greater than \$1200  $\{t \mid \exists s \in loan \ (t \ [loan_number ] = s \ [loan_number ] \land s \ [amount ] > 1200)\}$ 
  - Notice that a relation on schema (*loan\_number*) is implicitly defined by the query.
- *Relation schema* of an expression is determined by either of:
  - If  $t \in r$  is present in the expression, the resulting schema is of r
  - Otherwise the resulting schema is determined by all attributes of t used in the expression.
    - Note: If t[A] is used more than once, the attribute A is in the relation schema just once!!!





- depositor (customer\_name, account\_number )
- borrower (customer\_name, loan\_number )
- Find the names of all customers having a loan, an account, or both at the bank
  - $\{t \mid \exists s \in borrower (t [customer_name] = s [customer_name])$ 
    - $\vee \exists u \in depositor (t[customer_name] = u[customer_name]) \}$
- Find the names of all customers who have a loan and an account at the bank
  - {*t* | ∃*s* ∈ borrower ( *t* [customer\_name ] = *s* [customer\_name ]) ∧ ∃*u* ∈ depositor ( *t* [customer\_name ] = *u* [customer\_name] ) }





- Ioan (loan\_number, branch\_name, amount)
- depositor (customer\_name, account\_number )
- borrower (customer\_name, loan\_number)

Find the names of all customers having a loan at the Perryridge branch {t | ∃s ∈ borrower (t [customer\_name] = s [customer\_name] ∧ ∃u ∈ loan (u [branch\_name] = "Perryridge" ∧ u [loan number] = s [loan number]))}

Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank

{ $t \mid \exists s \in borrower (t [customer_name] = s [customer_name] \land \exists u \in loan (u [branch_name] = "Perryridge" \land u [loan_number] = s [loan_number])) \land \neg \exists v \in depositor (v [customer_name] = t [customer_name])}$ 





- branch (branch\_name, branch\_city, assets )
- customer (customer\_name, customer\_street, customer\_city)
- account (account\_number, branch\_name, balance )
- Ioan (loan\_number, branch\_name, amount)
- depositor (customer\_name, account\_number)
- borrower (customer\_name, loan\_number )
- Find the names of all customers having a loan at the Perryridge branch, and the cities in which they live





- branch (branch\_name, branch\_city, assets ) customer (customer\_name, customer\_street, customer\_city ) account (account\_number, branch\_name, balance ) loan (loan\_number, branch\_name, amount ) depositor (customer\_name, account\_number ) borrower (customer\_name, loan\_number )
- Find the names of all customers who have an account at all branches located in Brooklyn:

 $\{t \mid \exists r \in customer(t [customer_name] = r [customer_name]) \land$ 

(  $\forall u \in branch (u [branch_city] = "Brooklyn" \Rightarrow$ 

∃ s ∈ depositor (r [customer\_name ] = s [customer\_name ]

 $\land \exists w \in account (w[account\_number] = s [account\_number]$ 

 $\land$  ( w [branch\_name ] = u [branch\_name ] ) ) )

))}





## **Safety of Expressions**

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, { t  $| \neg t \in r$  } results in an infinite relation if the domain of any attribute of relation *r* is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression {t | P(t) } in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P
  - NOTE: this is more than just a syntax condition.
    - ► E.g. { t | t [A] = 5 ∨ true } is not safe it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.





## **Domain Relational Calculus**

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$\{ < x_1, x_2, ..., x_n > | P(x_1, x_2, ..., x_n) \}$$

- $x_1, x_2, ..., x_n$  represent domain variables
- P represents a formula similar to that of the predicate calculus





- loan (loan\_number, branch\_name, amount) depositor (customer\_name, account\_number) borrower (customer\_name, loan\_number)
- Find the *loan\_number, branch\_name,* and *amount* for loans of over \$1200
  - {< *l*, *b*, *a* > | < *l*, *b*, *a* > ∈ loan ∧ *a* > 1200}
- Find the names of all customers who have a loan of over \$1200
  - {< c > | ∃ I, b, a (< c, I > ∈ borrower ∧ < I, b, a > ∈ loan ∧ a > 1200)}
- Find the names of all customers who have a loan at the Perryridge branch and the loan amount:
  - {< c, a > | ∃ l (< c, l > ∈ borrower ∧ ∃b (< l, b, a > ∈ loan ∧ b = "Perryridge"))}
  - {< c, a > | ∃ l (< c, l > ∈ borrower ∧ < l, "Perryridge", a > ∈ loan)}





- branch (branch\_name, branch\_city, assets )
   customer (customer\_name, customer\_street, customer\_city )
   account (account\_number, branch\_name, balance )
   loan (loan\_number, branch\_name, amount )
   depositor (customer\_name, account\_number )
   borrower (customer\_name, loan\_number )
- Find the names of all customers having a loan, an account, or both at the Perryridge branch:
  - {< c > |∃ / ( < c, l > ∈ borrower ∧∃ b,a (< l, b, a > ∈ loan ∧ b = "Perryridge"))
     ∨∃ a (< c, a > ∈ depositor ∧∃ b,n (< a, b, n > ∈ account ∧ b = "Perryridge"))}
- Find the names of all customers who have an account at all branches located in Brooklyn:





## **Safety of Expressions**

The expression:

$$\{ < x_1, x_2, ..., x_n > | P(x_1, x_2, ..., x_n) \}$$

is safe if all of the following hold:

- All values that appear in tuples of the expression are values from *dom* (*P*) (that is, the values appear either in *P* or in a tuple of a relation mentioned in *P*).
- 2. For every "there exists" subformula of the form  $\exists x (P_1(x))$ , the subformula is true if and only if there is a value of x in *dom* ( $P_1$ ) such that  $P_1(x)$  is true.
- 3. For every "for all" subformula of the form  $\forall x (P_1(x))$ , the subformula is true if and only if  $P_1(x)$  is true for all values x from *dom* ( $P_1$ ).

