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Global Memory Access Optimization

Performance of global memory becomes a bottleneck easily

global memory bandwdith is low relatively to arithmetic
performance of GPU (G200 ≥ 24 FLOPS/float, G100 ≥ 30)

400–600 cycles latency

The throughput can be significantly worse with bad parallel access
pattern

the memory has to be accessed continuously (coalescing)

use of just certain subset of memory regions should be
avoided (partition camping)
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Continous Memory Access (C. C. < 2.0)

GPU memory needs to be accessed in larger blocks for efficiency

global memory is split into 64 B segments

two of these segments are aggregated into 128 B segments
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Continous Memory Access (C. C. < 2.0)

A half of a warp can transfer data using single transaction or one
to two transactions when transactions when transferring a 128 B
word

it is necessary to use large words

one memory transaction can transfer 32 B, 64 B, or 128 B
words

GPUs with c. c. ≤ 1.2

the accessed block has to begin at an address dividable by 16×
data size
k-th thread has to access k-th block element
some threads needn’t participate

if these rules are not obeyed, each element is retrieved using a
separate memory transaction
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Continous Memory Access (C. C. < 2.0)

GPUs with c. c. ≥ 1.2 are less restrictive

each transfer is split into 32 B, 64 B, or 128 B transactions in a
way to serve all requests with the least number of transactions

order of threads can be arbitrarily permuted w.r.t. transferred
elements
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Continous Memory Access (C. C. < 2.0)

Threads are aligned, element block is continous, order is not
permuted – continuous access on all GPUs
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Unaligned Memory Access (C. C. < 2.0)

Threads are not aligned, element block is continuous, order is not
permuted – one transaction on GPUs with c. c. ≥ 1.2
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Unaligned Memory Access (C. C. < 2.0)

Similar case may result in a need for two transactions
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Unaligned Memory Access Performance (C. C. < 2.0)

Older GPUs perform smallest possible transfer (32 B) for each
element, thus reducing performance to 1/8
Newer GPUs perform (c. c. ≥ 1.2) two transfers
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Interleaved Memory Access Performance (C. C. < 2.0)

The bigger the spaces between elements, the bigger performance
drop on GPUs with c. c. ≥ 1.2 – the effect is rather dramatic
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Global Memory Access with Fermi (C. C. ≥ 2.0)

Fermi has L1 and L2 cache

L1: 256 B per row, 16 kB or 48 kB per multiprocesor in total

L2: 32 B per row, 768 kB on GPU in total

What are the advantages?

more efficient programs with unpredictable data locality

unaligned access – no slowdown in principle

interleaved access – data needs to be used before it is flushed
from the cache, otherwise the same or bigger problem as with
c. c. < 2.0 (L1 cache may be turned of to avoid overfetching)
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Partition camping

relevant for c. c. 1.x

processors based on G80 have 6 regions, G200 have 8 regions
of global memory

the memory is split into 256 B regions

even access among the regions is needed for maximum
performance

among individual blocks
block are usually run in order given by their position in the grid

if only part of regions is used, the resulting condition is called
partition camping

generally not as critical as the continuous access

more tricky, problem size dependent, disguised from
fine-grained perspective
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HW Organization of Shared Memory

Shared memory is organized into memory banks, which can be
accessed in parallel

c. c. 1.x 16 banks, c. c. 2.x 32 banks, memory space mapped
in an interleaved way with 32 b shift

to use full memory performance, we have to access data in
different banks

broadcast implemented – if all threads access the same data
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Bank Conflict

Bank conflict

occurs when some threads in warp/half-warp access data in
the same memory bank (except for when accessing exactly the
same data)

memory access gets serialized

performance drop is proportional to number of parallel
operations that the memory has to perform to serve a request

there is a difference if some threads access different data in a
single bank and the same data in a single bank
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Access without Conflicts
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n-Way Conflicts
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Broadcast
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Access Patterns

Alignment is not needed, bank conflicts not generated

int x = s [ threadIdx . x + offset ] ;

Interleaving does not create conflicts if c is odd

int x = s [ threadIdx . x ∗ c ] ;

Access to the same variable never generates conflicts on c. c. 2.x,
while on 1.x only if thread count accessing the variable is multiple
of 16

int x = s [ threadIdx . x % c ] ;
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Other Memory Types

Transfers between host and GPU memory

need to be minimized (often at cost of decreasing efficiency of
computation on GPU)

may be accelerated using page-locked memory

it is more efficient to transfer large blocks at once

computations and memory transfers should be overlapped

Texture memory

designed to reduce number of transfers from the global
memory

works well for aligned access

does not help if latency is the bottleneck

may simplify addressing or add filtering

Jǐŕı Filipovič GPU Hardware Performance



Global Memory Access Optimization Matrix Transposition Instruction Speed

Other Memory Types

Constant memory

as fast as registers if the same value is read

performance decreases linearly with number of different values
read

Registers

read-after-write latency, disguised if at least 192 threads are
running for c. c. 1.x or at least 768 threads are running for
c. c. 2.x

possible bank conflicts even in registers

compiler tries to avoid them
we can make life easier for the compiler if we set block size to
multiple of 64
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Matrix Transposition

From theoretical perspective:

a trivial problem

trivial parallelization

trivially limited by the memory throughput (no arithmetic ops
done)

__global__ void mtran ( float ∗odata , float∗ idata , int n ){
int x = blockIdx . x ∗ blockDim . x + threadIdx . x ;
int y = blockIdx . y ∗ blockDim . y + threadIdx . y ;
odata [ x∗n + y ] = idata [ y∗n + x ] ;

}
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Performance

When running the code on GeForce GTX 280 with large enough
matrix 4000 × 4000, the throughput will be 5.3 GB/s
Where’s the problem?

Access to odata is interleaved After
transposition modification:

odata [ y∗n + x ] = idata [ y∗n + x ] ;

the throughput is 112.4 GB/s. If idata is accessed in an
interleaved way too, the resulting throughput would be 2.7 GB/s.
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On Removing Interleaving

The matrix can be processed per block

we read the block into he shared memory row-wise

we will store its transposition into the global memory row-wise

thus having both reading and writing without interleaving

What size of blocks should be used?

lets consider square blocks

for aligned reading, the row size has to be multiple of 16

we can consider block sizes of 16 × 16, 32 × 32, and 48 × 48
because of shared memory size limitations

best size can be determined experimentally
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Block Transposition

__global__ void mtran_coalesced ( float ∗odata , float ∗idata , int n ){
__shared__ float tile [ TILE_DIM ] [ TILE_DIM ] ;

int x = blockIdx . x ∗ TILE_DIM + threadIdx . x ;
int y = blockIdx . y ∗ TILE_DIM + threadIdx . y ;
int index_in = x + y∗n ;
x = blockIdx . y ∗ TILE_DIM + threadIdx . x ;
y = blockIdx . x ∗ TILE_DIM + threadIdx . y ;
int index_out = x + y∗n ;

for ( int i = 0 ; i < TILE_DIM ; i += BLOCK_ROWS )
tile [ threadIdx . y+i ] [ threadIdx . x ] = idata [ index_in+i∗n ] ;

__syncthreads ( ) ;

for ( int i = 0 ; i < TILE_DIM ; i += BLOCK_ROWS )
odata [ index_out+i∗n ] = tile [ threadIdx . x ] [ threadIdx . y+i ] ;

}
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Performance

The highest performance was measured for 32 × 32 block size and
32 × 8 thread block size – 75.1 GB/s

that’s significantly better but still far from simple copying

the kernel is more complex, contains synchronization

we need to figure out whether we got the maximum or there’s
still a problem somewhere

if we only copy within the blocks, we get 94.9GB/s

something is still sub-optimal
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Shared Memory

When reading from the global memory, we write into the shared
memory row-wise

tile [ threadIdx . y+i ] [ threadIdx . x ] = idata [ index_in+i∗n ] ;

When writing to the global memory, we read from the shared
memory column-wise

odata [ index_out+i∗n ] = tile [ threadIdx . x ] [ threadIdx . y+i ] ;

That’s reading with interleaving which is multiple of 16, the whole
column is in a single memory bank – thus creaing 16-way bank
conflict
A solution is padding:

__shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1 ] ;
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Jǐŕı Filipovič GPU Hardware Performance



Global Memory Access Optimization Matrix Transposition Instruction Speed

Shared Memory

When reading from the global memory, we write into the shared
memory row-wise

tile [ threadIdx . y+i ] [ threadIdx . x ] = idata [ index_in+i∗n ] ;

When writing to the global memory, we read from the shared
memory column-wise

odata [ index_out+i∗n ] = tile [ threadIdx . x ] [ threadIdx . y+i ] ;

That’s reading with interleaving which is multiple of 16, the whole
column is in a single memory bank – thus creaing 16-way bank
conflict
A solution is padding:

__shared__ float tile [ TILE_DIM ] [ TILE_DIM + 1 ] ;
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Performance

Now our implementations shows 93.4 GB/s.

as good as simple copying

it seems we can’t do much better for given matrix

beware of different input data sizes (see partition camping)
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Performance Drops

The performance drops for some size and the behavior is regular

for matrices sized multiple of 512, we only get 19 GB/s

for other matrices sized multiple of 256, we only get 35 GB/s

for other matrices sized multiple of 128, we only get 62 GB/s
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Performance Drops

One memory region has width of 2 blocks (256 B / 4 B per float,
32 floats in a block). If we analyze block placement w.r.t. matrix
size, we learn that

with multiple of 512 size, the blocks are in the same columns
in the same region

with multiple of 256 size, each column is at most in two
regions

with multiple of 128, each column is at most in four regions

We have discovered partition camping.
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How to Remove Partition Camping?

We can pad “fake data” and avoid bad matrix sizes.

it makes further work on the algorithm more complicated

it occupies more memory

We can change the mapping of thread blocks id’s on matrix blocks

diagonal mapping ensures access to different regions

int blockIdx_y = blockIdx . x ;
int blockIdx_x = ( blockIdx . x+blockIdx . y ) % gridDim . x ;
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Performance

New implementation gives 80 GB/s

performance doesn’t drop where we saw it previously

for matrix size of multiple of 128 still worse then the original
implementation

the algorithm is more complex

we can use it only for the problematic data sizes

For given problem, there may not be (and often there is not) an
ideal algorithm for the whole input data size range. It is necessary
to benchmark as not all the problems are easily revealed just by
looking at the code.
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Performance Summary

All optimizations were only toward better accommodation of HW
properties

still we got 17.6× speedup

when creating an algorithm, it is necessary to understand HW
limitations

otherwise we wouldn’t have to develop specifically for GPUs –
developing a good sequential algorithm would have been just
fine. . .
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Optimizations Effects

Beware of optimization effects

if we took 4096 × 4096 matrices instead of 4000 × 4000, the
memory bank conflict removal would have been just marginal

after removing partition camping, the memory bank conflicts
would have appeared

thus it makes sense to go from more general/substantial
optimizations to the less general ones

if some (provably correct) optimization does not result in
performance increase, we need to analyze, what the algorithm
is limited by
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Processing of Instructions

Processing of instructions on a multiprocessor (c. c. 1.x)

there are 8 SP cores and 2 SFU cores

if the SP and SPU instruction processing is not overlapped,
the multiprocessor can process up to 8 instructions per cycle

one warp is thus done in 4 or more cycles

some instructions are significantly slowe

instruction processing knowledge helps us to design optimal
code

Jǐŕı Filipovič GPU Hardware Performance



Global Memory Access Optimization Matrix Transposition Instruction Speed

Floating Point Operations

GPU is graphical HW primarily

graphical operations mostly use floating point numbers

efficiently implemented in GPUs

newer GPUs (c. c. ≥ 1.3) can work in double precision while
older ones in single precision only

some arithmetic operations are used very frequently in
graphics

GPU implements them in HW
HW implementation provides lower precision (not in issue for
lots of applications)
differentiated using “ ” prefix
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Aritmetic Operations

Floating point operations (throughput on an MP)

addition, multiplication 8 (1.x), 32 (2.0), 48 (2.1)
multiplication and addition may be combined into a single
MAD instruction for c. c. 1.x

lower precision
1 cycle speed on SP
fadd rn() and fmul rn() may be used to enforce avoiding

MAD instruction during compilation

MAD is replaced by FMAD for c. c. 2.x (same speed, higher
precision)

64b versions 1/8 (1.3), 1/2 (2.0), 1/12 (2.1)

inverse value 2 (1.x), 4 (2.0) a 8 (2.1)
division is relatively slower (by 1.23 on average for c. c. 1.x)

faster variant fdividef(x, y) 1.6 (c. c. 1.x)

inverted square root 2 (1.x), 4 (2.0) a 8 (2.1)

type conversion 8 (c.c. 1.x), 16 (c.c. 2.x)
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Aritmetic Operations

Floating point operations

sinf(x), cosf(x), expf(x) 2 (c.c. 1.x), 4 (c.c. 2.0), 8 (c.c.
1.2)
sinf(x), cosf(x), expf(x) more precise but an order of
magnitude slower
other operations with different speed and precision trade-offs
are implemented, see CUDA manual

Integer operations

addition as for the floating point ops
multiplication on c. c. 1.x 2 instructions on an MP

mul24(x, y) a umul24(x, y) 8 instructions

multiplication on c. c. 2.x is as fast as floating point ops,
24-bit version is slow
division and modulo is very slow, but if n is power of 2, we
can utilize

i/n is equivalent to i >> log2(n)
i%n is equivalent to i&(n − 1)
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Loops

Small loops have significant overhead

jumps need to be implemented

it is necessary to update control variable

significant part of instructions may be pointer arithmetics

Loop unrolling is an option

partially may be done by the compiler

we can do manual unrolling or use #pragma unroll
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Other Instructions

Other common instructions are done at the basic speed (i.e.,
correspond to number of SPs)

comparison

bit operations

memory access instructions (given the limitations discussed
earlier and memory latency/bandwidth)

the offset may be register value + constant

synchronization (unless we get blocked)
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Beware of Shared Memory

If memory bank conflict is avoided, the shared memory is as fast as
registers
But beware

instructions can work with only one operand in the shared
memory

if more than one operands in shared memory are used for one
instruction, explicit load/store is necessary

MAD instructions run slower (c.c. 1.x)
a + s[i ] 4 cycles per warp
a + a ∗ s[i ] 5 cycles per warp
a + b ∗ s[i ] cycles per warp

these details are not published by nVidia (revealed through
measurements)

may change with future GPU generations, interested only for
really critical code
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C for CUDA Compilation

Device code can be compiled into PTX assembler and binary files

PTX is intermediate code, does not correspond directly to
GPU instructions

easier to read
harder to figure out what really happens on GPU

native GPU code compiler is to be released

Binary files may be disassembled using decuda tool

third party product

may not work completely reliably

still quite useful
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