G.A.T.E. (Graphics Accessible To Everyone)

http://lsd.fi.muni.cz/gate

© Radek Ošlejšek Faculty of Informatics MU oslejsek@fi.muni.cz

Motivation

- Even a visually impaired people can paint http://pavla.wu.cz/
- Project goals:
 - graphics accessible *by means of a dialogue* (dialogue is the basic concept for manipulation with images)
 - to develop utilities for picture annotation
 - to provide blind users with support for investigating pictures
 - to develop system for image generation, enabling the blind to easily create some limited form of computer graphics

Navigation

Navigation

- Recursive Navigation Grid
 - Navigation backbone
 - Recursive division of the picture space into nine identical sectors, analogously to the layout of numerical keyboard

Semantics

Annotation concepts

- SVG (Scalable Vector Graphics) as a basic graphical format
 - defines scene graph, i.e. structural decomposition of graphics
 - based on XML important feature for the integration of annotation
 - supports vector graphics as well as raster images
 - supports scripting and events handling
- Ontology
 - defines structure and *semantics* of the world
 - OWL (Web Ontology Language), XML-based as well
 - formalization suitable for machine-learning and processing
 - can simplify process of annotation
 - e.g. by offering expected details (sub-objects)
 - can deduce consequences
 - e.g. swan + lake = swimming swan
 - can check correctness of a picture
 - required mainly for the automatic image creation, i.e. painting

Implementation

Ontology-based annotation

- I Traditional annotation appends a text description to graphical elements
- Ontology-based annotation formally defines semantics of object by ontology and then classifies graphical elements in the ontology.
 - 🛷 Mathematical formalism
 - Structuring the knowledge
 - Preventing chaos in terminology
 - Multilinguality
 - Generic OWL ontology does not restrict abstraction

Fig. Ontology-based annotation

 Fig. Abstraction [Booch, G., et al.: Object-Oriented Analysis and Design with Applications. Addison-Wesley Professional (2007)]

Graphical ontology

- Ontology designed from the perspective of graphical objects, their structure and visual properties.
 - E.g. medicinal and poisonous plants are both meaningful ontology categories. But are we able to define their visual characteristics, distinguishing them?
- Predefined visual attributes are similar to those used in energy distribution in 3D scenes, but transformed to approximate verbal form
 - E.g. viewDirection = {front_view, rear_view, left_view, ...}

Graphical ontology (cont.)

- OWL ontology prescribing important global visual characteristics and constraints valuable for picture investigation by means of dialogues
- I Visual aspects are organized in several classification types:
 - Picture classification
 - Properties related to the whole picture
 - E.g. genre (photo, sketch, ...), central focus (dominant objects)
 - Topological classification
 - Compactness and topology of objects
 - Compact objects = significant shape (human being, ...), non-compact objects (sky, smoke, ...), clusters (forest, crowd, ...)
 - Geometric classification
 - E.g. unusual size (big, narrow, ...), significant shape (oval, angular), etc.
 - Color classification
 - Properties related to illumination and colors.
 - E.g. dominant color (ravens are black), light direction (dark silhouettes due to a back light)

Annotation of raster images (photos)

- A: an open fireplace with a fire,
- B: seashore,
- C: Genoa Lake,
- D: Alps,
- E: cloud sky,
- A1: close vicinity of the fire, A2: the fire,
- B1: sand shore, B2: seashore vegetation,
- C1: the surface of the lake, C2 and C3: a swan on the lake,
- E1: dark clouds, E2: light shining from behind the clouds.

Dialogue-based picture investigation

What-where Language

- What-Where Language, WWL
 - Sentences of the form "WHAT is WHERE" or "WHERE is WHAT"
 - Enables the user to ask simple questions about the objects and their position
- Objects position
 - Recursive Navigation Grid
- WWL example:
- U: What is on the left?S: On the left there is a small elephant.
- U: Where is the elephant?
- S: There are two elephants. One is on the left, another on the right.
- U: What is in the foreground?
- S: In the foreground there is a big gray stone.

Dialogue-based investigation - example

- S: This is a color photo of Genoa Lake from its shore. For more information, you can choose Description, Technical information, use keywords or What-Where language.
- U: Description
- S: In the foreground, there is an open fireplace, shore and a small part of the lake. In the central part, there is the shore near the left-hand part of the picture and the lake is approximately in the right-hand part of the picture. In the background, there is a part of the lake, Alps and a cloud sky.

/Comment: The approximate depth regions and the first semantic level is taken into consideration./

U: What is in the lake?

/Comment: WWL question, the second semantic level is taken into consideration./

- S: There are two swans in the lake.
- U: Where are the swans?

/Comment: Another WWL question./

- S: Do you wish the approximate localization or use Recursive Navigation Grid?
- U: Approximate.
- S: One is near the center of the picture, the second one is horizontally near the right-hand side, vertically near the middle.

Visitor GoF Pattern

Visitor GoF Pattern (cont.)

Implementation

• Tip na BP: Vytvořit sadu visitorů. Vhodné pro 1-2 studenty.

Sonification

Sonification

- Color is represented as a triple of primary colors
 - e.g. red, green and blue (RGB)
- Sonification transforms color into the combination of sounds
 - three primary colors have assigned sounds
 - intensity of color component in sonified color drives loudness of produced sound
 - information about the intensity of three components usually does not help the user to imagine the color

HSL color model

HSV color model

Semantic color model

- Semantic Color Model (SCM) is approximative model which attempts to express a color as a combination of two well-known colors.
 - it is easier to imagine colors described in term like: yellow-green, gay with orange shade, etc.
 - it is easier to distinguish two sounds coding two well-known colors

Implementation

- PHP + Flash inside client
- Tip na DP: Přepsat v Javě, přesunout na stranu serveru (ustanovit interface), testování použitelnosti (latence), optimalizace a úpravy SCM, ...

Painting by means of dialogue

Result depends on experience

Result depends on experience

Painting example

U: Put a comet in the sector 9.
U: Put a snowman into the bottom left corner.
U: Write the text "Merry Christmas and Happy New Year" into the horizontal center, color yellow.
U: Write the text "PF 2010" into the bottom right corner, color blue.
U: Set background to snowflakes.
U: Generate.

Fig. The Chrismas card generated by a blind user

Implementation

• Tipy na DP/BP:

- Webové služby pro znalostní bázi (přesun DB obrázků na stranu serveru, strukturované záznamy, …)
- Propojení generátoru s WWL
- VIM modul

Thank you for your attention!

