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IntroductionIntroduction

We are drowning in the deluge of 
data that are being collected 
world-wide, while starving for 
knowledge at the same time*
Despite the enormous amount of 
data, particular events of interest 
are still quite rare
Rare events are events that occur 
very infrequently, i.e. their
frequency ranges from 0.1% to 
less than 10%
However, when they do occur, their consequences can be 
quite dramatic and quite often in a negative sense

“Mining needle in a haystack.  
So much hay and so little time”

* - J. Naisbitt, Megatrends: Ten New Directions Transforming Our Lives. New York: Warner Books, 1982.
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Related problemsRelated problems

Chance discovery
“chance is defined as some event which is significant 
for decision-making in a specified domain” Yukio Ohsawa

chance event may be either positive (opportunity), or 
negative (potential risk)
Chance Discovery – learning, explaining and 
discovering such chance events, typically rare to find

Novelty Detection
Exception Mining
Black Swan* [Taleb’04]

* N. Talleb, The Black Swan: Why Don’t We Learn that We Don’t Learn?, draft 2004

Applications of Rare ClassesApplications of Rare Classes

Network intrusion detection
number of intrusions 
on the network is typically 
a very small fraction of 
the total network traffic

Credit card fraud detection
Millions of regular transactions are
stored, while only a very small 
percentage corresponds to fraud

Medical diagnostics
When classifying the pixels in mammogram images, cancerous 
pixels represent only a very small fraction of the entire image

Computer 
Network

Compromised 
MachineAttacker
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Industrial Applications of Rare ClassesIndustrial Applications of Rare Classes

Insurance Risk Modeling (e.g. Pednault, Rosen, Apte ’00)
Claims are rare but very costly

Web mining
Less than 3% of all people visiting Amazon.com make a purchase

Targeted Marketing (e.g. Zadrozny, Elkan ’01) 
Response is typically rare but can be profitable

Churn Analysis (e.g. Mamitsuka and Abe ’00)
Churn is typically rare but quite costly 

Hardware Fault Detection (e.g. Apte, Weiss, Grout 93)
Faults are rare but very costly 

Airline No-show Prediction (e.g. Lawrence, Hong, et al ’03)
Disease is typically rare but can be deadly 

Limitations of Standard Data Mining SchemesLimitations of Standard Data Mining Schemes

Standard approaches for feature selection and 
construction do not work well for rare class analysis
While most normal events are similar to each other, rare 
events are quite different from one another 

regular credit transaction are fairly standard, while fraudulent
ones vary from the standard ones in many different ways

Metrics used to evaluate normal event detection methods
Accuracy is not appropriate for evaluating methods for rare event 
detection

In many applications data keeps arriving in an ongoing 
stream, and there is a need to detect rare events on the 
fly, with models built only on the events seen so far
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Evaluation of Rare Class Problems Evaluation of Rare Class Problems –– FF--valuevalue

Accuracy is not sufficient metric for evaluation
Example: network traffic data set with 99.9% of normal data and 
0.1% of intrusions
Trivial classifier that labels everything with the normal class can 
achieve 99.9% accuracy !!!!!

P r e d ic te d  
c la s s  

C o n fu s io n  
m a tr ix  

N C  C  
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c la s s  C  F N  T P  
 
 

rare class – C

normal class – NC

• Focus on both recall and precision
– Recall      (R) = TP/(TP + FN)
– Precision (P) = TP/(TP + FP)

• F – measure = 2*R*P/(R+P)

Evaluation of Rare Class Problems Evaluation of Rare Class Problems -- ROCROC

Standard measures for evaluating rare class problems:
Detection rate (Recall) - ratio between the number of correctly 
detected rare events and the total number of rare events
False alarm (false positive) rate – ratio 
between the number of data records 
from majority class that are misclassified 
as rare events and the total number of 
data records from majority class 
ROC Curve is a trade-off between 
detection rate and false alarm rate
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Evaluation of Rare Class Problems Evaluation of Rare Class Problems -- AUCAUC
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Area under Curve (AUC)

Area under the ROC curve 
(AUC) is computed using a 
form of the trapezoid  rule.

Equivalent Mann-Whitney 
two-sample statistics:
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m ratings of negative cases r –
n ratings of positive cases r +

Example: in naïve Bayes, rating may be the 
posterior probability of the positive class

Major Techniques for Detecting Rare EventsMajor Techniques for Detecting Rare Events

Unsupervised techniques
Deviation detection, outlier analysis, anomaly detection, 
exception mining
Analyze each event to determine how similar (or dissimilar) it is 
to the majority, and their success depends on the choice of 
similarity measures, dimension weighting

Supervised techniques
Mining rare classes
Build a model for rare events based on labeled data (the 
training set), and use it to classify each event
Advantage: they produce models that can be easily understood
Drawback: The data has to be labeled

Other techniques – association rules, clustering
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Unsupervised Techniques Unsupervised Techniques ––

Anomaly DetectionAnomaly Detection

Build models of “normal” behavior and 
detect anomalies as deviations from it
Possible high false alarm rate - previously unseen (yet 
legitimate) data records may be recognized as 
anomalies
Two types of techniques 

with access to normal data
with NO access to normal data (not known what is “normal”)

False 
alarm

Missed 
rare events

Anomalous data records

Normal profile

Outlier Detection SchemesOutlier Detection Schemes
Outlier is defined as a data point which is very different from the 
rest of the data based on some measure
Detect novel attacks/intrusions by identifying them as deviations 
from “normal” behavior

Identify normal behavior
Construct useful set of features
Define similarity function
Use outlier detection algorithm

Statistics based approaches
Distance based approaches

Nearest neighbor approaches
Clustering based approaches
Density based schemes

Model based schemes
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Statistics Based Outlier Detection SchemesStatistics Based Outlier Detection Schemes

Statistics based approaches – data points are modeled 
using stochastic distribution ⇒ points are determined 
to be outliers depending on their relationship with this 
model

With high dimensions, difficult to estimate distributions

Major approaches
Finite Mixtures

BACON

Using probability distribution

Information Theory measures

Statistics Based Outlier Detection SchemesStatistics Based Outlier Detection Schemes

Using Finite Mixtures – SmartSifter (SS)*
SS uses a probabilistic model as a representation of 
underlying mechanism of data generation.

Histogram density used to represent a probability density for 
categorical attributes

SDLE (Sequentially Discounting Laplace Estimation) for learning 
histogram density for categorical domain

Finite mixture model used to represent a probability density 
for continuous attributes

SDEM (Sequentially Discounting Expectatioan and Maximizing) 
for learning finite mixture for continuous domain

SS gives a score to each example xi (input into the 
model) on the basis of the learned model, measuring 
how large the model has changed after the learning

* K. Yamanishi, On-line unsupervised outlier detection using finite mixtures with 
discounting learning algorithms, KDD 2000
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Statistics Based Outlier Detection SchemesStatistics Based Outlier Detection Schemes

BACON* Basic Steps:
1. Select an initial basic subset of size m free of outliers

Initial subset selected based on Mahalanobis distances
Initial subset selected based on distances from the medians

2. Fit the model to the subset and for ∀xi compute the discrepancies

3. Set the new basic subset to all points with discrepancy less than 
cnpr where              is 1 − α percentile of the χ2 distribution with 
p degrees of freedom, cnpr = cnp + chr is a correction factor, 
chr = max{0, (h−r)/(h+r)}; h=[(n+p + 1)/2]; r is the size of the current 
basic subset

4. Iterate steps 2&3 until the the size of basic subset no longer changes

5. List observations excluded by the final basic subset as outliers

* N. Billor, A. Hadi, P. Velleman, BACON: blocked adaptive computationally efficient 
outlier nominators, Computational Statistics & Data Analysis, 34, 279-298, 2000.
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Statistics Based Outlier Detection SchemesStatistics Based Outlier Detection Schemes

Using Probability Distributions*
Basic Assumption: # of normal elements in the 
data is significantly larger then # of anomalies
Distribution for the data D is given by:

D = (1-λ)·M + λ·A 
M - majority distribution, A - anomalous distribution
Mt, At sets of normal, anomalous elements 
respectively
Compute likelihood Lt(D) of distribution D at time t
Measure how likely each element xt is outlier:

Mt = Mt-1 \ {xt}, At = At-1 ∪ {xt}
Measure the difference (Lt – Lt-1)

* E. Eskin, Anomaly Detection over Noisy Data using Learned Probability  
Distributions, ICML 2000
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Statistics Based Outlier Detection SchemesStatistics Based Outlier Detection Schemes

Using InformationUsing Information--Theoretic Measures*Theoretic Measures*
Entropy measures the uncertainty (impurity) of data items

The entropy is smaller when the class distribution is skewer
Each unique data record represents a class => the smaller the entropy 
the fewer the number of different records (higher redundancies)
If the entropy is large, data is partitioned into more regular subsets
Any deviation from achieved entropy indicates potential intrusion
Anomaly detector constructed on data with smaller entropy will be 
simpler and more accurate

Conditional entropy H(X|Y) tells how much uncertainty 
remains in sequence of events X after we have seen 
subsequence Y (Y ∈ X)
Relative Conditional Entropy

* W. Lee, et al, Information-Theoretic Measures for Anomaly Detection, IEEE 
Symposium on Security 2001

Distance based Outlier Detection SchemesDistance based Outlier Detection Schemes

Nearest Neighbor (NN) approach1,2

For each data point d compute the distance to the k-th nearest 
neighbor dk

Sort all data points according to the distance dk

Outliers are points that have the largest distance dk and therefore 
are located in the more sparse neighborhoods

Usually data points that have top n% distance dk are identified as 
outliers

n – user parameter

Not suitable for datasets that have modes with varying density

1. Knorr, Ng,Algorithms for Mining Distance-Based Outliers in Large Datasets, VLDB98
2. S. Ramaswamy, R. Rastogi, S. Kyuseok: Efficient Algorithms for Mining Outliers from 
Large Data Sets, ACM SIGMOD Conf. On Management of Data, 2000.
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Distance based Outlier Detection SchemesDistance based Outlier Detection Schemes

Mahalanobis-distance based approach
Mahalanobis distance is more appropriate for computing distances 
with skewed distributions

dM = 

Example:
In Euclidean space, data point p1 is closer to the origin than data point p2

When computing Mahalanobis distance, data points p1 and p2 are equally 
distant from the origin
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Density based Outlier Detection SchemesDensity based Outlier Detection Schemes

Local Outlier Factor (LOF) approach*
For each data point O compute compute the distance to the k-th
nearest neighbor (k-distance)

Compute reachability distance (reach-dist) for each data example O 
with respect to data example p as: 

reach-dist(O,p) = max{k-distance(p), d(O,p)}

Compute local reachability density (lrd) of data example O as inverse 
of the average reachabaility distance based on the MinPts nearest 
neighbors of data example O

lrd(O) =

Compute LOF of example p as the average of the ratios of the density 
of example p and the density of its nearest neighbors

LOF(O) =

∑
p

MinPts pOdistreach
MinPts
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∑⋅
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*- Breunig, et al, LOF: Identifying Density-Based Local Outliers, KDD 2000.
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Advantages of Density based SchemesAdvantages of Density based Schemes

Local Outlier Factor (LOF) approach

Example:

p2
× p1

×

In the NN approach, p2 is 
not considered as outlier, 
while the LOF approach 
find both p1 and p2 as 
outliers 

NN approach may 
consider p3 as outlier, but 
LOF approach does not

×p3

Distance from p3 to 
nearest neighbor

Distance from p2 to 
nearest neighbor

Clustering based outlier detection schemes*Clustering based outlier detection schemes*

Radius ω of proximity is specified
Two points x1 and x2 are “near” if d(x1, x2) ≤ ω
Define N(x) – number of points that are within ω of x
Time Complexity O(n2) ⇒ approximation of the algorithm 
Fixed-width clustering is first applied

The first point is a center of a cluster
If every subsequent point is “near” add to a cluster

Otherwise create a new cluster
Approximate N(x) with N(c)
Time Complexity – O(cn), c - # of clusters

Points in small clusters - anomalies

* E. Eskin et al., A Geometric Framework for Unsupervised Anomaly Detection: 
Detecting Intrusions in Unlabeled Data, 2002 
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Clustering based outlier detection schemesClustering based outlier detection schemes

K-nearest neighbor + canopy clustering approach *
Compute the sum of distances to the k nearest 
neighbors (k-NN) of each point

Points in dense regions – small k-NN score
k has to exceed the frequency of any given attack type
Time complexity O(n2)

Speed up with canopy clustering that is used to split 
the entire space into small subsets (canopies) and then 
to check only the nearest points within the canopies
Apply fixed width clustering and compute distances 
within clusters and to the centers of other clusters

* E. Eskin et al., A Geometric Framework for Unsupervised Anomaly Detection: 
Detecting Intrusions in Unlabeled Data, 2002 

Clustering based outlier detection schemesClustering based outlier detection schemes

FindOut algorithm* by-product of WaveCluster
Main idea: Remove the clusters from original data and 
then identify the outliers
Transform data into multidimensional signals using 
wavelet transformation

High frequency of the signals correspond to regions where is 
the rapid change of distribution – boundaries of the clusters
Low frequency parts correspond to 
the regions where the data is 
concentrated

Remove these high and low 
frequency parts and all remaining 
points will be outliers

* D. Yu, G. Sheikholeslami, A. Zhang, 
FindOut: Finding Outliers in Very Large Datasets, 1999.
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Model based outlier detection schemesModel based outlier detection schemes

Use a prediction model to learn the normal 
behavior
Every deviation from learned prediction model 
can be treated as anomaly or potential intrusion
Recent approaches:

Neural networks
Unsupervised Support Vector Machines (SVMs)

Neural networks for outlier detection*Neural networks for outlier detection*

Use a replicator 4-layer feed-forward neural network 
(RNN) with the same number of input and output nodes
Input variables are the output variables so that RNN 
forms a compressed model of the data during training
A measure of outlyingness is the reconstruction error 
of individual data points.

Target 
variablesInput

* S. Hawkins, et al. Outlier detection using replicator neural networks, 
DaWaK02 2002.
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Unsupervised Support Vector Machines for Unsupervised Support Vector Machines for 
Outlier DetectionOutlier Detection

Unsupervised SVMs attempt to separate the entire set of 
training data from the origin, i.e. to find a small region 
where most of the data lies and label data points in this 
region as one class

Parameters
Expected number of outliers

Variance of rbf kernel
As the variance of the rbf kernel 
gets smaller, the number of 
support vectors is larger and 
the separating surface gets 
more complex

origin

push the hyper plane away from 
origin as much as possible

* E. Eskin et al., A Geometric Framework for Unsupervised Anomaly Detection: 
Detecting Intrusions in Unlabeled Data, 2002.

* A. Lazarevic, et al., A Comparative Study of Anomaly Detection Schemes in Network 
Intrusion Detection, SIAM 2003

Supervised Classification for Rare ClassesSupervised Classification for Rare Classes

Standard classification models are not suitable for rare classes
Models must be able to handle skewed class distributions
Learning from data streams - sequences of events
Key approaches:

Manipulating data records (oversampling / undersampling / generating 
artificial examples)
Design of new algorithms (SHRINK, PN-rule, CREDOS)
Case specific feature/rule weighting
Boosting based algorithms (SMOTEBoost, RareBoost)
Cost sensitive classification (MetaCost, AdaCost, CSB, SSTBoost)
Emerging Patterns
Query/Active Learning Approach
Internally bias discrimination
Clustering based classification
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Manipulating Data RecordsManipulating Data Records

Over-sampling the rare class*
Make the duplicates of the rare events until the data set contains 
as many examples as the majority class => balance the classes
Does not increase information but increase misclassification cost

Down-sizing (undersampling) the majority class**
Sample the data records from majority class

Randomly
Near miss examples
Examples far from minority class examples (far from decision boundaries)

Introduce sampled data records into the original data set instead 
of original data records from the majority class
Usually results in a general loss of information and potentially
overly general rules

* Ling, C., Li, C. Data mining for direct marketing: Problems and solutions, KDD-98.
** Kubat M., Matwin, S., Addressing the Curse of Imbalanced Training Sets: One-Sided 

Selection, ICML 1997.

Manipulating Data Records Manipulating Data Records –– generating examplesgenerating examples

SMOTE (Synthetic Minority Over-sampling TEchnique)*
- over-sampling the rare (minority) class by 
synthetically generating the minority class examples

When generating artificial minority class example,  
distinguish two types of features

Continuous features

Nominal (Categorical) features

Generating artificial anomalies** [Fan 2001]
Artificial anomalies are generated around the edges of the 
sparsely populated data regions

* N. Chawla, K. Bowyer, L. Hall, P. Kegelmeyer, SMOTE: Synthetic Minority Over-
Sampling Technique, JAIR, vol. 16, 321-357, 2002.

** W. Fan et al, Using Artificial Anomalies to Detect Unknown and Known Network 
Intrusions, IEEE ICDM 2001
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Blue points corresponds to minority class examples

SMOTE Technique for Continuous FeaturesSMOTE Technique for Continuous Features

* N. Chawla, K. Bowyer, L. Hall, P. Kegelmeyer, SMOTE: Synthetic Minority Over-
Sampling Technique, JAIR, vol. 16, 321-357, 2002.
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For each minority example k compute 5 nearest 
minority class examples {i, j, l, n, m}

SMOTE Technique for Continuous FeaturesSMOTE Technique for Continuous Features
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SMOTE Technique for Continuous FeaturesSMOTE Technique for Continuous Features

Randomly choose an example out of 5 closest points
Distance between the randomly chosen point i and the 
current point k is diff

diff

i
jk

l

m

n

Randomly generate a number, such that it represents a 

vector V that has length that is less then diff

SMOTE Technique for Continuous FeaturesSMOTE Technique for Continuous Features

diff
V
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Synthetically generate event k1 based on the vector V, 
such that k1 lies between point k and point i

SMOTE Technique for Continuous FeaturesSMOTE Technique for Continuous Features

diff

k1

i
jk

l

m

n

After applying SMOTE 3 times (SMOTE parameter = 300%) 

data set may look like as the picture above

SMOTE Technique for Continuous FeaturesSMOTE Technique for Continuous Features

diff

k1 k3

k2
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SMOTE Technique for Nominal FeaturesSMOTE Technique for Nominal Features

For each minority example compute k nearest 
neighbors using Value Difference Metric (VDM)

C1 – total number of occurrences of V1

C1i – total number of occurrences of V1 for class i
n – number of classes, p – constant (usually 1)

Create a synthetic example by taking a majority 
vote among the k nearest neighbors
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21 ),(δ V1, V2 – corresponding feature values

Example: E1 = A B C D E

2 nearest neighbors are:
E2 = A F C G N

E3 = H B C D N

Esmote = A B C D N

Generating artificial anomalies*Generating artificial anomalies*

For sparse regions of data generate more artificial 
anomalies than for the dense data regions

For each attribute value v generate 
[(# of occurrence for most frequent value) 
– (# of occurrences for this value)] 
anomalies (va ≠ v, other attributes random 
from data set)

Filter artificial anomalies to avoid collision with known 
instance
Use RIPPER to discover rule sets
Pure anomaly detection vs. combined misuse and anomaly 
detection

* W. Fan et al, Using Artificial Anomalies to Detect Unknown and Known Network 
Intrusions, IEEE ICDM 2001.

Values of 
Attribute i 

Number of 
occurrences 

Number of 
generated 
examples 

A 1000 - 
B 100 900 
C 10 990 
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Design of New Algorithms: SHRINK*Design of New Algorithms: SHRINK*

SHRINK insists that a mixed region is labeled as positive 
(rare) class, whether positives examples prevail in that 
region or not

Focus on searching best positive region (with maximum ratio 
positive examples to negative examples)

System is restricted to search for a single region to be labeled as positive

Induce classifier with low complexity
Classifier will be represented by the network of tests
Tests on numeric attributes have the form xi ∈ [min ai, max ai], Boolean xi = 0 v 1
hi - output of i-th test, hi = 1 if the test suggests a positive label, hi = -1 otherwise.

Example is classified positive if     hi·wi > θ,  wi - weight of i-th test  
Remove min ai or max ai whichever reduces more radically # of negative examples 
and results in better g-mean score
Find the interval with the maximum g-mean score and select it as the test
Tests with gi > 0.5 are discarded

* M. Kubat,R. Holte, S. Matwin, Learning when Negative Examples Abound, ECML-97
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Design of New Algorithms: PNDesign of New Algorithms: PN--rulerule Learning*Learning*

P-phase:
cover most of the positive examples with high support
seek good recall

N-phase:
remove FP from examples covered in P-phase
N-rules give high accuracy and significant support

Existing techniques can possibly 
learn erroneous small signatures for 
absence of C

C

NC

PNrule can learn strong signatures 
for presence of NC in N-phase

C

NC

* M. Joshi, et al., PNrule, Mining Needles in a Haystack: Classifying Rare Classes via 
Two-Phase Rule Induction, ACM SIGMOD 2001
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Design of New Algorithms: CREDOS*Design of New Algorithms: CREDOS*

Ripple Down Rules (RDRs) offer a unique tree based 
representation that generalizes the decision tree and DNF 
rule list models and specializes a generic form of multi-
phase PNrule model
First use ripple down rules to overfit the training data

Generate a binary tree where each node is characterized by the rule 
Rh, a default class and links to two child subtrees
Grow the RDS structure in a recursive manner
Induces rules at a node

Prune the structure in one pass to improve generalization 
using Minimum Description Length (MDL) principle

Different mechanism from decision trees

* M. Joshi, et al., CREDOS: Classification Using Ripple Down Structure (A Case for 
Rare Classes), SIAM International Conference on Data Mining, (SDM'04), 2004.

Case specific feature/rule weightingCase specific feature/rule weighting

Case specific feature weighting*
Information gain case-based learning (IG-CBL) algorithm

Create decision tree for the learning task
Compute the feature weights

wf = IG(f) if f is in the generated decision tree (IG – information gain), otherwise wf = 0
Testing phase: 

For each rare class test example replace global weight vector 
with dynamically generated weight vector that depends on the 
path taken by that test example

Case specific rule weighting**
LERS (Learning from Examples based on Rough Sets) algorithm uses modified 
“bucket brigade” algorithm to create certain and possible rules

Strength – how well the rule performed during the training phase
Support – sum of scores of all the matching rules from the concept

Increase the rule strength for all rules describing the rare class
* C. Cardie, N. Howe, Improving Minority Class Prediction Using Case specific feature 

weighting, ICML-1997.
** J. Grzymala et al, An Approach to Imbalanced Data Sets Based on Changing Rule 

Strength, AAAI Workshop on Learning from Imbalanced Data Sets, 2000.
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Manipulates training examples to generate 
multiple classifiers

Proceeds in a series of rounds

Maintains a Dt - distribution of weights wt over 
the training examples

- importance weight

where Zt is a normalization constant chosen 
such that Dt+1 is a distribution

In each round t, the learning algorithm is invoked 
to output a classifier Ct

Standard Boosting Standard Boosting -- BackgroundBackground
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Boosting Boosting –– Combining ClassifiersCombining Classifiers

The error of classifier Ct (ht) is used to update the 
sampling weights of the training examples

Misclassified examples – higher weights

Correctly classified examples – smaller weights

The final classifier is constructed as a weighted 
vote of individual classifiers

Each classifier Ct (ht) is weighted by αt according 
to its accuracy on the entire training set
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Boosting Based Algorithms Boosting Based Algorithms -- SMOTEBoostSMOTEBoost

SMOTEBoost embeds SMOTE technique in the 
boosting procedure

Utilize SMOTE for improving the prediction of the 
minority class
Utilize boosting for improving general performance

After each boosting round, SMOTE is used to 
create new synthetic examples from the 
minority class
SMOTEBoost indirectly gives higher weights to 
misclassified minority (rare) class examples
Constructed classifiers are more diversed

* N. Chawla, A. Lazarevic, et al, SMOTEBoost: Improving the Prediction of Minority 
Class in Boosting, PKDD 2003.

Boosting Based Algorithms Boosting Based Algorithms -- SLIPPERSLIPPER

SLIPPER builds rules only for positive class
The only rule that predicts the negative class is a single 
default rule

The weak hypotheses ht(x) used here are rules
Force the weak hypothesis based on a rule R to abstain 
(vote with confidence 0) on all instances not satisfied 
by R (x ∉R) by setting the prediction h(x) for x ∉R to 0
Force the rule to predict with the same confidence CR
on every x ∈ R, for t-th rule Rt , αtht(x) = CRt
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* W. Cohen, Y. Singer, A Simple, Fast and Effective Rule Learner, Annual Conference 
of American Association for Artificial Intelligence, 1999.
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Boosting Based Algorithms Boosting Based Algorithms -- RareBoostRareBoost

RareBoost-1
Modify boosting by choosing different weight update 
factors for positives (TP, FP)                        
and negatives (TN, FN)

To achieve good recall for class C, distinguish between FN from TP
To achieve good precision for class C, distinguish between TP from FP

RareBoost-2
Build rules for both the classes in every iteration
Modify SLIPPER by choosing between C and NC model 
based on whichever minimizes corresponding Zt value

SLIPPER-C chooses between C and default
SLIPPER-NC chooses between NC and default
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* M. Joshi, et al., Predicting Rare Classes: Can Boosting Make Any Weak Learner 
Strong?, KDD 2002.

Cost Sensitive ClassificationCost Sensitive Classification

Learning to minimize the expected cost of 
misclassifications
Most classification learning algorithms attempt to 
minimize expected number of misclassification errors
In many applications, different kinds of classification 
errors have different costs, so we need cost-sensitive 
methods

Intrusion Detection
False positive: security analysts waste time to analyze normal behavior
False negative: failure to detect intrusion could cause big damages

Fraud Detection
False positive: resources wasted investigating non-fraud
False negative: failure to detect fraud could be very expensive

Medical Diagnosis: Cost of false negative error - Postponed 
treatment or failure to treat; death or injury
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Cost MatrixCost Matrix

C(i,j) = cost of predicting class i when the true class is j
Example: Misclassification Costs Diagnosis of Cancer

If M is the confusion matrix for a classifier: M(i,j) is the 
number of test examples that are predicted to be in 
class i when their true class is j
Expected misclassification cost is Hadamard product of 
M and C divided by the number of test examples N:

True State of PatientPredicted State 
of Patient

C(1,1) = 0C(1,0) = 100Negative - 1
C(0,1) = 1C(0,0) = 1Positive – 0
Negative - 1Positive - 0

∑
=

⋅
N

ji
jiCjiM

N 1,
),(),(1

Cost Sensitive Classification TechniquesCost Sensitive Classification Techniques

Two Learning Problems
Cost C known at learning time
Cost C not known at learning time (only becomes 
available at classification time)

Learned classifier should work well for a wide range of costs

Learning with known cost C
Find a classifier  h that minimizes the expected 
misclassification cost on new data set points
Two basic strategies

Modify the inputs to the learning algorithm to reflect cost C
Incorporate cost C into the learning algorithm
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Cost Sensitive Classification TechniquesCost Sensitive Classification Techniques

Modifying inputs of learning algorithm
If there are 2 classes and the cost of a false positive is 
λ times larger than the cost of a false negative, put a 
weight of λ on each negative training example
λ = C(1,0) / C(0,1)
Then apply the learning algorithm as before

Setting λ by class frequency (less frequent class has higher cost)

λ ~ 1/nk, nk - number of training examples from class k
Setting λ by cross-validation
Setting λ according to class frequency is cheaper 
and gives the same results as setting λ by cross 
validation

Cost Sensitive Learning: Cost Sensitive Learning: MetaCostMetaCost

MetaCost wraps a “cost-minimizing” procedure around 
an arbitrary classifier, so that the classifier effectively 
minimizes cost, while seeking to minimize zero-one loss
Bayes optimal prediction for x is class i that minimizes

R(i|x) = Σ P(j|x) C(i,j)
Conditional risk R(i|x) is expected cost of predicting that x belongs 
to class i
Both C(i,j) and P(j|x) together with the above rule mean that the 
example space X can be partitioned into j regions, such that class j
is the best (optimal) prediction in region j

MetaCost is based on estimating class probabilities P(j|x)
Standard probability estimation methods can determine 
these probabilities, but require machine learning bias of 
both the classifier and the density

* P. Domingos, MetaCost: A general Method for making Classifiers Cost-Sensitive, 
KDD 1999.
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Cost Sensitive Learning: Cost Sensitive Learning: MetaCostMetaCost

MetaCost estimates the class probabilities by learning 
multiple classifiers and for each example it uses the 
class’s fraction of the total vote as an estimate

Method for estimating probabilities for modern unstable learners
Bagging – given a training set S, a “bootstrap” sample of 
it is constructed by taking |S| samples with replacement
MetaCost is different from bagging, where it uses smaller 
number of examples in each sample, which allows it to be 
more efficient
While estimating class probabilities, MetaCost allows 

taking all the models generated (samples) into 
consideration, or only those samples
The first type has a lower variance, because of its larger 
samples, and the second has lower statistical bias

* P. Domingos, MetaCost: A general Method for making Classifiers Cost-Sensitive, 
KDD 1999.

Cost Sensitive Classification TechniquesCost Sensitive Classification Techniques

Modifying learning algorithm - Incorporating cost 
C into the learning algorithm

Cost-Sensitive Boosting
AdaCost*
CSB**
SSTBoost***

Cost C can be incorporated directly into the error 
criterion when training neural networks (Kukar & 
Kononenko, 1998)

* W. Fan, S. Stolfo, J. Zhang, and P. Chan, Adacost: Misclassification cost-sensitive 
boosting, ICML 1999.

** K. M. Ting, A Comparative Study of Cost-Sensitive Boosting Algorithms, ICML 2000.

*** S. Merler, C. Furlanello, B. Larcher, and A. Sboner. Automatic model selection in 
cost-sensitive boosting, Information Fusion, 2003
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Cost Sensitive BoostingCost Sensitive Boosting

Training examples of the form (xi, yi, ci), where ci
is the cost of misclassifying xi
Boosting: wi := wi * exp(–αt yi ht(xi))/Zt
AdaCost [Fan et al., 1999]

wi := wi * exp(–αt yi ht(xi) βi)/Zt
βi = ½ * (1 + ci)      if error

= ½ * (1 – ci)      otherwise

Cost-Sensitive Boosting (CSB) [Ting, 2000]
wi := βi wi * exp(–αt yi ht(xi))/Zt
βi = ci if error

= 1                      otherwise

SSTBoost [Merler et al., 2003]
wi := wi * exp(–αt yi ht(xi) βi)/Zt
βi = ci if error
βi = 2 – ci otherwise
ci = w  for positive examples; 1 – w  for negative examples

Learning with Unknown CLearning with Unknown C

Construct a classifier h(x,C) that can accept the 
cost function at run time and minimize the 
expected cost of misclassification errors with 
respect to cost C
Approach: Learning to estimate P(y|x)

Probability Estimation Trees [Provost, Domingos 2000]
Bagged Probability Estimation Trees [Provost, 
Domingos 2000]
Lazy Option Trees [Friedman96, Kohavi97, Margineantu & 
Dietterich, 2001]
Bagged Lazy Option Trees [Margineantu, Dietterich 2001]
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Internally bias discrimination*Internally bias discrimination*

A rule learning algorithm is
used to uncover indicators of
fraudulent behavior from a data
set of customer transactions
Indicators are used to create a 
set of monitors, which profile 
legitimate customer behavior 
and indicate anomalies
Outputs of the monitors are used as features in a system 
that learns to combine evidence to generate high 
confidence alarms
The system has been applied to the problem of detecting 
cellular cloning fraud

* T. Fawcett, F. Provost, Adaptive Fraud Detection, DMKD 1997.

Selective Sampling based on Query LearningSelective Sampling based on Query Learning

Active/Query Learning [Angluin 88]
Learner chooses examples on which the labels are requested

Uncertainty Sampling [Lewis and Gale 94]
Learner queries examples for which its prediction so far is 
uncertain in order to maximize information gain
Example: Query by committee [Seung et al 92], which queries 
examples on which models obtained so far disagree on 
Successfully applied to getting labeled data for text 
classification

Selective sampling by query learning [Freund et al 93]
Given large number of (possibly unlabeled) data, uses only 
small subset of labeled data for learning
Successfully applied to mining very large data set [Mamitsuka
and Abe 2000], even when labeled data are abound
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Query learning for imbalanced data set Query learning for imbalanced data set 

Use query learning to get more data for rare classes
Use selective sampling by query learning to get data 
near the decision boundary

Class 2Class 1

Class 2Class 1

Class 2Class 1

Example 1

Example 3

++
+

++++

+
++

-
-

-

- -
-

-
-
-

Example 2

* N. Abe, Sampling Approaches to Learning from Imbalanced Datasets, ICML 
Workshop on Imbalanced Data Sets II, 2003.

Sampling for CostSampling for Cost--sensitive Learning*sensitive Learning*

Cost C depends on particular example x

Presents reduction of cost-sensitive learning to classification
Altering the original example distribution by multiplying it by a factor 
proportional to the relative cost of each example, makes any error 
minimizing classifier accomplish expected cost minimization  on the 
original distribution
Proposes Costing (cost-sensitive ensemble learning) 

Empirical evaluation using benchmark data sets from targeted 
marketing domain 

Costing has excellent predictive performance (w.r.t. cost minimization) 
Costing is computationally efficient

* B. Zadrozny, J. Langford, N. Abe, Cost-sensitive learning by cost-proportionate 
example weighting, IEEE ICDM 2003.

C(1,1,x)C(1,0,x)Predict = 1

C(0,1,x)C(0,0,x)Predict = 0

True = 1True = 0
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Association Rules for Rare ClassAssociation Rules for Rare Class

Emerging patterns*
For 2 classes C1 and C2 and support si(X) of itemset X
in class Ci growth rate is defined as s2(X)/s1(X)
Given a threshold p >1, itemset X is p-emerging pattern 
(EP) if growth rate ≥ p
Find EPs in rare class
Find values that have the highest growth rate from the 
major class to the rare class
Replace different attribute values in the original rare 
class EPs with the highest growth rate values
New generated EPs have a strong power to 
discriminate rare class from the major class

* H. Alhammady, K. Rao, The Application of Emerging Patterns for Improving the 
Quality of Rare-class Classification, PAKDD 2004.

Temporal Analysis of Rare EventsTemporal Analysis of Rare Events

Surprising patterns [Keogh et al, KDD02] 
A time series pattern P, extracted from database X is surprising 
relative to a database R, if the probability of its occurrence is 
greatly different to that expected by chance, assuming that R and 
X are created by the same underlying process.

Steps (TARZAN algorithm)
Discretizing time-series into symbolic strings

Fixed sized sliding window
Slope of the best-fitting line

Calculate probability of any pattern, including ones we have 
never seen before using Markov models
For maintaining linear time and space property, they use suffix 
tree data structure
Computing scores by comparing trees between reference data 
and incoming information stream

* E. Keogh, et al, Finding Surprising Patterns in a Time Series Database in Linear 
Time and Space, KDD 2002.
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Temporal Analysis of Rare EventsTemporal Analysis of Rare Events

Learning to Predict Extremely Rare Events*
Genetic-based machine learning system that predicts events by 
identifying temporal and sequential patterns in data

Temporal Sequence Associations for Rare Events**
Predicting Rare Events In Temporal Domains***

Transform event prediction problem into a search for all patterns 
(event-sets) on the rare class exclusively
Discriminative power of patterns is validated against other 
classes
Patterns are then combined into a rule-based model for prediction

* G. Weiss, H. Hirsh, Learning to Predict Extremely Rare Events, AAAI Workshop on 
Learning from Imbalanced Data Sets, 2000.

** J. Chen, et al, Temporal Sequence Associations for Rare Events, PAKDD 2004

*** R. Vilalta, Predicting Rare Events In Temporal Domains, IEEE ICDM 2002.

Using Clustering for Rare Class Problems*Using Clustering for Rare Class Problems*

Distinguish between regular “between class imbalances”
and  “within-class imbalance”, where a single class is 
composed of various sub-classes of different size
The procedure

Use clustering to identify subclasses (subclusters)
Each subcluster of the majority class is resampled until it 
reaches the size of the biggest subcluster in the majority class

Denote size of the new majority class as: 
Size_of_new_majority_class

Each subcluster of the rare class is resampled until it reaches 
the size

Size_of_majority_class / Nsubclusters_in_rare_class

* N. Japkowicz, Class Imbalances: Are We Focusing on the Right Issues, ICML 
Workshop on Imbalanced Data Sets II, 2003.
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Case StudiesCase Studies

Intrusion Detection
Network Intrusion Detection
Host based Intrusion Detection

Fraud Detection
Credit Card Fraud
Insurance Fraud Detection
Cell Fraud Detection

Medical Diagnostics
Mammogramy images
Health Care Fraud

Case Study: Data Mining in Intrusion DetectionCase Study: Data Mining in Intrusion Detection
Due to the proliferation of Internet, 
more and more organizations are 
becoming vulnerable to cyber attacks
Sophistication of cyber attacks as well 
as their severity is also increasing

Security mechanisms always have 
inevitable vulnerabilities

Firewalls are not sufficient to ensure 
security in computer networks
Insider attacks

Incidents Reported to Computer Emergency Response 
Team/Coordination Center (CERT/CC)

Attack sophistication vs. Intruder technical knowledge, 
source: www.cert.org/archive/ppt/cyberterror.ppt

The geographic spread of Sapphire/Slammer Worm 
30 minutes after release (Source: www.caida.org)
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What are Intrusions?What are Intrusions?

Intrusions are actions that attempt to bypass security mechanisms 
of computer systems. They are usually caused by:

Attackers accessing the system from Internet
Insider attackers - authorized users attempting to gain and misuse non-
authorized privileges

Typical intrusion scenario

Scanning 
activity

Computer 
Network

Attacker Machine with 
vulnerability

What are Intrusions?What are Intrusions?

Intrusions are actions that attempt to bypass security mechanisms 
of computer systems. They are caused by:

Attackers accessing the system from Internet
Insider attackers - authorized users attempting to gain and misuse non-
authorized privileges

Typical intrusion scenario

Computer 
Network

Attacker Compromised 
Machine
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Basic IDS ModelBasic IDS Model

Information Source - Monitored System

Detector – ID Engine Response 
Component

Data gathering (sensors)

Raw data

Events

Knowledge base Configuration

Alarms

Actions

System State

System  
State

IDS TaxonomyIDS Taxonomy

IDS

Information 
source

Analysis 
strategy

Architecture

Time Aspects

Activeness

Continuality

Host based
Network based

Wireless network
Application Log

Anomaly Detection

Misuse Detection

Unsupervised

Supervised
Data Mining

State-transition
Expert systemsReal-time prediction

Off-line prediction

Centralized
Distributed & heterogeneous

Active response
Passive reaction

Continuous monitoring
Periodic analysis

…..

Sensor Alerts
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IDS IDS -- Analysis StrategyAnalysis Strategy

Misuse detection is based on extensive knowledge of patterns 
associated with known attacks provided by human experts

Existing approaches: pattern (signature) matching, expert systems, 
state transition analysis, data mining
Major limitations:

Unable to detect novel & unanticipated attacks
Signature database has to be revised for each new type of discovered attack

Anomaly detection is based on profiles that represent normal 
behavior of users, hosts, or networks, and detecting attacks as 
significant deviations from this profile

Major benefit - potentially able to recognize unforeseen attacks. 
Major limitation - possible high false alarm rate, since detected 
deviations do not necessarily represent actual attacks
Major approaches: statistical methods, expert systems, clustering, 
neural networks, support vector machines, outlier detection schemes

Intrusion DetectionIntrusion Detection
Intrusion Detection System  

combination of software 
and hardware that attempts 
to perform intrusion detection
raises the alarm when possible 
intrusion happens

Traditional intrusion detection system IDS tools (e.g. 
SNORT) are based on signatures of known attacks

Example of SNORT rule (MS-SQL “Slammer” worm)
any -> udp port 1434 (content:"|81 F1 03 01 04 9B 81 F1 01|";
content:"sock"; content:"send")

Limitations
Signature database has to be manually revised for each new type 
of discovered intrusion
They cannot detect emerging cyber threats
Substantial latency in deployment of newly created signatures 
across the computer system

Data Mining can alleviate these limitations

www.snort.org
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Data Mining for Intrusion DetectionData Mining for Intrusion Detection

Increased interest in data mining based intrusion detection
Attacks for which it is difficult to build signatures
Attack stealthiness
Unforeseen/Unknown/Emerging attacks
Distributed/coordinated attacks

Data mining approaches for intrusion detection
Misuse detection

Building predictive models from labeled labeled data sets (instances 
are labeled as “normal” or “intrusive”) to identify known intrusions
High accuracy in detecting many kinds of known attacks
Cannot detect unknown and emerging attacks

Anomaly detection
Detect novel attacks as deviations from “normal” behavior
Potential high false alarm rate - previously unseen (yet legitimate) system 
behaviors may also be recognized as anomalies

Summarization of network traffic

Data Mining Data Mining for Intrusion Detectionfor Intrusion Detection

Misuse 
Detection –
Building 
Predictive 
Models

categoric
al

temporal

contin
uous

class

Test
Set

Training 
Set Model

Learn 
Classifier

Tid SrcIP Start 
time Dest IP Dest 

Port 
Number 
of bytes Attack

1 206.135.38.95 11:07:20 160.94.179.223 139 192 No 

2 206.163.37.95 11:13:56 160.94.179.219 139 195 No 

3 206.163.37.95 11:14:29 160.94.179.217 139 180 No 

4 206.163.37.95 11:14:30 160.94.179.255 139 199 No 

5 206.163.37.95 11:14:32 160.94.179.254 139 19 Yes 

6 206.163.37.95 11:14:35 160.94.179.253 139 177 No 

7 206.163.37.95 11:14:36 160.94.179.252 139 172 No 

8 206.163.37.95 11:14:38 160.94.179.251 139 285 Yes 

9 206.163.37.95 11:14:41 160.94.179.250 139 195 No 

10 206.163.37.95 11:14:44 160.94.179.249 139 163 Yes 
10 

 

Tid SrcIP Start 
time Dest Port Number 

of bytes Attack

1 206.163.37.81 11:17:51 160.94.179.208 150 ? 

2 206.163.37.99 11:18:10 160.94.179.235 208 ? 

3 206.163.37.55 11:34:35 160.94.179.221 195 ? 

4 206.163.37.37 11:41:37 160.94.179.253 199 ? 

5 206.163.37.41 11:55:19 160.94.179.244 181 ? 
 

categoric
al

Anomaly Detection

Rules Discovered:

{Src IP = 206.163.37.95, 
Dest Port = 139, 
Bytes ∈ [150, 200]} --> {ATTACK}

Rules Discovered:

{Src IP = 206.163.37.95, 
Dest Port = 139, 
Bytes ∈ [150, 200]} --> {ATTACK}

Summarization of 
attacks using 
association rules
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Data Mining Data Mining for Intrusion Detectionfor Intrusion Detection

Misuse 
Detection –
Building 
Predictive 
Models

categoric
al

temporal

contin
uous

class

Test
Set

Training 
Set Model

Learn 
Classifier

Tid SrcIP Start 
time Dest IP Dest 

Port 
Number 
of bytes Attack

1 206.135.38.95 11:07:20 160.94.179.223 139 192 No 

2 206.163.37.95 11:13:56 160.94.179.219 139 195 No 

3 206.163.37.95 11:14:29 160.94.179.217 139 180 No 

4 206.163.37.95 11:14:30 160.94.179.255 139 199 No 

5 206.163.37.95 11:14:32 160.94.179.254 139 19 Yes 

6 206.163.37.95 11:14:35 160.94.179.253 139 177 No 

7 206.163.37.95 11:14:36 160.94.179.252 139 172 No 

8 206.163.37.95 11:14:38 160.94.179.251 139 285 Yes 

9 206.163.37.95 11:14:41 160.94.179.250 139 195 No 

10 206.163.37.95 11:14:44 160.94.179.249 139 163 Yes 
10 

 

Tid SrcIP Start 
time Dest IP Number 

of bytes Attack

1 206.163.37.81 11:17:51 160.94.179.208 150 No 

2 206.163.37.99 11:18:10 160.94.179.235 208 No 

3 206.163.37.55 11:34:35 160.94.179.221 195 Yes 

4 206.163.37.37 11:41:37 160.94.179.253 199 No 

5 206.163.37.41 11:55:19 160.94.179.244 181 Yes 
 

categoric
al

Anomaly Detection

Rules Discovered:

{Src IP = 206.163.37.95, 
Dest Port = 139, 
Bytes ∈ [150, 200]} --> {ATTACK}

Rules Discovered:

{Src IP = 206.163.37.95, 
Dest Port = 139, 
Bytes ∈ [150, 200]} --> {ATTACK}

Summarization of 
attacks using 
association rules

Data Mining Data Mining for Intrusion Detectionfor Intrusion Detection

Misuse 
Detection –
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Predictive 
Models
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al
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contin
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Training 
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Tid SrcIP Start 
time Dest IP Dest 

Port 
Number 
of bytes Attack

1 206.135.38.95 11:07:20 160.94.179.223 139 192 No 

2 206.163.37.95 11:13:56 160.94.179.219 139 195 No 

3 206.163.37.95 11:14:29 160.94.179.217 139 180 No 

4 206.163.37.95 11:14:30 160.94.179.255 139 199 No 

5 206.163.37.95 11:14:32 160.94.179.254 139 19 Yes 

6 206.163.37.95 11:14:35 160.94.179.253 139 177 No 

7 206.163.37.95 11:14:36 160.94.179.252 139 172 No 

8 206.163.37.95 11:14:38 160.94.179.251 139 285 Yes 

9 206.163.37.95 11:14:41 160.94.179.250 139 195 No 

10 206.163.37.95 11:14:44 160.94.179.249 139 163 Yes 
10 

 

categoric
al

Anomaly Detection

Rules Discovered:

{Src IP = 206.163.37.95, 
Dest Port = 139, 
Bytes ∈ [150, 200]} --> {ATTACK}

Rules Discovered:

{Src IP = 206.163.37.95, 
Dest Port = 139, 
Bytes ∈ [150, 200]} --> {ATTACK}

Summarization of 
attacks using 
association rules

Tid SrcIP Start 
time Dest IP Number 

of bytes Attack

1 206.163.37.81 11:17:51 160.94.179.208 150 No 

2 206.163.37.99 11:18:10 160.94.179.235 208 No 

3 206.163.37.55 11:34:35 160.94.179.221 195 Yes 

4 206.163.37.37 11:41:37 160.94.179.253 199 No 

5 206.163.37.41 11:55:19 160.94.179.244 181 Yes 
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Data Preprocessing for Data Mining in IDData Preprocessing for Data Mining in ID

Converting the data from monitored system (computer 
network, host machine, …) into data (features) that will 
be used in data mining models

For misuse detection, labeling data examples into normal or 
intrusive may require enormous time for many human experts

Building data mining models
Misuse detection models
Anomaly detection models

Analysis and summarization of results

Feature 
construction

Building data mining models

features

Analysis 
of results

Data Sources in Network Intrusion DetectionData Sources in Network Intrusion Detection

Network traffic data is usually collected using “network sniffers”
Tcpdump

08:02:15.471817 0:10:7b:38:46:33 0:10:7b:38:46:33 loopback 60: 
0000 0100 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

08:02:19.391039 172.16.112.100.3055 > 172.16.112.10.ntp:  v1 client strat 0 poll 0 prec 0
08:02:19.391456 172.16.112.10.ntp > 172.16.112.100.3055:  v1 server strat 5 poll 4 prec -16 (DF)

net-flow tools
Source and destination IP address, Source and destination ports, Type of 
service, Packet and byte counts, Start and end time, Input and output 
interface numbers, TCP flags, Routing information (next-hop address, 
source autonomous system (AS) number, destination AS number)

0624.12:4:39.344  0624.12:4:48.292 211.59.18.101 4350  160.94.179.138 1433   6  2   3  144
0624.9:1:10.667    0624.9:1:19.635   24.201.13.122 3535  160.94.179.151 1433   6  2   3   132
0624.12:4:40.572  0624.12:4:49.496 211.59.18.101 4362  160.94.179.150 1433   6  2   3   152

Collected data are in the form of network connections or network
packets (a network connection may contain several packets)
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Feature Construction in Intrusion DetectionFeature Construction in Intrusion Detection

Basic set of features (start/end time, srcIP, dstIP, srcport, 
dstport, protocol, TCP flags, # of bytes, packets, …)
Three groups of features may be constructed (KDDCup 99):

“content-based” features within a connection 
Intrinsic characteristics of data packets
number of failed logins, root logins, acknowledgments, directory creations, …)

time-based traffic features included number of connections or 
different services from the same source or to the same destination 
considering recent time interval (e.g.a few seconds)

Useful for detecting scanning activities

connection based features included number of connections from 
same source or to same destination or with the same service 
considering in last N connections

Useful for detecting SLOW scanning activities

MADAM ID MADAM ID -- Feature Construction ExampleFeature Construction Example

Example: “syn flood” patterns 
(service=http, flag=SYN, victim), 
(service=http, flag=SYN, victim) 
→ (service = http, SYN, victim) 
[0.9, 0.02, 2s]

After 2 http packets with set SYN flag are sent to victim, in 90% of cases 
third connection is made within 2s. This happens in 2% of all connections 
(support = 2%)
Add features based on frequent episodes learned separately for normal 
data and attack data

count the connections in the past 2 seconds
count the connections with the same characteristics (http, SYN, victim) in the past 2 
seconds

Different features are found for different classes of attacks =>
different models for the classes

flagdst … service …
h1            http          S0
h1            http          S0
h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

syn flood

normal

existing features existing features 
uselessuseless

flagdst … service …
h1            http          S0
h1            http          S0
h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

syn flood

normal

flagdst … service …
h1            http          S0
h1            http          S0
h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

syn flood

normal

existing features existing features 
uselessuseless

dst … service …
h1            http          S0
h1            http          S0
h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

flag  %S0
70
72
75

0

0

0

construct features with construct features with 
high information gainhigh information gain

dst … service …
h1            http          S0
h1            http          S0
h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

flag  %S0
70
72
75

0

0

0

dst … service …
h1            http          S0
h1            http          S0
h1            http          S0

h2            http          S0

h4            http          S0

h2            ftp             S0

flag  %S0
70
72
75

0

0

0

construct features with construct features with 
high information gainhigh information gain



Handouts

– 41 –

MADAM ID Workflow*MADAM ID Workflow*

Association rules and frequent episodes are applied to 
network connection records to obtain additional 
features for data mining algorithms
Apply RIPPER to labeled data sets and learn the 
intrusions

Raw audit 
data

network 
packets/events

Connection 
records

RIPPER 
Model

patterns features

Feature 
constructor Evaluation feedback

* W. Lee,S. Stolfo, Adaptive Intrusion Detection: a Data Mining Approach, Artificial 
Intelligence Review, 2000

MADAM ID MADAM ID -- CostCost--sensitive Modelingsensitive Modeling

A multiple-model approach:
Certain features are more costly to compute than 
others
Build multiple rule-sets, each with features of different 
cost levels
Cost factors: damage cost, response cost, operational 
cost (level 1-4 features) 

Level 1: beginning of an event
Level 2: middle to end of an event
Level 3: at the end of an event
Level 4: at the end of an event, multiple events in a time window

Use cheaper rule-sets first, costlier ones later only for 
required accuracy

* W. Lee,et al., Toward Cost-Sensitive Modeling for Intrusion Detection and 
Response, Journal of Computer Security, 2002



Handouts

– 42 –

ADAM*ADAM*

Data mining testbed that uses combination of 
association rules and classification to discover attacks
I phase: ADAM builds a repository of profiles for 
“normal frequent itemsets” by mining “attack-free” data
II phase: ADAM runs a sliding window, incremental 
algorithm that finds frequent itemsets in the last N 
connections and compare them to “normal” profile

Tunable: different thresholds can be set for different 
types of rules.
Anomaly detection: first characterize normal behavior 
(profile), then flag abnormal behavior
Reduced false alarm rate: using a classifier.

* D. Barbara, et al., ADAM: A Testbed for Exploring the Use of Data Mining in 
Intrusion Detection. SIGMOD Record 2001.

Attack-free 
data

ADAM: Training phaseADAM: Training phase

Database of frequent itemsets for attack-free data is made
For entire training data, find suspicious frequent itemsets
that are not in the “attack-free” database
Train a classifier to classify itemset as known attack, 
unknown attack or normal event

Data 
preprocessing

tcpdump
data

Training 
data

Classifier
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ADAM: Phase of Discovering IntrusionsADAM: Phase of Discovering Intrusions

Dynamic mining module produces suspicious itemsets
from test data
Along with features from feature selection module, 
itemsets are fed to classifier 

Feature 
selection

Test data Dynamic 
mining

profile

Classifier

Attacks, False alarms, 
Unknown

Data 
preprocessing

tcpdump
data

The MINDS Project*The MINDS Project*

MINDS – Minnesota Intrusion Detection System
M
I
N
D
S

network

Data capturing 
device

Anomaly 
detection

…
…

Anomaly 
scores

Human
analyst

Detected novel 
attacks

Summary and 
characterization

of attacks

MINDS system

Known attack 
detection 

Detected 
known attacks

Labels

Feature 
Extraction

Association 
pattern analysis

MINDSAT

Filtering

Net flow tools

tcpdump

MINDS has been incorporated into the Interrogator architecture at the Army 
Research Labs (ARL) Center for Intrusion Monitoring and Protection (CIMP), 
where network data from multiple sensors is collected and analyzed.
The MINDS is being used at University of Minnesota and at the ARL-CIMP to 
help analysts to detect attacks and intrusive behavior that cannot be 
detected using widely used intrusion detection systems, such as SNORT.

* - Ertoz, L., Eilertson, E., Lazarevic, et al, The MINDS - Minnesota Intrusion Detection System, review 
for the book “Data Mining: Next Generation Challenges and Future Directions”, AAAI/MIT Press.
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Alternative Classification ApproachesAlternative Classification Approaches

Fuzzy Data Mining in network intrusion detection (MSU)*
Create fuzzy association rules only from normal data to 
learn “normal behavior”

For new audit data, create the set of fuzzy association rules and 
compute its similarity to the “normal” one
If similarity low ⇒ for new data generate alarm

Genetic algorithms (GA) used to tune membership 
function of the fuzzy sets

Fitness – rewards for high similarity between normal and 
reference data, penalizing – high similarity between intrusion 
and reference data

Use GA to select most relevant features

* S. Bridges, R. Vaughn, Intrusion Detection Via Fuzzy Data Mining, 2000

Alternative Classification Approaches*Alternative Classification Approaches*

Scalable Clustering Technique*
Apply supervised clustering

For each point find nearest point and if belong to the same class, 
append to the same cluster, else create a new

Classification
Class dominated in k nearest clusters
Weighted sum of distances to k nearest clusters

Incremental clustering

Distances: weighted Euclidean, Chi-square, Canbera

(d(x, L)) = 

* N. Ye, X. Li, A Scalable Clustering for Intrusion Signature 
Recognition, 2001.

∑
= +

−d

i
i

ii

ii C
Lx
Lx

1

2|| Li – i-th attribute of centroid of the cluster L

Ci – correlation between i-th attribute and the class
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Neural Networks Classification ApproachesNeural Networks Classification Approaches

Neural networks (NNs) applied to host-based 
intrusion detection

Building profiles of users according to used 
commands 
Building profiles of software behavior

Neural networks for network-based intrusion 
detection

Hierarchical network intrusion detection
Multi-layer perceptrons (MLP)*
Self organizing maps (SOMs)*

* J. Canady, J. Mahaffey, The Application of Artificial Neural Networks to Misuse 
Detection:Initial Results, 1998.

Statistics Based Outlier Detection SchemesStatistics Based Outlier Detection Schemes

Packet level (PHAD) and Application level (ALAD) anomaly detectiPacket level (PHAD) and Application level (ALAD) anomaly detection*on*
PHAD (packet header anomaly detection) monitors Ethernet, IP and
transport layer packet headers

It builds profiles for 33 different fields from these headers by looking 
attack free traffic and performs clustering (prespecifed # of clusters)
A new value that does not fit into any of the clusters (intervals), it is 
treated as a new cluster and closest two clusters are merged
The number of updates, r, is maintained for each field as well as the 
number of observations, n
Testing: For each new observed packet, if the value for some attribute 
does not fit into the clusters, anomaly score for that attribute is 
proportional to n/r

ALAD uses the same method for anomaly scores, but it works only on 
TCP data and build TCP streams

It build profiles for 5 different features

* M. Mahoney, P. Chan: Learning Nonstationary Models of Normal Network Traffic 
for Detecting Novel Attacks, 8th ACM KDD, 2002
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NATE*NATE*

Low-cost anomaly detection algorithm
It uses only header information
5 features are used:

Counts of Push and Ack TCP flags (Syn, Fin, Reset and Urgent TCP flags 
are dropped due to their small variability)
Total number of packets 
Number of bytes transferred for each packet (bytes / packet) 
Percent of control packets per session

Builds clusters for normal behavior
Multivariate normal distribution to model clusters
For each test point compute Mahalanobis distance to 
every cluster

* C. Taylor and J. Alves-Foss. NATE - Network Analysis of Anomalous Traffic Events, 
A Low-Cost Approach, Proc. New Security Paradigms Workshop. 2001.

Summarization of Anomalous Connections*Summarization of Anomalous Connections*

MINDS example: January 26, 2003 (48 hours after the Slammer worm)
score    srcIP sPort    dstIP dPort protocoflags packets  bytes
37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829)
26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829)
24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829)
21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829)
19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829)
19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829)
17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829)
8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829)
7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829)
5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829)
4048.49 142.150.Y.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829)
4008.35 200.250.Z.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829)
3657.23 202.175.Z.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829)
3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829)
3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829)
2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829)
2693.88 142.150.Y.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829)
2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829)
2444.16 142.150.Y.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829)
2385.42 142.150.Y.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829)
2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829)
2057.15 142.150.Y.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829)
1919.54 142.150.Y.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829)
1634.38 142.150.Y.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829)
1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829)
1513.96 142.150.Y.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829)
1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829)
1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829)
1279.75 142.150.Y.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829)
1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829)
1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829)
1107.78 63.150.X.253 1161 160.94.X.154 1434 17 16 [0,2) [0,1829)

Potential Rules:
1.

{Dest Port = 1434/UDP 
#packets ∈ [0, 2)} --> 
Highly anomalous behavior 
(Slammer Worm)

2.

{Src IP = 142.150.Y.101, 
Dest Port = 2048/ICMP 
#bytes ∈ [0, 1829]} --> 
Highly anomalous behavior 
(ping – scan)

Potential Rules:
1.

{Dest Port = 1434/UDP 
#packets ∈ [0, 2)} --> 
Highly anomalous behavior 
(Slammer Worm)

2.

{Src IP = 142.150.Y.101, 
Dest Port = 2048/ICMP 
#bytes ∈ [0, 1829]} --> 
Highly anomalous behavior 
(ping – scan)

* - Ertoz, L., Eilertson, E., Lazarevic, et al, The MINDS - Minnesota Intrusion Detection System, review 
for the book “Data Mining: Next Generation Challenges and Future Directions”, AAAI/MIT Press.
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Profiling based anomaly detectionProfiling based anomaly detection

Profiling methods are usually applied to host based 
intrusion detection where users, programs, etc. are 
profiled

Profiling sequences of Unix shell command lines*
Set of sequences (user profiles) reduced and filtered to reduce data 
set for analysis
Build Instance Based Learning (IBL) model that stores historic 
examples of “normal” data

Compares new data stream 
Distance measure that favors long 
temporal similar sequences
Event sequences are segmented

Profiling users’ behavior
Using neural networks

a b c d 
a g c e

a b c d  
g b c d

* T. Lane, C. Brodley, Temporal Sequence Learning and Data Reduction 
for Anomaly detection, 1998.

Case Study: Data Mining in Fraud DetectionCase Study: Data Mining in Fraud Detection

Fraud detection in E-commerce/ business world
Credit Card Fraud

Internet Transaction Fraud / E-Cash fraud 

Insurance Fraud and Health Care Fraud 

Money Laundering 

Telecommunications Fraud 

Subscription Fraud / Identity Theft 

All major data miming techniques applicable to intrusion 
detection are also applicable to fraud detection domains 
mentioned above



Handouts

– 48 –

Data Mining in Credit Fraud DetectionData Mining in Credit Fraud Detection

Credit Card Companies Turn To Artificial 
Intelligence - “Credit card fraud costs the industry 
about a $billion a year, or 7 cents out of every 
$100 spent. But that is down significantly from its 
peak about a decade ago, Sorrentino says, in 
large part because of powerful technology that 
can recognize unusual spending patterns.“

Data Mining in Insurance Fraud DetectionData Mining in Insurance Fraud Detection

Smart Tools 
Banks, brokerages, and insurance companies have been relying 
on various AI tools for two decades. One variety, called a neural 
network, has become the standard for detecting credit-card fraud. 
Since 1992, neural nets have slashed such incidents by 70% or 
more for the likes of U.S. Bancorp and Wachovia Bank. Now, even 
small credit unions are required to use the software in order to
qualify for debit-card insurance from Credit Union National Assn.

Innovative Use of Artificial Intelligence Monitoring NASDAQ for 
Potential Insider Trading and Fraud (September 17, 2003)
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Data Mining in Cell Fraud DetectionData Mining in Cell Fraud Detection

Phone Friend - "More than 15,000 mobile phones are 
stolen each month in Britain alone. According to Swedish 
cellphone maker Ericsson, the fraudulent use of stolen 
mobiles means a loss of between two and five per cent of 
revenue for the network operators.“

Ericsson Enlists AI To Fight Wireless Fraud
Mobile network operators claim that 2 to 5 percent of total 
revenues are lost to fraud, and the problem is expected to worsen

Data Mining Techniques in Fraud DetectionData Mining Techniques in Fraud Detection

Basic approaches
JAM project [Chan99]
Neural networks [Brauser99, Maes00, Dorronsoro97]
Adaptive fraud detection [Fawcett97]
Account signatures [Cahill02]
Statistical Fraud Detection [Bolton 2002]
Fraud detection in mobile telecommunication 
networks [Burge96]
User profiling and classification for fraud detection in 
mobile telecommunication networks [Hollmen00]
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JAM Project*JAM Project*

JAVA agents for meta-learning
Launch learning agents to 
remote data sites
Exchange remote classifiers
Local meta-learning agents
produce meta-classifier
Launch meta-classifier to remote data sites

Chase credit card (20% fraud), First Union credit card 
(15% fraud) – 500,000 data records
5 base classifiers (Bayes, C4.5, CART, ID3, RIPPER)
Select the classifier with the highest TP-FP rate on the 
validation set

* JAM Project, http://www1.cs.columbia.edu/~sal/JAM/PROJECT/

JAM Project JAM Project -- ExampleExample

TP-FP rate vs. the number of classifiers

• Input base classifiers:
First Union

• Test data set:
First Union

• Best meta classifier:
Naïve Bayes with 10-17 base 
classifiers.
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Neural Networks in Fraud Detection*Neural Networks in Fraud Detection*

Use an expert net for each feature group 
(e.g. time,money) and group the experts 
together to form a common vote*

Standard application of neural networks 
in credit card fraud detection **
Use a non-linear version of Fisher’s
discriminant analysis, which 
separates a good proportion 
of fraudulent operations away 
from other closer to normal traffic

* R. Brause,T. Langsdorf, M. Hepp, Neural Data Mining for Credit Card Fraud Detection, 
11th IEEE International Conference on Tools with Artificial Intelligence, 1999.

** S. Maes, et al, Credit Card Fraud Detection Using Bayesian and Neural Networks, 
NAISO Congress on NEURO FUZZY THECHNOLOGIES, 2002

*** J. Dorronsoro, F. Ginel, C. Sánchez, C. Santa Cruz, Neural Fraud Detection in Credit 
Card Operations, IEEE Trans. Neural Networks, 8 (1997), pp. 827-834

Fraud Detection in Telecommunication NetworksFraud Detection in Telecommunication Networks

Identify relevant user groups based on call data 
and then assign a user to a relevant group

call data is subsequently used in describing 
behavioral patterns of users

Neural networks and probabilistic models are 
employed in learning these usage patterns from 
call data
These models are used either to detect abrupt 
changes in established usage patterns or to 
recognize typical usage patterns of fraud

• J. Hollmen, User profiling and classification for fraud detection in mobile 
communications networks, PhD thesis, Helsinki University of Technology, 2000.

• P. Burge, J. Shawe-Taylor, Frameworks for Fraud Detection in mobile 
communications networks, 1996.
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Case Study: Medical DiagnosisCase Study: Medical Diagnosis

Cost of false positive error: Unnecessary 
treatment; unnecessary worry
Cost of false negative error: Postponed 
treatment or failure to treat; death or injury
Event                   Rate          Reference 
Bleeding in outpatients on warfarin 6.7%/yr Beyth 1998 

Medication errors per order  5.3% (n=10070) Bates 1995 

Medication error per order  0.3% (n=289000) Lesar 1997 

Adverse drug events per admission   6.5% Bates 1995 

Adverse drug events per order  0.05% (n=10070) Bates 1995 

Adverse drug events per patient 6.7% Lazarou 1998 

Adverse drug events per patient  1.2% Bains 1999 

Adverse drug events in nursing home patients 1.89/100 pt-months Gurwitz 
Nosocomial infections in  
older hospitalized patients 5.9 to 16.9 per 1000 days Rothchild 2000 

Pressure ulcers   5% Rothschild 2000 
 
 

Data Mining in Medical DiagnosisData Mining in Medical Diagnosis

Introducing noise to rare class examples*
For each attribute i, noisy example = xi + εi, 
where                                , Σq is qxq diagonal matrix 
diag{s1

2, …, sq
2}, si

2 – sample variance of xi

Hierarchical neural nets (HNNs)**
HNNs are designed according to a 
divide-and-conquer approach

Triage networks are able to discriminate 
supersets that contain the infrequent 
pattern
These supersets are then used by specialized networks

),,0( 2
qnoisei N Σ≈ σε

* S. Lee, Noisy replication in skewed binary classification, Computational Statistics & 
Data Analysis August, 2000.

** L.Machado, Identification of Low Frequency Patterns in Backpropagation Neural 
Networks, Annual Symposium on Computer Applications in Medical Care, 1994.
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Data Mining in Medical DiagnosisData Mining in Medical Diagnosis

Spectrum and response analysis for neural nets*
Data: polyproline type II (PPII) secondary structure

PPII structure is rare (1.26%)
Around an individual case (sequence) there is a hyper-sphere 
with a high probability area for the same secondary structure 
type

Sample stratification schemes for neural networks (NNs)**
1. stratifies a sample by adding up the weighted sum of the 

derivatives during the backward pass of training
2. After training NNs with multiple sets of bootstrapped examples of 

the rare event classes and subsampled examples of common 
event classes, multiple voting for classification is performed

* M. Siermala, Local Prediction of Secondary Structures of Proteins from Viewpoints of 
Rare Structure, PhD Thesis, University of Tampere, May 2002.

** W. Choe et al, Neural network schemes for detecting rare events in human genomic 
DNA, Bioinformatics. 2000.

ConclusionsConclusions

Data mining analysis of rare events requires  
special attention
Many real world applications exhibit “needle-in-
the-haystack” type of problem 
Current “state of the art” data mining techniques 
are still insufficient for efficient handling rare 
events
Need for designing better and more accurate 
data mining models
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LinksLinks

Intrusion Detection bibliography
www.cs.umn.edu/~aleks/intrusion_detection.html
www.cs.fit.edu/~pkc/id/related/index.html
www.cc.gatech.edu/~wenke/ids-readings.html
www.cerias.purdue.edu/coast/intrusion-detection/welcome.html
http://cnscenter.future.co.kr/security/ids.html
www.cs.purdue.edu/homes/clifton/cs590m/
www.cs.ucsb.edu/~rsg/STAT/links.html

Fraud detection bibliography
www.hpl.hp.com/personal/Tom_Fawcett/fraud-public.bib.gz
http://dinkla.net !!!!!
http://www.aaai.org/AITopics/html/fraud.html

Fraud detection solutions
www.kdnuggets.com/solutions/fraud-detection.html

Questions?Questions?

Thank You!

Contact: aleks@cs.umn.edu

srivasta@cs.umn.edu

kumar@cs.umn.edu


