
'
&

$
%

Chapter 14: Concurrency Control

• Lock-Based Protocols

• Timestamp-Based Protocols

• Validation-Based Protocols

• Multiple Granularity

• Multiversion Schemes

• Deadlock Handling

• Insert and Delete Operations

• Concurrency in Index Structures

Database Systems Concepts 14.1 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Lock-Based Protocols

• A lock is a mechanism to control concurrent access to a data
item

• Data items can be locked in two modes :

1. exclusive (X) mode. Data item can be both read as well as
written. X-lock is requested using lock-X instruction.

2. shared (S) mode. Data item can only be read. S-lock is
requested using lock-S instruction.

• Lock requests are made to concurrency-control manager.
Transaction can proceed only after request is granted.

Database Systems Concepts 14.2 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Lock-Based Protocols (Cont.)

• Lock-compatibility matrix

S X

S true false

X false false

• A transaction may be granted a lock on an item if the
requested lock is compatible with locks already held on the
item by other transactions

• The matrix allows any number of transactions to hold shared
locks on an item, but if any transaction holds an exclusive on
the item no other transaction may hold any lock on the item.

• If a lock cannot be granted, the requesting transaction is made
to wait till all incompatible locks held by other transactions have
been released. The lock is then granted.

Database Systems Concepts 14.3 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Lock-Based Protocols (Cont.)

• Example of a transaction performing locking:

T2: lock-S (A);
read (A);
unlock (A);
lock-S (B);
read (B);
unlock (B);
display (A + B).

• Locking as above is not sufficient to guarantee serializability —
if A and B get updated in-between the read of A and B, the
displayed sum would be wrong.

• A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict
the set of possible schedules.

Database Systems Concepts 14.4 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Pitfalls of Lock-Based Protocols

• Consider the partial schedule

T3 T4
lock-X (B)
read (B)
B := B − 50
write (B)

lock-S (A)
read (A)
lock-S (B)

lock-X (A)

• Neither T3 nor T4 can make progress — executing lock-S (B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X (A) causes T3 to wait for T4 to release its lock on A.

• Such a situation is called a deadlock . To handle a deadlock
one of T3 or T4 must be rolled back and its locks released.

Database Systems Concepts 14.5 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Pitfalls of Lock-Based Protocols (Cont.)

• The potential for deadlock exists in most locking protocols.
Deadlocks are a necessary evil.

• Starvation is also possible if concurrency control manager is
badly designed. For example:

– A transaction may be waiting for an X-lock on an item, while
a sequence of other transactions request and are granted
an S-lock on the same item.

– The same transaction is repeatedly rolled back due to
deadlocks.

• Concurrency control manager can be designed to prevent
starvation.

Database Systems Concepts 14.6 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Two-Phase Locking Protocol

• This is a protocol which ensures conflict-serializable
schedules.

• Phase 1: Growing Phase

– transaction may obtain locks

– transaction may not release locks

• Phase 2: Shrinking Phase

– transaction may release locks

– transaction may not obtain locks

• The protocol assures serializability. It can be proved that the
transactions can be serialized in the order of their lock points
(i.e. the point where a transaction acquired its final lock).

Database Systems Concepts 14.7 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Two-Phase Locking Protocol (Cont.)

• Two-phase locking does not ensure freedom from deadlocks

• Cascading roll-back is possible under two-phase locking. To
avoid this, follow a modified protocol called strict two-phase
locking. Here a transaction must hold all its exclusive locks till
it commits/aborts.

• Rigorous two-phase locking is even stricter: here all locks are
held till commit/abort. In this protocol transactions can be
serialized in the order in which they commit.

Database Systems Concepts 14.8 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

The Two-Phase Locking Protocol (Cont.)

• There can be conflict serializable schedules that cannot be
obtained if two-phase locking is used.

• However, in the absence of extra information (e.g., ordering of
access to data), two-phase locking is needed for conflict
serializability in the following sense:

Given a transaction Ti that does not follow two-phase
locking, we can find a transaction Tj that uses two-phase
locking, and a schedule for Ti and Tj that is not conflict
serializable.

Database Systems Concepts 14.9 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Lock Conversions

• Two-phase locking with lock conversions:

– First Phase:
∗ can acquire a lock-S on item
∗ can acquire a lock-X on item
∗ can convert a lock-S to a lock-X (upgrade)

– Second Phase:
∗ can release a lock-S
∗ can release a lock-X
∗ can convert a lock-X to a lock-S (downgrade)

• This protocol assures serializability. But still relies on the
programmer to insert the various locking instructions.

Database Systems Concepts 14.10 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Automatic Acquisition of Locks

A transaction Ti issues the standard read/write instruction, without
explicit locking calls.

• The operation read(D) is processed as:

if Ti has a lock on D
then

read(D)
else

begin
if necessary wait until no other

transaction has a lock-X on D
grant Ti a lock-S on D;
read(D)

end ;

Database Systems Concepts 14.11 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Automatic Acquisition of Locks (Cont.)

• write(D) is processed as:

if Ti has a lock-X on D
then

write(D)
else

begin
if necessary wait until no other trans. has any lock on D,
if Ti has a lock-S on D

then
upgrade lock on D to lock-X

else
grant Ti a lock-X on D

write(D)
end ;

• All locks are released after commit or abort

Database Systems Concepts 14.12 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Graph-Based Protocols

• Is an alternative to two-phase locking

• Impose a partial ordering → on the set D = {d1, d2, ..., dh}
of all data items.

– If di → dj , then any transaction accessing both di and dj

must access di before accessing dj .

– Implies that the set D may now be viewed as a directed
acyclic graph, called a database graph.

• tree-protocol is a simple kind of graph protocol.

Database Systems Concepts 14.13 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Tree Protocol

E

A

I

B C

D

J

H

F

G

• Only exclusive locks are allowed.

• The first lock by Ti may be on any data item. Subsequently, a
data item Q can be locked by Ti only if the parent of Q is
currently locked by Ti .

• Data items may be unlocked at any time.

• A data item that has been locked and unlocked by Ti cannot
subsequently be re-locked by Ti .

Database Systems Concepts 14.14 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Graph-Based Protocols (Cont.)

• The tree protocol ensures conflict serializability as well as
freedom from deadlock.

• Unlocking may occur earlier in the tree-locking protocol than in
the two-phase locking protocol.

– shorter waiting times, and increase in concurrency

– protocol is deadlock-free

• However,in the tree-locking protocol, a transaction may have to
lock data items that it does not access.

– increased locking overhead, and additional waiting time

– potential decrease in concurrency

• schedules not possible under two-phase locking are possible
under tree protocol, and vice versa.

Database Systems Concepts 14.15 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Timestamp-Based Protocols

• Each transaction is issued a timestamp when it enters the
system. If an old transaction Ti has time-stamp TS(Ti), a new
transaction Tj is assigned time-stamp TS(Tj) such that
TS(Ti) <TS(Tj).

• The protocol manages concurrent execution such that the
time-stamps determine the serializability order.

• In order to assure such behavior, the protocol maintains for
each data item Q two timestamp values:

– W-timestamp (Q) is the largest time-stamp of any
transaction that executed write (Q) successfully.

– R-timestamp (Q) is the largest time-stamp of any
transaction that executed read (Q) successfully.

Database Systems Concepts 14.16 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Timestamp-Based Protocols (Cont.)

• The timestamp ordering protocol ensures that any conflicting
read and write operations are executed in timestamp order.

• Suppose a transaction Ti issues a read (Q)

1. If TS(Ti) < W-timestamp(Q), then Ti needs to read a value
of Q that was already overwritten. Hence, the read
operation is rejected, and Ti is rolled back.

2. If TS(Ti) ≥ W-timestamp(Q), then the read operation is
executed, and R-timestamp(Q) is set to the maximum of
R-timestamp(Q) and TS(Ti).

Database Systems Concepts 14.17 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Timestamp-Based Protocols (Cont.)

• Suppose that transaction Ti issues write (Q).

1. If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was needed previously, and the system assumed
that that value would never be produced. Hence, the write
operation is rejected, and Ti is rolled back.

2. If TS(Ti) < W-timestamp(Q), then Ti is attempting to write
an obsolete value of Q. Hence, this write operation is
rejected, and Ti is rolled back.

3. Otherwise, the write operation is executed, and
W-timestamp(Q) is set to TS(Ti).

Database Systems Concepts 14.18 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

T1 T2 T3 T4 T5
read(X)

read(Y)
read(Y)

write(Y)
write(Z)

read(Z)
read(Z)
abort

read(X)
write(Z)
abort

write(X)
write(Z)

Database Systems Concepts 14.19 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees serializability
since all the arcs in the precedence graph are of the form:

transaction
with smaller

transaction
with larger
timestamptimestamp

Thus, there will be no cycles in the precedence graph

• Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

• But the schedule may not be cascade-free, and may not even
be recoverable.

Database Systems Concepts 14.20 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Recoverability and Cascade Freedom

• Problem with timestamp-ordering protocol:
– Suppose Ti aborts, but Tj has read a data item written by Ti

– Then Tj must abort; if Tj had been allowed to commit
earlier, the schedule is not recoverable.

– Further, any transaction that has read a data item written by
Tj must abort

– This can lead to cascading rollback — that is, a chain of
rollbacks

• Solution:
– A transaction is structured such that its writes are all

performed at the end of its processing

– All writes of a transaction form an atomic action; no
transaction may execute while a transaction is being written

– A transaction that aborts is restarted with a new timestamp

Database Systems Concepts 14.21 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Thomas’ Write Rule

• Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances.

– When Ti attempts to write data item Q, if TS(Ti) <

W-timestamp(Q), then Ti is attempting to write an obsolete
value of Q. Hence, rather than rolling back Ti as the
timestamp ordering protocol would have done, this write
operation can be ignored.

– Otherwise this protocol is the same as the timestamp
ordering protocol.

• Thomas’ Write Rule allows greater potential concurrency.
Unlike previous protocols, it allows some view-serializable
schedules that are not conflict-serializable.

Database Systems Concepts 14.22 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Validation-Based Protocol

• Execution of transaction Ti is done in three phases.

1. Read and execution phase : Transaction Ti writes only to
temporary local variables

2. Validation phase : Transaction Ti performs a “validation
test” to determine if local variables can be written without
violating serializability.

3. Write phase : If Ti is validated, the updates are applied to
the database; otherwise, Ti is rolled back.

• The three phases of concurrently executing transactions can
be interleaved, but each transaction must go through the three
phases in that order.

Database Systems Concepts 14.23 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Validation-Based Protocol (Cont.)

• Each transaction Ti has 3 timestamps

– Start (Ti): the time when Ti started its execution

– Validation (Ti): the time when Ti entered its validation
phase

– Finish (Ti): the time when Ti finished its write phase

• Serializability order is determined by timestamp given at
validation time, to increase concurrency. Thus TS(Ti) is given
the value of Validation (Ti).

• This protocol is useful and gives greater degree of concurrency
if probability of conflicts is low. That is because the
serializability order is not pre-decided and relatively less
transactions will have to be rolled back.

Database Systems Concepts 14.24 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Validation Test for Transaction Tj

• If for all Ti with TS (Ti) < TS (Tj) either one of the following
condition holds:
– finish (Ti) < start (Tj)

– start (Tj) < finish (Ti) < validation (Tj) and the set of data
items written by Ti does not intersect with the set of data
items read by Tj .

then validation succeeds and Tj can be committed. Otherwise,
validation fails and Tj is aborted.

• Justification: Either first condition is satisfied, and there is no
overlapped execution, or second condition is satisfied and

1. the writes of Tj do not affect reads of Ti since they occur
after Ti has finished its reads.

2. the writes of Ti do not affect reads of Tj since Tj does not
read any item written by Ti .

Database Systems Concepts 14.25 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Schedule Produced by Validation

Example of schedule produced using validation:

T14 T15
read (B)

read (B)
B := B − 50
read (A)
A := A + 50

read (A)
〈 validate 〉
display (A + B)

〈 validate 〉
write (B)
write (A)

Database Systems Concepts 14.26 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiple Granularity

• Allow data items to be of various sizes and define a hierarchy
of data granularities, where the small granularities are nested
within larger ones

• Can be represented graphically as a tree (but don’t confuse
with tree-locking protocol)

• when a transaction locks a node in the tree explicitly, it
implicitly locks all the node’s descendents in the same mode.

• Granularity of locking (level in tree where locking is done):

– fine granularity (lower in tree): high concurrency, high
locking overhead

– coarse granularity (higher in tree): low locking overhead,
low concurrency

Database Systems Concepts 14.27 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Example of Granularity Hierarchy

DB

A1

ra1

A2

Fa
Fb Fc

ra2
ran

rb1
rbk

rc1
rcm

… … …

The highest level in the example hierarchy is the entire database.
The levels below are of type area, file and record in that order.

Database Systems Concepts 14.28 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Intention Lock Modes

• In addition to S and X lock modes, there are three additional
lock modes with multiple granularity:

– intention-shared (IS): indicates explicit locking at a lower
level of the tree but only with shared locks.

– intention-exclusive (IX): indicates explicit locking at a lower
level with exclusive or shared locks

– shared and intention-exclusive (SIX): the subtree rooted by
that node is locked explicitly in shared mode and explicit
locking is being done at a lower level with exclusive-mode
locks.

• intention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes.

Database Systems Concepts 14.29 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Compatibility Matrix with Intention Lock Modes

The compatibility matrix for all lock modes is:

IS IX S SIX X

IS
√ √ √ √ ×

IX
√ √ × × ×

S
√ × √ × ×

SIX
√ × × × ×

X × × × × ×

Note:
√

= true, and ×= false

Database Systems Concepts 14.30 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiple Granularity Locking Scheme

• Transaction Ti can lock a node Q, using the following rules:

1. The lock compatibility matrix must be observed.
itemThe root of the tree must be locked first, and may be
locked in any mode.

2. A node Q can be locked by Ti in S or IS mode only if the
parent of Q is currently locked by Ti in either IX or IS mode.

3. A node Q can be locked by Ti in X, SIX, or IX mode only if
the parent of Q is currently locked by Ti in either IX or SIX
mode.

4. Ti can lock a node only if it has not previously unlocked any
node (that is, Ti is two-phase).

5. Ti can unlock a node Q only if none of the children of Q are
currently locked by Ti .

• Observe that locks are acquired in root-to-leaf order, whereas
they are released in leaf-to-root order.

Database Systems Concepts 14.31 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiversion Schemes

• Multiversion schemes keep old versions of data item to
increase concurrency.

– Multiversion Timestamp Ordering

– Multiversion Two-Phase Locking

• Each successful write results in the creation of a new version
of the data item written.

• Use timestamps to label versions.

• When a read (Q) operation is issued, select an appropriate
version of Q based on the timestamp of the transaction, and
return the value of the selected version.

• reads never have to wait as an appropriate version is returned
immediately.

Database Systems Concepts 14.32 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiversion Timestamp Ordering

• Each data item Q has a sequence of versions
< Q1, Q2, . . . , Qm >. Each version Qk contains three data
fields:

– Content – the value of version Qk .

– W-timestamp (Qk) – timestamp of the transaction that
created (wrote) version Qk

– R-timestamp (Qk) – largest timestamp of a transaction that
successfully read version Qk

• when a transaction Ti creates a new version Qk of Q, Qk ’s
W-timestamp and R-timestamp are initialized to TS(Ti).

• R-timestamp of Qk is updated whenever a transaction Tj reads
Qk , and TS(Tj) > R-timestamp(Qk).

Database Systems Concepts 14.33 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiversion Timestamp Ordering (Cont.)

• Suppose that transaction Ti issues a read (Q) or write (Q)
operation. Let Qk denote the version of Q whose write
timestamp is the largest write timestamp less than or equal to
TS(Ti).
1. If transaction Ti issues a read (Q), then the value returned is

the content of version Qk .
2. If transaction Ti issues a write (Q), and if TS(Ti) <

R-timestamp(Qk), then transaction Ti is rolled back.
Otherwise, if TS(Ti) = W-timestamp(Qk), the contents of Qk

are overwritten, otherwise a new version of Q is created.

• Reads always succeed; a write by Ti is rejected if some other
transaction Tj that (in the serialization order defined by the
timestamp values) should read Ti ’s write, has already read a
version created by a transaction older than Ti .

Database Systems Concepts 14.34 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiversion Two-Phase Locking

• Differentiates between read-only transactions and update
transactions

• Update transactions acquire read and write locks, and hold all
locks up to the end of the transaction. That is, update
transactions follow rigorous two-phase locking.
– Each successful write results in the creation of a new

version of the data item written.
– each version of a data item has a single timestamp whose

value is obtained from a counter ts counter that is
incremented during commit processing.

• Read-only transactions are assigned a timestamp by reading
the current value of ts counter before they start execution;
they follow the multiversion timestamp-ordering protocol for
performing reads.

Database Systems Concepts 14.35 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Multiversion Two-Phase Locking (Cont.)

• When an update transaction wants to read a data item, it
obtains a shared lock on it, and reads the latest version. When
it wants to write an item, it obtains X lock on; it then creates a
new version of the item and sets this version’s timestamp to ∞.

• When update transaction Ti completes, commit processing
occurs:

– Ti sets timestamp on the versions it has created to
ts counter + 1

– Ti increments ts counter by 1

• Read-only transactions that start after Ti increments
ts counter will see the values updated by Ti . Read-only
transactions that start before Ti increments the ts counter will
see the value before the updates by Ti . Therefore only
serializable schedules are produced.

Database Systems Concepts 14.36 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deadlock Handling

• Consider the following two transactions:

T1: write(X) T2: write(Y)
write(Y) write(X)

• Schedule with deadlock

T1 T2

lock-X on X
write(X)

lock-X on Y
write(Y)
wait for lock-X on X

wait for lock-X on Y

Database Systems Concepts 14.37 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deadlock Handling

• System is deadlocked if there is a set of transactions such that
every transaction in the set is waiting for another transaction in
the set.

• Deadlock prevention protocols ensure that the system will
never enter into a deadlock state. Some prevention strategies :

– Require that each transaction locks all its data items before
it begins execution (predeclaration).

– Impose partial ordering of all data items and require that a
transaction can lock data items only in the order specified
by the partial order (graph-based protocol).

Database Systems Concepts 14.38 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

More Deadlock Prevention Strategies

• Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

• wait-die scheme — non-preemptive

– older transaction may wait for younger one to release data
item. Younger transactions never wait for older ones; they
are rolled back instead.

– a transaction may die several times before acquiring
needed data item

• wound-wait scheme — preemptive

– older transaction wounds (forces rollback) of younger
transaction instead of waiting for it. Younger transactions
may wait for older ones.

– may be fewer rollbacks than wait-die scheme.

Database Systems Concepts 14.39 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deadlock prevention (Cont.)

• Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and
starvation is hence avoided.

• Timeout-Based Schemes :

– a transaction waits for a lock only for a specified amount of
time. After that, the wait times out and the transaction is
rolled back.

– thus deadlocks are not possible

– simple to implement; but starvation is possible. Also difficult
to determine good value of the timeout interval.

Database Systems Concepts 14.40 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deadlock Detection

• Deadlocks can be described as a wait-for graph, which
consists of a pair G = (V,E),

– V is a set of vertices (all the transactions in the system)

– E is a set of edges; each element is an ordered pair
Ti → Tj .

• If Ti → Tj is in E, then there is a directed edge from Ti to Tj ,
implying that Ti is waiting for Tj to release a data item.

• When Ti requests a data item currently being held by Tj , then
the edge Ti → Tj is inserted in the wait-for graph. This edge
is removed only when Tj is no longer holding a data item
needed by Ti .

• The system is in a deadlock state if and only if the wait-for
graph has a cycle. Must invoke a deadlock-detection algorithm
periodically to look for cycles.

Database Systems Concepts 14.41 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deadlock Detection (Cont.)

T26 T28

T25

T27

Wait-for graph with no cycle

T26 T28

T25

T27

Wait-for graph with a cycle

Database Systems Concepts 14.42 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Deadlock Recovery

• When deadlock is detected :

– Some transaction will have to rolled back (made a victim) to
break deadlock. Select that transaction as victim that will
incur minimum cost.

– Rollback – determine how far to roll back transaction

∗ Total rollback: Abort the transaction and then restart it.
∗ More effective to roll back transaction only as far as

necessary to break deadlock.

– Starvation happens if same transaction is always chosen as
victim. Include the number of rollbacks in the cost factor to
avoid starvation.

Database Systems Concepts 14.43 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Insert and Delete Operations

• If two-phase locking is used :
– A delete operation may be performed only if the transaction

deleting the tuple has an exclusive lock on the tuple to be
deleted.

– A transaction that inserts a new tuple into the database is
given an X-mode lock on the tuple

• Insertions and deletions can lead to the phantom
phenomenon.

– A transaction that scans a relation (eg., find all accounts in
Perryridge) and a transaction that inserts a tuple in the
relation (eg., insert a new account at Perryridge) may
conflict in spite of not accessing any tuple in common.

– If only tuple locks are used, non-serializable schedules can
result: the scan transaction may not see the new account,
yet may be serialized before the insert transaction.

Database Systems Concepts 14.44 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Insert and Delete Operations (Cont.)

• Actually, the transaction scanning the relation is reading
information that indicates what tuples the relation contains,
while a transaction inserting a tuple updates the same
information. The information should be locked.

• One solution: associate a data item with the relation, to
represent the information about what tuples the relation
contains. Transactions scanning the relation acquire a shared
lock in the data item, while transactions inserting or deleting a
tuple acquire an exclusive lock on the data item.
(Note: locks on the data item do not conflict with locks on
individual tuples.)

• Above protocol provides very low concurrency for
insertions/deletions. Index locking protocols provide higher
concurrency.

Database Systems Concepts 14.45 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Index Locking Protocol

• Every relation must have at least one index. Access to a
relation must be made only through one of the indices on the
relation.

• A transaction Ti that performs a lookup must lock all the index
buckets that it accesses, in S-mode.

• A transaction Ti may not insert a tuple ti into a relation r
without updating all indices to r. Ti must perform a lookup on
every index to find all index buckets that could have possibly
contained a pointer to tuple ti , had it existed already, and
obtain locks in X-mode on all these index buckets. Ti must also
obtain locks in X-mode on all index buckets that it modifies.

• The rules of the two-phase locking protocol must be observed.

Database Systems Concepts 14.46 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Concurrency in Index Structures

• Indices are unlike other database items in that their only job is
to help in accessing data.

• Index-structures are typically accessed very often, much more
than other database items.

• Treating index-structures like other database items leads to low
concurrency. Two-phase locking on an index may result in
transactions executing practically one-at-a-time.

• It is acceptable to have nonserializable concurrent access to
an index as long as the accuracy of the index is maintained. In
particular, the exact values read in an internal node of a B+-tree
are irrelevant so long as we land up in the correct leaf node.

• There are index concurrency protocols where locks on internal
nodes are released early, and not in a two-phase fashion.

Database Systems Concepts 14.47 Silberschatz, Korth and Sudarshan c©1997

'
&

$
%

Concurrency in Index Structures (Cont.)

• Example of index concurrency protocol:
Use crabbing instead of two-phase locking on the nodes of the
B+-tree, as follows. During search/insertion/deletion:

– First lock the root node in shared mode.

– After locking all required children of a node in shared mode,
release the lock on the node.

– During insertion/deletion, upgrade leaf node locks to
exclusive mode.

– When splitting or coalescing requires changes to a parent,
lock the parent in exclusive mode.

• Above protocol can cause excessive deadlocks. Better
protocols are available; see Section 14.8 for one such protocol,
the B-link tree protocol.

Database Systems Concepts 14.48 Silberschatz, Korth and Sudarshan c©1997

	Lock-Based Protocols
	Lock-Based Protocols (Cont.)
	Lock-Based Protocols (Cont.)
	Pitfalls of Lock-Based Protocols
	Pitfalls of Lock-Based Protocols (Cont.)
	The Two-Phase Locking Protocol
	The Two-Phase Locking Protocol (Cont.)
	The Two-Phase Locking Protocol (Cont.)
	Lock Conversions
	Automatic Acquisition of Locks
	Automatic Acquisition of Locks (Cont.)
	Graph-Based Protocols
	Tree Protocol
	Graph-Based Protocols (Cont.)
	Timestamp-Based Protocols
	Timestamp-Based Protocols (Cont.)
	Timestamp-Based Protocols (Cont.)
	Example Use of the Protocol
	Correctness of Timestamp-Ordering Protocol
	Recoverability and Cascade Freedom
	Thomas' Write Rule
	Validation-Based Protocol
	Validation-Based Protocol (Cont.)
	Validation Test for Transaction T_j
	Schedule Produced by Validation
	Multiple Granularity
	Example of Granularity Hierarchy
	Intention Lock Modes
	Compatibility Matrix with Intention Lock Modes
	Multiple Granularity Locking Scheme
	Multiversion Schemes
	Multiversion Timestamp Ordering
	Multiversion Timestamp Ordering (Cont.)
	Multiversion Two-Phase Locking
	Multiversion Two-Phase Locking (Cont.)
	Deadlock Handling
	Deadlock Handling
	More Deadlock Prevention Strategies
	Deadlock prevention (Cont.)
	Deadlock Detection
	Deadlock Detection (Cont.)
	Deadlock Recovery
	Insert and Delete Operations
	Insert and Delete Operations (Cont.)
	Index Locking Protocol
	Concurrency in Index Structures
	Concurrency in Index Structures (Cont.)

