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Abstract

We describe here a general approach for rare itemset
mining. While mining literature has been almost exclu-
sively focused on frequent itemsets, in many practical sit-
uations rare ones are of higher interest (e.g., in medical
databases, rare combinations of symptoms might provide
useful insights for the physicians). Based on an examina-
tion of the relevant substructures of the mining space, our
approach splits the rare itemset mining task into two steps,
i.e., frequent itemset part traversal and rare itemset listing.
We propose two algorithms for step one, a naı̈ve and an
optimized one, respectively, and another algorithm for step
two. We also provide some empirical evidence about the
performance gains due to the optimized traversal.

1. Introduction

Pattern mining techniques are designed for extracting in-
teresting and useful itemsets from a database. Among them,
frequent itemsets are usually thought to unfold “regulari-
ties” in the data, i.e. they are the witnesses of recurrent phe-
nomena and they are consistent with the expectations of the
domain experts. In some situations however, it may be inter-
esting to search for “rare” itemsets, i.e. itemsets that do not
occur frequently in the data (contrasting frequent itemsets).
These correspond to unexpected phenomena, possibly con-
tradicting beliefs in the domain [12, 16]. In this way, rare
itemsets are related to “exceptions” and thus may convey
information of high interest for experts in domains such as
biology or medicine.

Rare cases deserve special attention because they repre-
sent significant difficulties for data mining algorithms [20].
However, the underlying mining problems have not yet been
studied in detail. Indeed, the scarce literature on the sub-
ject is almost exclusively composed of work on adapting
the general levelwise pattern mining framework around the
Apriori algorithm [2] to various relaxations of the frequent
itemset and frequent association notions [11, 21, 9]. Al-

though these methods will typically retrieve large portions
of the search space for itemsets and associations that lay
outside its frequent part, this coverage nevertheless remains
incomplete since many rare associations will not be dis-
covered, either due to an excessive computational cost or
to overly restrictive definitions. Hence, as it was argued
in [17], these methods will fail to collect a large number of
potentially interesting patterns.

As a remedy, we propose a framework that is specifically
dedicated to the extraction of rare itemsets. It is based on
an intuitive yet formal definition of rare itemset. Its goal is
to provide a theoretical foundation for rare pattern mining,
with definitions of reduced representations and complexity
results for mining tasks, as well as to develop an algorithmic
tool suite (within the CORON project [19]) together with the
guidelines for its use.

In this paper we present a first result, i.e., a novel method,
for computing all rare itemsets. The first step thereof is the
identification of the minimal rare itemsets. These itemsets
jointly act as a minimal generation seed for the entire rare
itemset family. In the second step, the minimal rare item-
sets are processed in order to restore all rare itemsets. We
propose two algorithms for the first step: (i) a naı̈ve one
that relies on an Apriori-style enumeration, and (ii) an op-
timized method that limits the exploration to frequent gen-
erators only. The second task is solved by a straightforward
procedure. The present paper extends and completes a pre-
vious article [18].

The paper is organized as follows. We first provide
motivating examples drawn from biomedical applications.
Then, we introduce the basic concepts of frequent/rare pat-
tern mining followed by the presentation of our approach
with a detailed description of its two steps, the frequent
zone traversal in the itemset lattice, and the rare set listing,
respectively. Next, we provide the description of the afore-
mentioned three algorithms whereas the frequent traversal
algorithms are confronted within an experimental study of
the respective performances. Finally, lessons learned and
future work are discussed.



2. Motivation

As already mentioned, the discovery of rare itemsets,
and in sequence of rare association rules deriving from
rare itemsets, may be particularly useful in biology and
medicine. Suppose an expert in biology is interested in
identifying the cause of cardiovascular diseases (CVD) for
a given database of medical records. A frequent itemset
such as “{elevated cholesterol level, CVD}” may validate
the hypothesis that these two items are frequently associ-
ated, leading to the possible interpretation “people having
a high cholesterol level are at high risk for CVD”. On the
other hand, the fact that “{vegetarian, CVD}” is a rare item-
set may justify that the association of these two itemsets
is rather exceptional, leading to the possible interpretation
“vegetarian people are at a low risk for CVD”. Moreover,
the itemsets {vegetarian} and {CVD} can be both frequent,
while the itemset {vegetarian, CVD} is rare.

The second example is taken from the field of pharma-
covigilance, i.e., a field of pharmacology dedicated to the
detection, survey and study of adverse drug effects. Given
a database of adverse drug effects, rare itemset extraction
enables a formal way of associating drugs with adverse ef-
fects, i.e. finding cases where a drug had fatal or undesired
effects on patients. In this way, a frequent association such
as “{drug} ∪ {A}”, where “{A}” is an itemset describing
a kind of desirable effect, means that this association de-
scribes an expected and right way of acting for a drug. By
contrast, a rare itemset such as “{drug} ∪ {B}” may be in-
terpreted as the fact that “{B}” describes an abnormal way
of acting for a drug, possibly leading to an undesirable ef-
fect. Thus, searching for adverse effects for a drug may be
stated as a search for rare itemsets in a database.

A third example shows that the extraction of rare item-
sets proves to be useful in the analysis of healthy cohorts.
The real-world STANISLAS cohort is composed of a thou-
sand presumably healthy French families [15]. The role of
the cohort is to record administrative, medical, genetic, and
some other general data, in order to carry on experiments,
mainly statistical operations. A main objective is to inves-
tigate the impact of genetic and environmental factors on
the diversity in cardiovascular risk factors. An interesting
operation for the domain expert is to extract from the co-
hort profiles, i.e. itemsets in the present case, associating
genetic data with extreme or borderline values of biological
parameters. However, such types of associations are rare in
a healthy cohort, whence the potential utility of rare item-
sets for the expert.

3. Search space structure

Here we recall key notions from the frequent pattern
mining field and introduce the notations used in the paper.

3.1. Basic concepts

We assume standard pattern mining settings, i.e., a set of
m items I = {i1, i2, · · · , im} and a transaction database
(TDB) D = {t1, t2, · · · , tn} on top of I. A subset X of I
is referred to as itemset whereby if |X| = k, then X is a
k-itemset. Moreover, a transaction t is made of an itemset
It and a unique identifier tidt, typically, a natural number.
A sample TDB made of five transactions is depicted in Fig-
ure 1 (left). The fraction of transactions in D that contains
an itemset X is called the (absolute) support of X and is
denoted by supp(X) = |{t|t ∈ D, X ⊆ Xt}|.

Support is a prime measure of interest for itemsets: one
is typically – but not exclusively – interested in regulari-
ties in the data that manifest in recurring patterns. Thus,
intuitively, the itemsets of higher support are more attrac-
tive. Formally, the frequent itemset mining assumes a
search space for interesting patterns that correspond to the
Boolean lattice B(2I) of all possible itemsets (see Fig-
ure 1, right). The lattice is separated into two segments or
zones through a user-provided “minimum support” thresh-
old, denoted by min supp. Thus, given an itemset X , if
supp(X) ≥ min supp, then it is called frequent, otherwise
it is infrequent or rare.

Frequent itemsets (FIs) and rare itemsets belong to two
mutually complementary subsets of the powerset 2I that
further represent contiguous zones of the lattice B(2I). In
the technical language of lattice theory [7], these zones rep-
resent an order ideal (or downset) and an order filter (or
upset), respectively, which means that a subset of a fre-
quent itemset is necessarily frequent and, dually, a superset
of a rare itemset is necessarily rare. In the lattice in Fig-
ure 1, the two zones corresponding to a support threshold
of 3 are separated by a solid line. For example, the itemsets
{A}, {AB}, or {BE} are frequent whereas {D}, {BD}, or
{ACD} are rare.1

The rare itemset family and the corresponding lattice
zone is the target structure of our study. It may be further
split into two parts, the itemsets of support zero, hereafter
called zero itemsets (X with supp(X) = 0), on the one
hand, and all other rare itemsets, on the other hand. For in-
stance, {BCD} is a zero itemset whereas {D} is a non-zero
rare itemset.

It is noteworthy that the overall split of the lattice into
three “stripes” depends for its exact shape on the chosen
value for min supp. Furthermore, it can be generalized to n
stripes by providing an ordered sequence of n − 2 values.
Typically, we have assumed above that all itemsets can ei-
ther be rare or frequent, but this needs not to always be the
case. Thus, one can have two separate threshold values, one
for each family, thus leaving a possibly void intermediate
zone of neither-frequent-nor-rare itemsets.

1We use separator-free set notations, e.g. {AB} stands for {A, B}.



tid itemset
1 A, B, D, E
2 A, C
3 A, B, C, E
4 B, C, E
5 A, B, C, E

Figure 1. Left: A sample dataset (D) for the examples. Right: The powerset lattice of dataset D.

Whatever the exact number of thresholds and zones, each
zone is delimited by two subsets, the maximal elements and
the minimal ones, respectively. For instance, the minimal
frequent itemset is the empty set (whose support is |D|)
whereas the family of maximal frequent itemsets depends
on min supp. Similarly, the unique maximal rare itemset is
I which is usually, but not invariably, a zero itemset.

The above intuitive ideas are formalized in the notion of
a border introduced by Mannila and Toivonen in [13]. Ac-
cording to their definition, the maximal frequent itemsets
constitute the positive border of the frequent zone whereas
the minimal rare itemsets form the negative border of the
same zone. Obviously, the same holds for the border be-
tween non-zero and zero itemsets as well.

3.2. Computationally motivated results

In order to ground an effective and efficient computation
procedure for a particular zone, e.g., the frequent itemset
family, one must provide a characterization of its members.
Moreover, if the computation is done levelwise, i.e., by vis-
iting iteratively lattice levels that are made of itemsets of a
fixed size, one may also need a characterization of the zone
border(s). Indeed, if the zone comprises none of the lat-
tice extremal nodes, i.e., ∅ and I, as is the case of the rare
itemset zone, one needs to first pinpoint the starting points
of the zone exploration. These starting points are typically
the extremal elements, either maximal or minimal, i.e., the
positive borders. Furthermore, the computation would typ-
ically need to traverse a neighbor zone, hence the negative

border of the target zone must also be computed.
We consider here a computation of the rare itemsets that

approaches them starting from the lattice bottom, i.e., from
the frequent zone. Hence we need a characterization of
what is widely known as the positive and the negative bor-
der of the frequent itemsets, and corresponds for us to the
negative lower border and the positive lower border of the
rare itemsets, respectively. Moreover, should one need more
than simply the rare itemsets on the border, the adverse up-
per border must be characterized as well.

First, the negative lower border of rare itemsets is a struc-
ture known from the literature. The characterization of its
members, the maximal frequent itemsets, is straightforward:

Definition 1 An itemset is a maximal frequent itemset
(MFI) if it is frequent but all its proper supersets are rare.

Second, the positive lower border of rare itemsets, i.e.
the set of minimal rare itemsets is defined dually:

Definition 2 An itemset is a minimal rare itemset (mRI) if
it is rare but all its proper subsets are frequent.

There are at least two possibilities for reaching the mRI
family from the lattice bottom node that we discuss in the
next section. On the one hand, as we indicated above, a
levelwise search listing all frequent itemsets up to the MFIs
represents a straightforward solution. Indeed, the levelwise
search yields as a by-product all mRIs [13]. On the other
hand, the computation of MFIs has been tackled by dedi-
cated methods, hence an alternative solution will be to ex-
tract these itemsets directly and then use them as starting



point in the computation of the mRIs, e.g., using the algo-
rithm in [6]. The latter task is known to be computationally
hard as it amounts to computing the minimal transversals of
a hypergraph [5].

Hence we prefer a different optimization strategy that
still yields mRIs while traversing only a subset of the fre-
quent zone of the Boolean lattice. It exploits the minimal
generator status of the mRIs.

Definition 3 An itemset X is a (minimal or key) generator
if it has no proper subset with the same support (∀Y ⊂ X ,
supp(X) < supp(Y )).

In a way similar to FIs, generators form a downset in 2I :

Property 1 All subsets of a generator are generators [10].

In Figure 1, the downset of frequent generators is delim-
ited by a dashed line. For instance, knowing that {BC} is
a frequent generator, {B} and {C} are necessarily frequent
generators too. By Property 1, frequent generators (FGs)
can be traversed in a levelwise manner while yielding their
negative border as a by-product. Now, it is easy to see that
all mRIs are part of the negative border of frequent gener-
ators. To that end, it is enough to observe that mRIs are in
fact generators:

Proposition 1 All minimal rare itemsets are generators.

Thus, while there might well be other elements in the
negative border that are not generators, e.g., frequent item-
sets other than generators, all mRIs will necessarily lay on
this border. More specifically, all the rare itemsets on that
border will necessarily be minimal for their zone.

It remains now to provide an efficient criterion for rec-
ognizing frequent generators. The following property is a
reduction of the initial definition to the immediate prede-
cessors of a generator in the lattice (see [3]):

Proposition 2 An itemset X is a generator iff supp(X) 6=
mini∈X(supp(X \ {i})).

The property says that in order to decide whether a can-
didate set X is a generator, one needs to compare its support
to the support of its immediate predecessors in the lattice,
i.e., the subsets of size |X| − 1. Obviously, generators do
not admit predecessors of the same support.

The equivalent of the above results can be established
for the upper border of the rare non-zero zone of the lattice.
Thus, minimal zero generators can be defined as:

Definition 4 A minimal zero generator (mZG) is a zero
itemset whose proper subsets are all non-zero itemsets.

For instance, in Figure 1 there is only one mZG element,
{CD}. Finally, it is noteworthy that both sides of the bor-
der between frequent and rare itemsets play dual role in
their respective zones. Indeed, beside being extremal ele-
ments, i.e., maximal and minimal, respectively, they consti-
tute reduced representations for these zones as well. For in-
stance, to extract the entire family of frequent itemsets from
the MFIs, one only needs to generate all possible subsets
thereof. Conversely, if all rare itemsets, i.e., zero and non-
zero ones, are necessary, a dual technique will work that
amounts to generating all supersets of mRIs [18]. Should
zero itemsets be unnecessary, then minimal zero generators
would work as stop criterion: only supersets of mRIs that
do not include a minimal zero generator will be kept. Pro-
vided the support of these sets is required, it can be easily
computed along a single pass through the database.

The next two sections present the two methods for mRI
computation and the rare itemset listing procedure.

4. Finding minimal rare itemsets

Both algorithms described here produce the mRIs. How-
ever, Apriori-Rare lists all frequent itemsets before reaching
their negative border whereas MRG-Exp explores only the
frequent generators.

4.1. Finding mRIs with a näıve approach

As pointed out by Mannila and Toivonen in [13], the eas-
iest way to reach the negative border of the frequent itemset
zone, i.e., the mRIs, is to use a levelwise algorithm such
as Apriori. Indeed, albeit a frequent itemset miner, Apriori
yields the mRIs as a by-product. The mRIs are milestones
in the exploration as they indicate that the border of the fre-
quent zone has been crossed.

The overall principle of Apriori is rather intuitive: fre-
quent itemsets are generated levelwise, at each iteration i
targeting the itemset of length i, i.e., the ith level above
the lattice bottom node. The algorithm generates a set
of candidates that are further matched against the TDB
to evaluate their support in one database pass per itera-
tion. To avoid redundant checks, two techniques are used:
(i) candidates at level i+1 are generated by joining frequent
i-itemsets that share i− 1 of their items, thus increasing the
chance of the result being frequent, and (ii) candidates are
pruned a priori, i.e., before support computing, by eliminat-
ing those having a rare subset (of size i− 1). In doing that,
there is no need to explicitly represent rare itemsets: rather,
all i − 1 subsets of a candidate are generated dynamically
and their presence in the frequent itemset storage structure
is tested (absence means the subset, hence the candidate too,
is rare).



Algorithm MRG-Exp:

Description: finding minimal rare generators efficiently
Input: dataset plus min supp
Output: FGs plus mRGs

1) CG1 ← {1-itemsets};
2) SupportCount(CG1); //requires one database pass
3) loop over the rows of CG1 (c) {
4) c.pred supp← ∅.supp; //i.e., c.pred supp← |O|;
5) if (c.pred supp = c.supp) c.key← false;
6) else c.key← true;
7) }
8) RG1 ← { r ∈ CG1 | (r.key=true) ∧ (r.supp < min supp) };
9) FG1 ← { f ∈ CG1 | (f .key=true) ∧ (f .supp ≥ min supp) };

10) for (i← 1; true; i← i + 1)
11) {
12) CGi+1 ← GenCandidates(FGi);
13) if (CGi+1 = ∅) break; //i.e., break out from the “for” loop
14) SupportCount(CGi+1); //requires one database pass
15) loop over the rows of CGi+1 (c)
16) {
17) if (c.pred supp != c.supp) { //i.e., if c is a generator
18) if (c.supp < min supp) RGi+1 ← RGi+1 ∪ {c};
19) else FGi+1 ← FGi+1 ∪ {c};
20) }
21) }
22) }
23) GF ←

⋃
i FGi; //frequent generators

24) GMR ←
⋃

i RGi; //minimal rare generators

Apriori-Rare is a slightly modified version of Apriori
that stores the mRIs. Thus, whenever an i candidate sur-
vives the frequent i − 1 subset test, but proves to be rare,
it is kept as an mRI. For example, following the execution
of Apriori on dataset D (Figure 1, left), we get the follow-
ing result. In C1 (the set of 1-long candidates), there are 5
itemsets ({A}, {B}, {C}, {D}, and {E}) of which {D} is
rare. In C2 all itemsets are frequent ({AB}, {AC}, {AE},
{BC}, {BE}, and {CE}). In C3 ({ABC}, {ABE}, {ACE},
and {BCE}) there are two rare itemsets namely {ABC} and
{ACE}. Saving the three rare itemsets, one can obtain the
following minimal rare itemsets at the end: {D}, {ABC},
and {ACE}.

4.2. Finding mRIs in an efficient way

Following Proposition 1, we may avoid exploring all fre-
quent itemsets: instead, it is sufficient to look after frequent
generators only. In this case, mRIs, which are rare gener-
ators as well, can be filtered among the negative border of
the frequent generators.

For finding minimal rare generators, we focus exclu-
sively on frequent generators and their downset in the lattice
(see Algorithm MRG-Exp). Thus, frequent i-long genera-
tors are joined to create (i + 1)-long candidates. These un-
dergo a series of tests. On the one hand, the generator status
is established following Proposition 2 with the additional

CG1 pred supp key supp
{A} 5 yes 4
{B} 5 yes 4
{C} 5 yes 4
{D} 5 yes 1
{E} 5 yes 4

RG1 supp
{D} 1

FG1 supp
{A} 4
{B} 4
{C} 4
{E} 4

CG2 pred supp key supp
{AB} 4 yes 3
{AC} 4 yes 3
{AE} 4 yes 3
{BC} 4 yes 3
{BE} 4 — 4
{CE} 4 yes 3

RG2 supp
∅

FG2 supp
{AB} 3
{AC} 3
{AE} 3
{BC} 3
{CE} 3

CG3 pred supp key supp
{ABC} 3 yes 2
{ABE} 3 — 3
{ACE} 3 yes 2

RG3 supp
{ABC} 2
{ACE} 2

FG3 supp
∅

CG4 pred supp key supp
∅

Figure 2. Execution of the MRG-Exp algorithm.

condition that all subsets of the candidate must be frequent
generators. Thus, non-generator frequent itemsets and non-
minimal rare itemsets are discarded. Next, frequency test
against the TDB is used to separate frequent from (mini-
mal) rare generators.

The above reasoning is partly embedded into the
GenCandidates function which has three-fold effect.
First, it produces the (i+1)-long candidate generators, using
the i-long frequent generators in the FGi table. Second, all
candidates having an i-long subset which is not in FGi are
deleted. In this way, non-minimal rare itemsets are pruned,
and only potential generators are kept. Third, the function
determines the pred supp values of the candidates, i.e., the
minimum of the supports of all i-long subsets.

Later in the process, the pred supp is compared to the
actual support of a candidate. If both values are different
then the candidate is a true generator. Moreover, depending
on its support, it is either a frequent generator or a minimal
rare one, i.e., an mRI.

The execution of MRG-Exp on dataset D (Figure 1, left)
with min supp = 3 is illustrated in Figure 2. The algo-
rithm first performs one database scan to count the sup-
ports of 1-long itemsets. The pred supp column indicates
the minimum of the supports of all (i − 1)-long frequent
subsets. Itemsets of length 1 only have one frequent subset,
the empty set. By definition, the empty set is included in
every object of the database, thus its support is 100%. Com-
paring the support and pred supp values, it turns out that all
1-itemsets are generators. Testing the support values, item-
set {D} is copied to RG1, while the other generators are
copied to FG1. In CG2 there is one itemset that has the
same support as one of its subsets, thus {BE} is not a key



Algorithm Arima:

Description: restoring all (non-zero) rare itemsets from mRIs
Input: dataset plus mRIs
Output: all (non-zero) rare itemsets plus mZGs

1) mZG← ∅;
2) S ← {all attributes in D};
3) i← {length of smallest itemset in mRI};
4) //add the smallest itemsets in mRI to Ci:
5) Ci ← {i-long itemsets in mRI};
6) mZG← mZG ∪ {z ∈ Ci | support(z)= 0};
7) Ri ← {r ∈ Ci | support(r) > 0};
8) while (Ri 6= ∅)
9) {

10) loop over the elements of Ri (r) {
11) //in Cand no duplicates are allowed:
12) Cand← {all possible supersets of r using S};
13) loop over the elements of Cand (c) {
14) if c has a proper subset in mZG, then
15) delete c from Cand;
16) //i.e., if c is a superset of a min. zero gen.
17) }
18) //no duplicates are allowed in Ci+1:
19) Ci+1 ← Ci+1 ∪ Cand;
20) Cand← ∅; //re-initializing Cand

21) }
22) SupportCount(Ci+1); //requires one database pass
23) Ci+1 ← Ci+1 ∪ {(i + 1)-long itemsets in mRI};
24) mZG← mZG ∪ {z ∈ Ci+1 | support(z)= 0};
25) Ri+1 ← {r ∈ Ci+1 | support(r) > 0};
26) i← i + 1;
27) }
28) IR ←

⋃
i Ri; //(all non-zero) rare itemsets

generator. In the fourth iteration no new candidate is found
and the algorithm breaks out from the main loop. When the
algorithm stops, all minimal rare generators are found ({D},
{ABC}, and {ACE}).

5. Restoring all rare itemsets

To retrieve all rare itemsets from mRIs, we pro-
pose a prototype algorithm called “A Rare Itemset Miner
Algorithm” (see Algorithm Arima). We do not restore zero
itemsets because of their high number. Non-zero rare item-
sets are restored from mRIs in a levelwise manner. If a can-
didate has an mZG subset, then it is a clear zero itemset
hence it can be pruned. Thus, minimal zero generators help
reducing the search space by filtering zero itemsets during
candidate generation.

The execution of Arima on datasetD (Figure 1, left) with
min supp = 3 is illustrated in Figure 3. The algorithm first
takes the smallest mRI, {D}, which is non-zero, thus it is

copied to R1. Its 2-long supersets are generated and stored
in C2 ({AD}, {BD}, {CD} and {DE}). With one database
pass their supports can be counted. Since {CD} is a zero
itemset, it is copied to the mZG list. Non-zero itemsets
are copied to R2. For each rare itemset in R2, all possible
supersets are generated. For instance, from {AD} we can
generate the following candidates: {ABD}, {ACD}, and
{ADE}. If a candidate has an mZG subset, then the can-
didate is surely a zero itemset and can be pruned ({ACD}).
Potentially non-zero candidates are stored in C3. Duplicates
are not allowed in Ci tables. From mRIs the 3-long item-
sets are added to C3 ({ABC} and {ACE}). The algorithm
stops when the Ri table is empty. The union of the Ri ta-
bles gives all non-zero rare itemsets. At the end, all mZGs
are also collected, so that if necessary, zero itemsets could
be easily retrieved from that list. The process is identical to
rare set generation from mRIs, hence we skip it.

6. Experimental results

In our experiments we compared Apriori-Rare and
MRG-Exp. The algorithms were implemented in Java in
the CORON platform [19]. The experiments were car-
ried out on an Intel Pentium IV 2.4 GHz machine run-
ning under Debian GNU/Linux operating system with 512
MB of RAM. All times reported are real, wall clock times
as obtained from the Unix time command between input
and output. For the experiments we have used the follow-
ing datasets: T20I6D100K, C20D10K, and MUSHROOMS.
The T20I6D100K2 is a sparse dataset, constructed accord-
ing to the properties of market basket data that are typical
weakly correlated data. The C20D10K is a census dataset
from the PUMS sample file, while the MUSHROOMS3 de-
scribes mushrooms characteristics. The last two are highly
correlated datasets.

The execution times of Apriori-Rare and MRG-Exp are
illustrated in Table 1. The table also shows the number of
frequent itemsets, the number of frequent generators, the
proportion of the number of FGs to the number of FIs, and
the number of minimal rare itemsets.

The T20I6D100K synthetic dataset mimics market bas-
ket data that are typical sparse, weakly correlated data.
In this dataset, the number of FIs is small and nearly all
FIs are generators. Thus, MRG-Exp works exactly like
Apriori-Rare, i.e. it has to explore almost the same search
space. The reason why MRG-Exp is a bit slower is that
MRG-Exp determines in addition the pred supp value of
each candidate generator.

In datasets C20D10K and MUSHROOMS, the number
of FGs is much less than the total number of FIs. Hence,
MRG-Exp can take advantage of exploring a much less

2http://www.almaden.ibm.com/software/quest/Resources/
3http://kdd.ics.uci.edu/



mZG = ∅
S = {A, B, C, D, E}
mRI = {D(1), ABC(2), ACE(2)}
i = 1

C1 supp
{D} 1
mZGbefore = ∅
mZGafter = ∅

R1 supp
{D} 1

C2 supp
{AD} 1
{BD} 1
{CD} 0
{DE} 1
mZGbefore = ∅
mZGafter ={CD}

R2 supp
{AD} 1
{BD} 1
{DE} 1

C3 supp
{ABD} 1
{ADE} 1
{BDE} 1
{ABC} 2
{ACE} 2
mZGbefore ={CD}
mZGafter ={CD}

R3 supp
{ABD} 1
{ADE} 1
{BDE} 1
{ABC} 2
{ACE} 2

C4 supp
{ABDE} 1
{ABCE} 2
mZGbefore ={CD}
mZGafter ={CD}

R4 supp
{ABDE} 1
{ABCE} 2

C5 supp
∅
mZGbefore ={CD}
mZGafter ={CD}

R5 supp
∅

Figure 3. Execution of the Arima algorithm.

search space than Apriori-Rare. Thus, MRG-Exp performs
much better on dense, highly correlated data. For exam-
ple, on the dataset MUSHROOMS at min supp = 10%,
Apriori-Rare needs to extract 600,817 FIs, while MRG-Exp
extracts 7,585 FGs only. This means that MRG-Exp reduces
the search space of Apriori-Rare to 1.26%!

7. Related work

Work on various relaxations of the crisp frequent itemset
notion has been exclusively based on the Apriori algorithm,
which is historically the first levelwise pattern mining algo-
rithm [2]. A straightforward extension of the above strat-
egy based on the notion of perfectly rare itemset has been
used in [9]. Such itemsets have all their non-empty subsets
also rare, which means they compose an almost complete
downset in 2I (except for the bottom node). Obviously,
the perfectly rare itemset family is only a small subset of
the entire rare itemset family. Further approaches target the
so-called rare item problem, and hence try to relax the min-
imal support threshold for some non-frequent items. As a
result, their output will include some of the rare itemsets in
the TDB. However, this is by no means a first-class solution
to the rare itemset mining problem since: (i) only a tiny part
of the rare itemset family is retrieved, and (ii) both rare and
frequent itemsets are mixed.

The tasks of generator and MFI mining have been ex-
tensively explored and there is a rich literature on that sub-
ject. Historically, A-Close [14] was the first algorithm to ex-
tract the frequent generators as an intermediate step in the
process of frequent closed itemset4 mining. A-Close and

4Closed itemsets are the antipodes of generators since maximal for their
support value.

MRG-Exp share the same principle of limiting the levelwise
exploration to frequent generators.

A large number of mining methods target MFIs [4, 1, 8].
Experiments have shown that this approach is very efficient
for finding large itemsets in databases.

8. Conclusion and future work

We presented an approach for rare itemset mining from
a dataset that splits the problem into two tasks. The first
task, i.e., the traversal of the frequent zone in the space,
is addressed by two different algorithms, a naı̈ve one,
Apriori-Rare, which relies on Apriori and hence enumer-
ates all frequent itemsets; and an optimized one, MRG-Exp,
which limits the considerations to frequent generators only.
Experimental results prove the interest of the optimized
method on dense, highly correlated datasets. The second
task, i.e., the retrieval of all rare itemsets from the minimal
ones, is tackled with a straightforward method.

A likely limitation of this study is the need to store all
rare itemsets which may prove very expensive in storage
space. Furthermore, generating rare association rules from
all rare itemsets would produce a yet another very large set
of association rules. Hence, an intriguing question for fu-
ture research is the definition of compact representation for
rare itemsets and rules, just like the ones defined for fre-
quent itemsets (closed, disjunction-free, etc.) and rules (in-
formative and generic bases, etc.).

On the application side, an experimental study with the
STANISLAS cohort data is under way and its first results are
more than encouraging.



min supp execution time (sec.) # FIs # FGs #FGs
#FIs # mRIs

Apriori-Rare MRG-Exp
T20I6D100K

10% 11.47 15.91 7 7 100.00% 907
0.75% 146.61 156.65 4,710 4,710 100.00% 211,578
0.5% 238.27 262.32 26,836 26,305 98.02% 268,915
0.25% 586.21 622.30 155,163 149,447 96.32% 537,765

C20D10K
30% 125.97 26.55 5,319 967 18.18% 230
20% 326.87 50.31 20,239 2,671 13.20% 400
10% 842.85 104.25 89,883 9,331 10.38% 901
5% 1,785.08 162.07 352,611 23,051 6.54% 2,002
2% 4,074.33 228.44 1,741,883 57,659 3.31% 7,735

MUSHROOMS

40% 13.73 6.00 505 153 30.30% 254
30% 46.10 12.64 2,587 544 21.03% 409
15% 869.27 40.68 99,079 3,084 3.11% 1,846
10% 3,097.16 69.23 600,817 7,585 1.26% 3,077

Table 1. Response times of Apriori-Rare and MRG-Exp.
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