Data Mining for Analysis of Rare Events: A Case Study in Security, Financial and Medical Applications

Aleksandar Lazarević, Jaideep Srivastava, Vipin Kumar

Army High Performance Computing Research Center Department of Computer Science University of Minnesota

PAKDD-2004 Tutorial

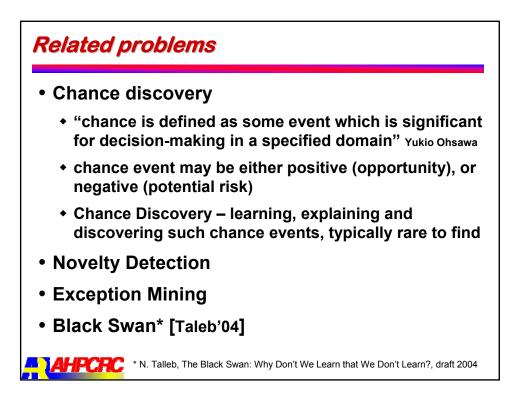
Introduction

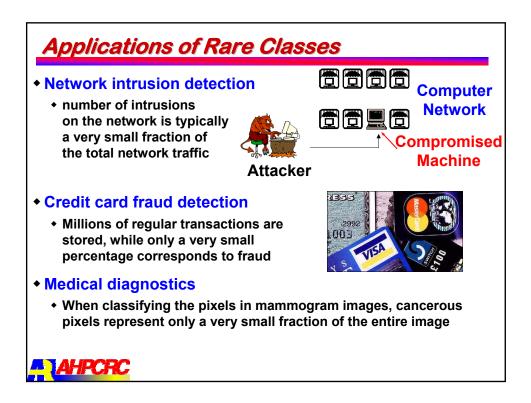
- We are drowning in the deluge of data that are being collected world-wide, while starving for knowledge at the same time*
- Despite the enormous amount of data, particular events of interest are still quite rare
- Rare events are events that occur very infrequently, i.e. their frequency ranges from 0.1% to less than 10%

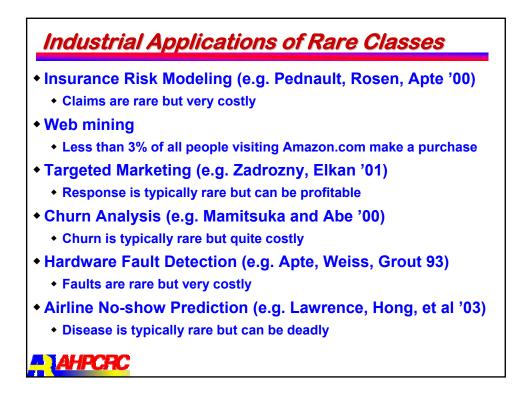
"Mining needle in a haystack. So much hay and so little time"

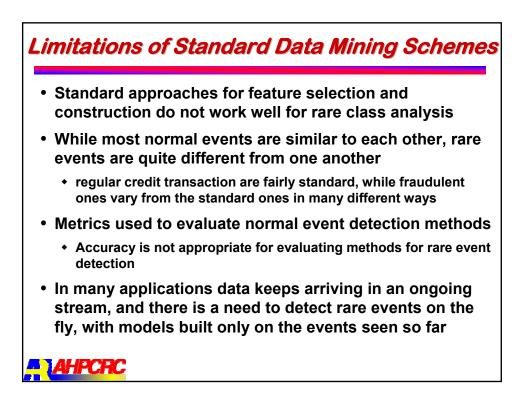
 However, when they do occur, their consequences can be quite dramatic and quite often in a negative sense

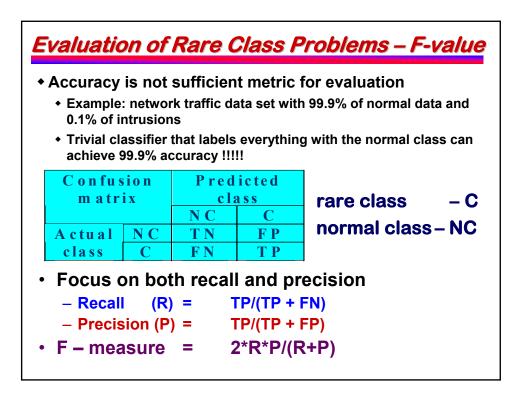
* - J. Naisbitt, Megatrends: Ten New Directions Transforming Our Lives. New York: Warner Books, 1982.

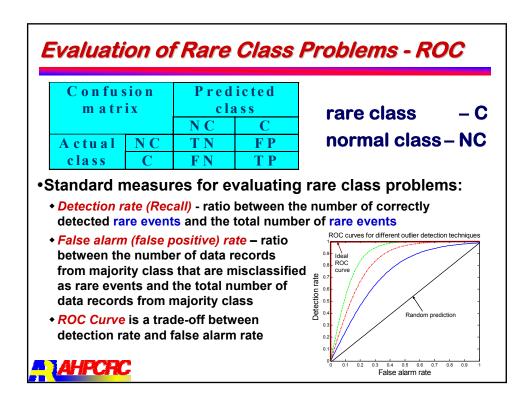




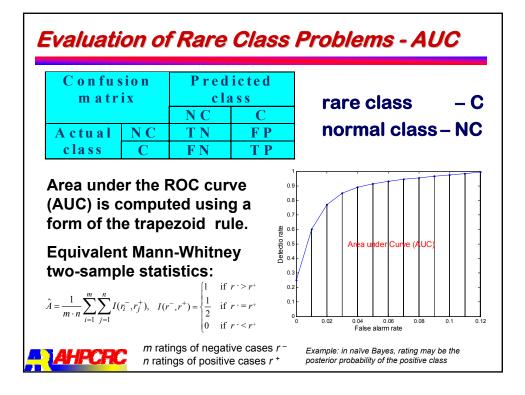




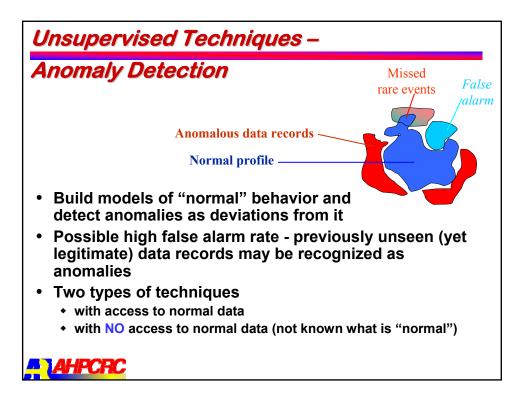


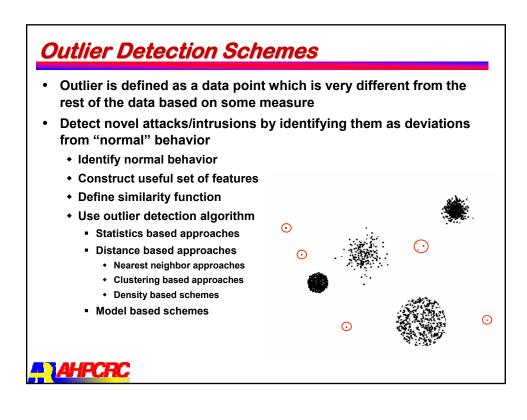


- 4 -



<section-header> Major Techniques for Detecting Rare Events Unsupervised techniques Deviation detection, outlier analysis, anomaly detection, exception mining Analyze each event to determine how similar (or dissimilar) it is to the majority, and their success depends on the choice of similarity measures, dimension weighting Supervised techniques Mining rare classes Build a model for rare events based on labeled data (the training set), and use it to classify each event Advantage: they produce models that can be easily understood Drawback: The data has to be labeled Other techniques – association rules, clustering

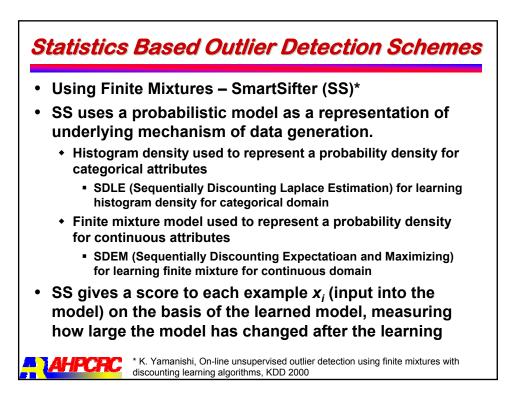


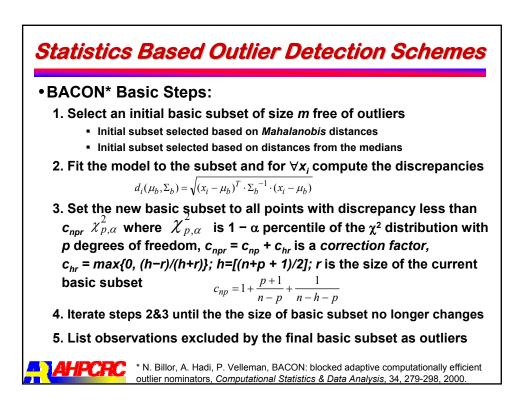


Statistics Based Outlier Detection Schemes

- Statistics based approaches data points are modeled using stochastic distribution ⇒ points are determined to be outliers depending on their relationship with this model
 - With high dimensions, difficult to estimate distributions
- Major approaches
 - Finite Mixtures
 - BACON
 - Using probability distribution
 - Information Theory measures

AHPCRC





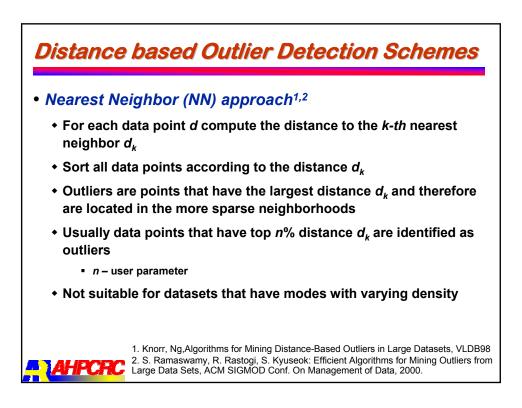


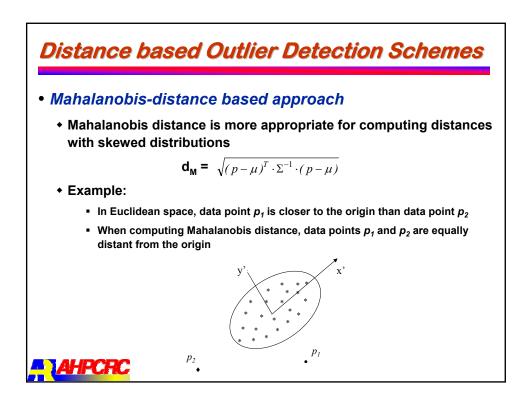
- Using Information-Theoretic Measures*
- Entropy measures the uncertainty (impurity) of data items
 - · The entropy is smaller when the class distribution is skewer
 - Each *unique* data record represents a class => the smaller the entropy the fewer the number of different records (higher redundancies)
 - If the entropy is large, data is partitioned into more regular subsets
 - · Any deviation from achieved entropy indicates potential intrusion
 - Anomaly detector constructed on data with smaller entropy will be simpler and more accurate
- Conditional entropy H(X|Y) tells how much uncertainty remains in sequence of events X after we have seen subsequence Y (Y ∈ X)

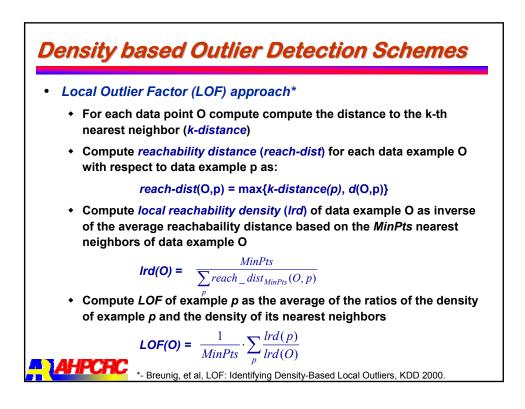
Relative Conditional Entropy

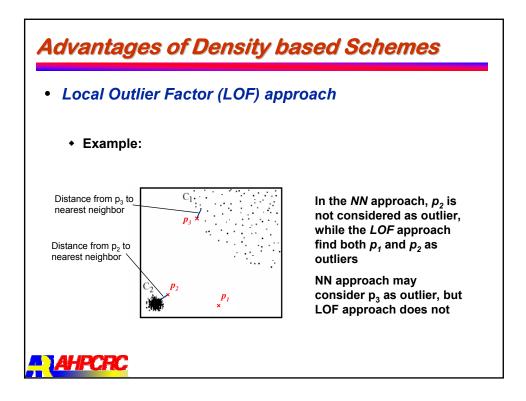
AHPCRU

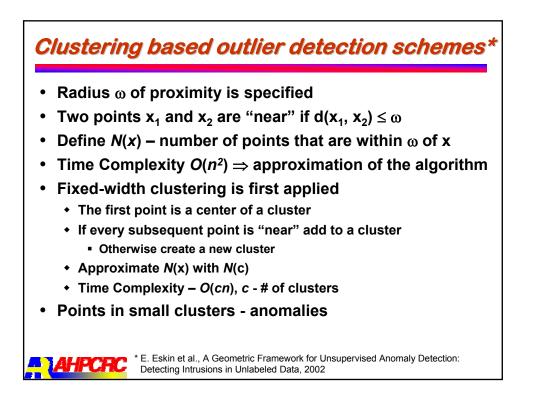
* W. Lee, et al, Information-Theoretic Measures for Anomaly Detection, IEEE Symposium on Security 2001

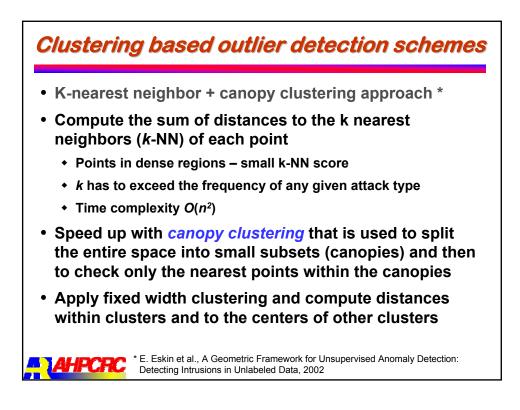


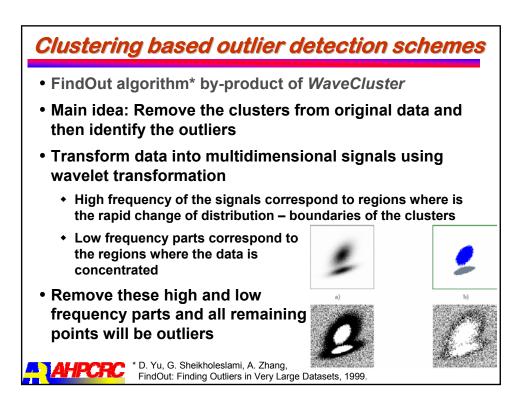


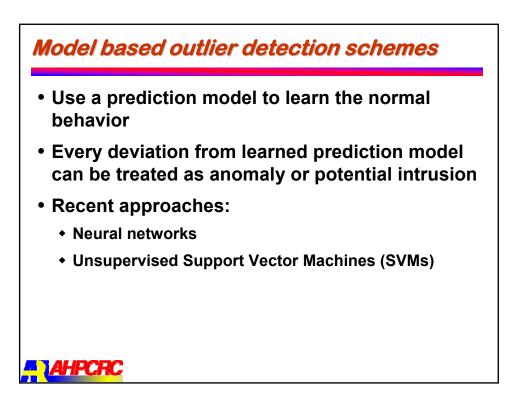


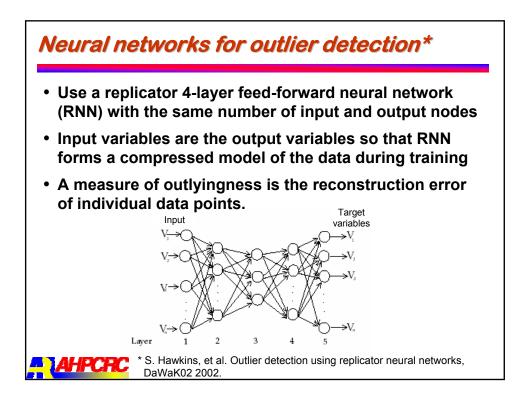


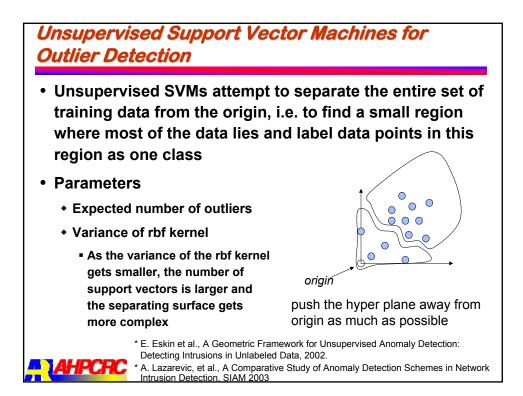


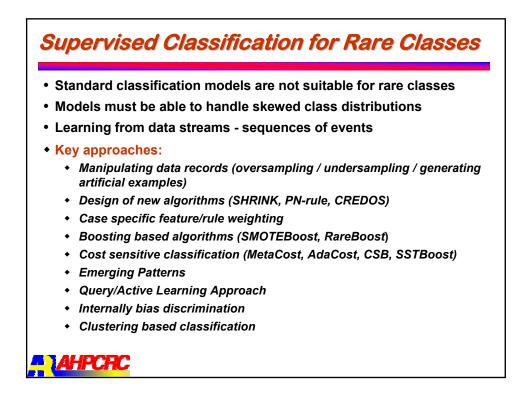




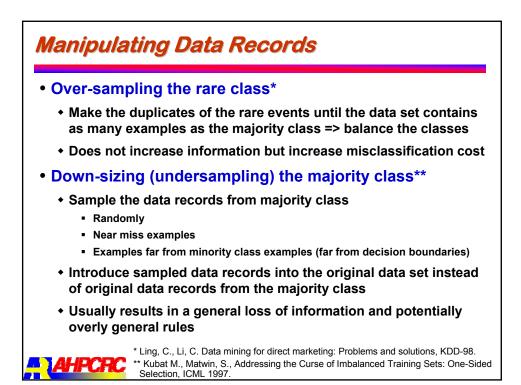


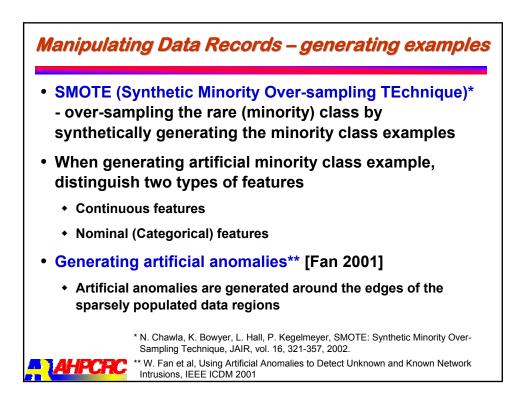


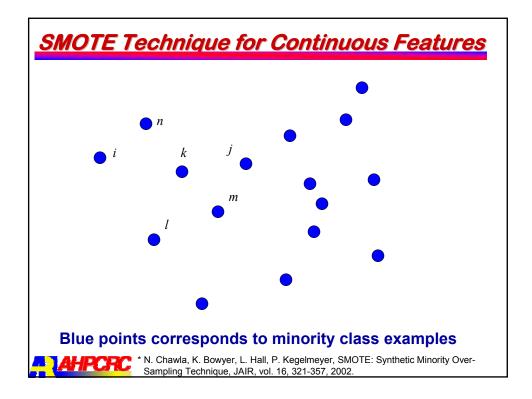


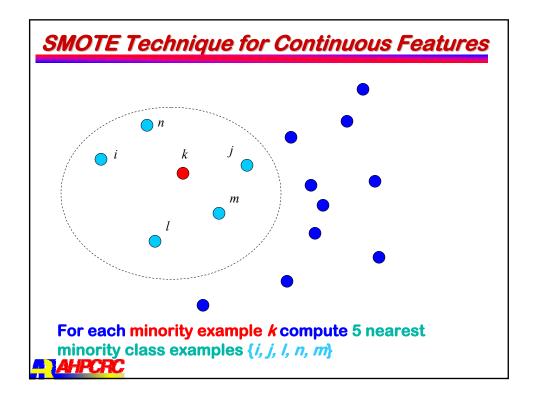


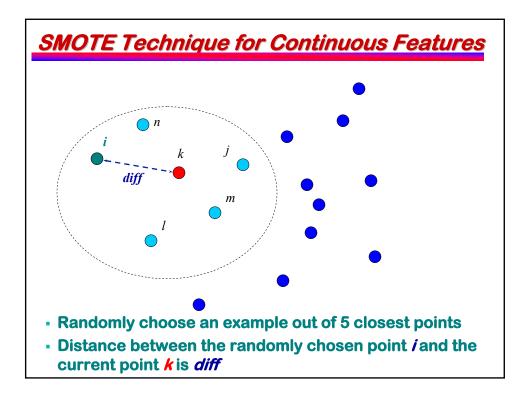
- 14 -

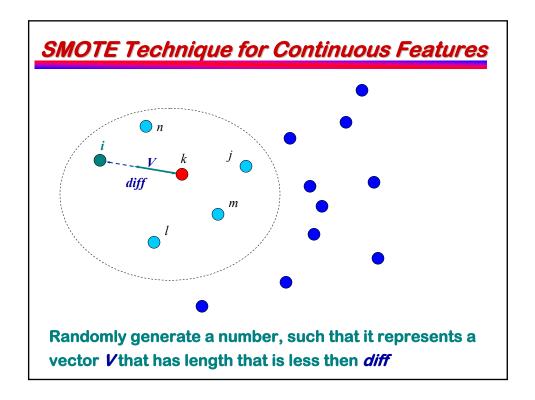


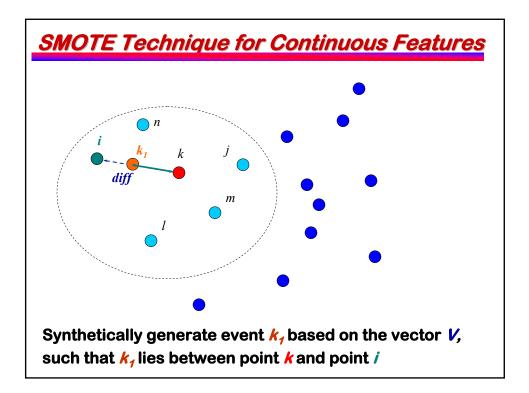


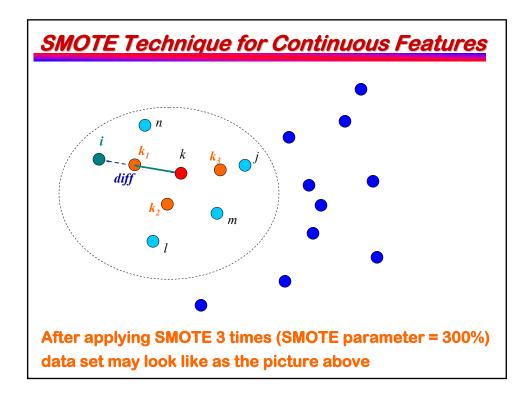


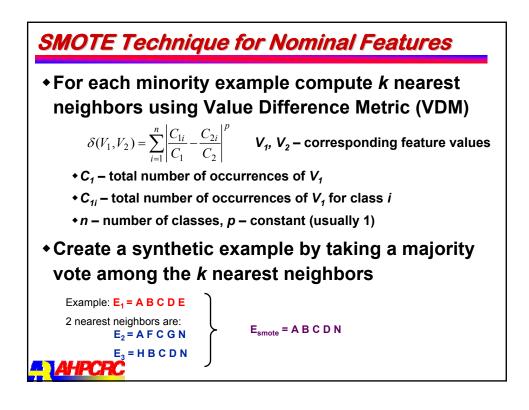


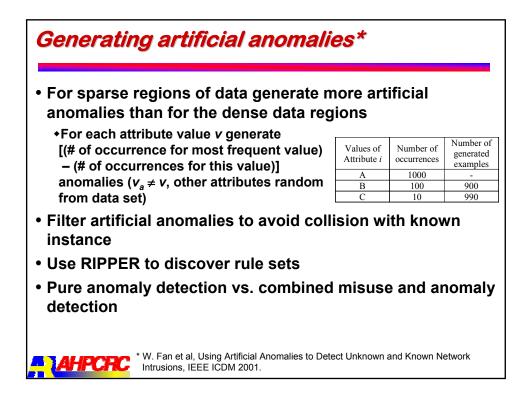


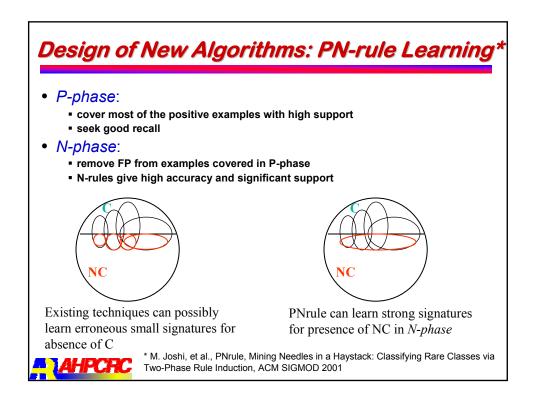


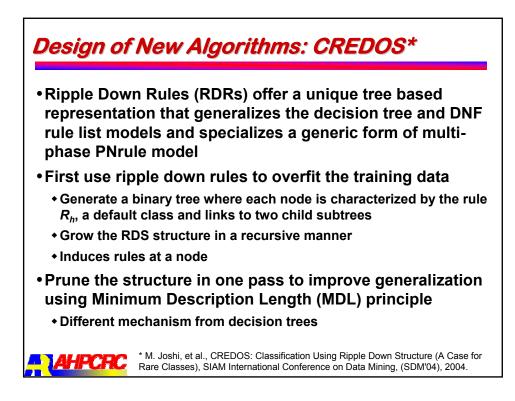


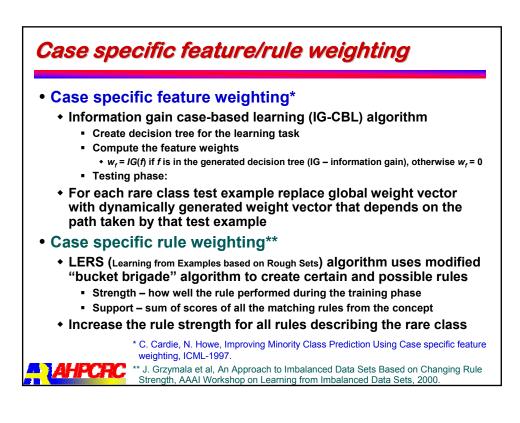


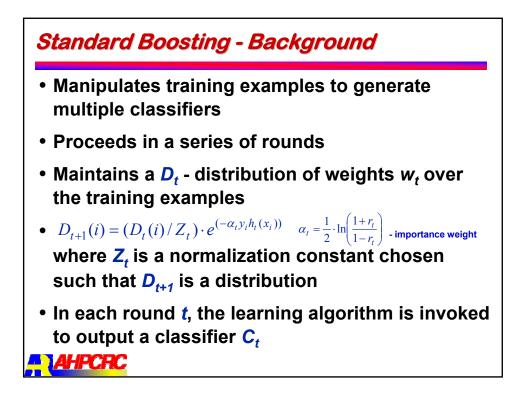


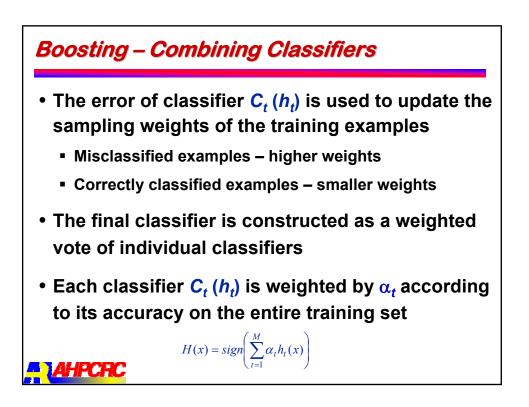


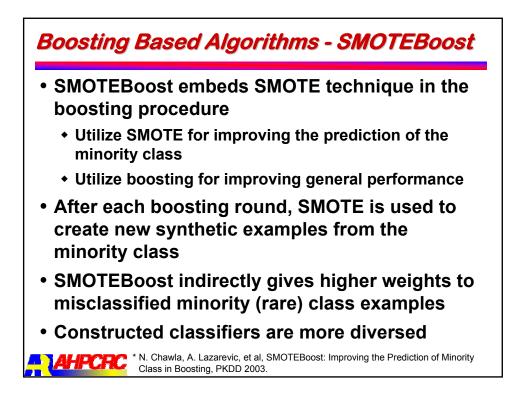


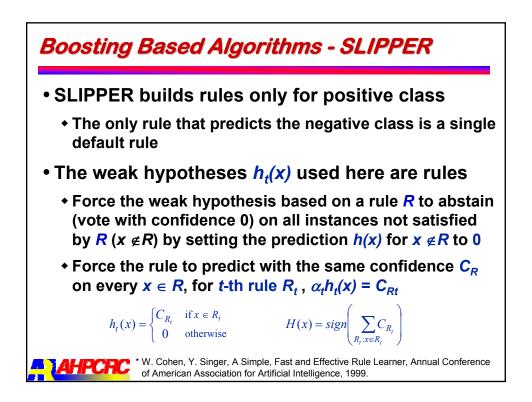


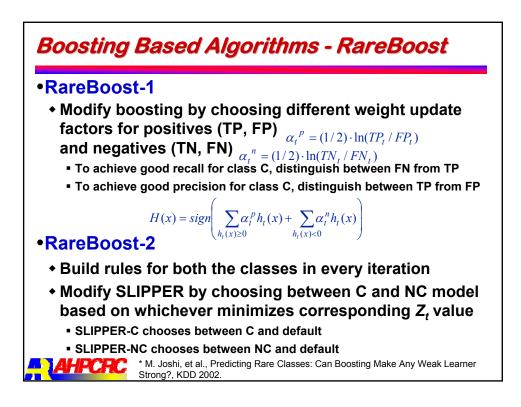


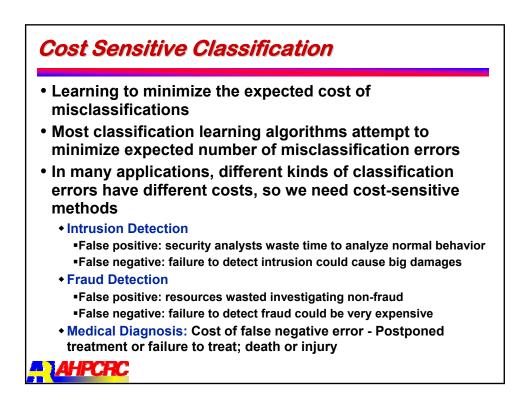












Cost Matrix

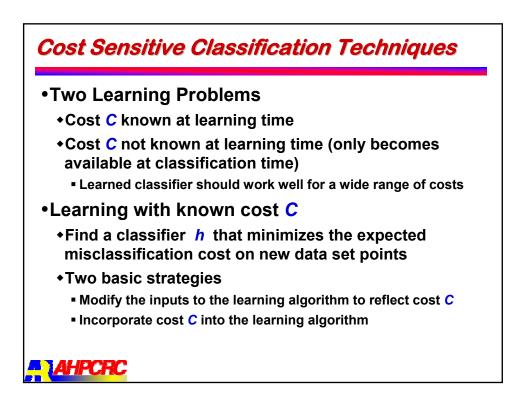
AHPCRC

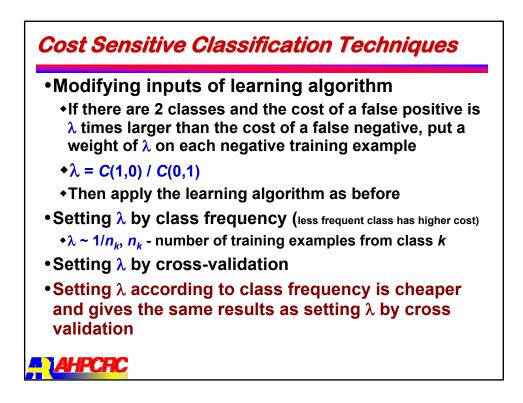
- C(i,j) = cost of predicting class i when the true class is j
- Example: Misclassification Costs Diagnosis of Cancer

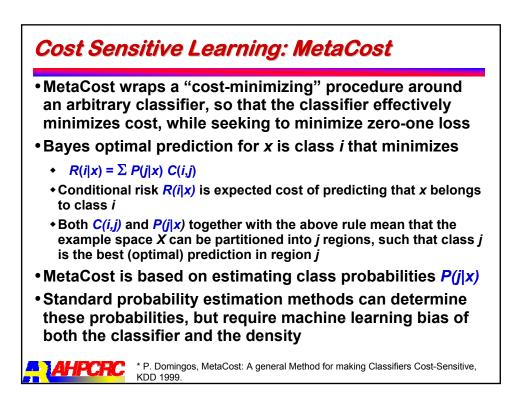
Predicted State of Patient	True State of Patient	
	Positive - 0	Negative - 1
Positive – 0	C(0,0) = 1	C(0,1) = 1
Negative - 1	C(1,0) = 100	C(1,1) = 0

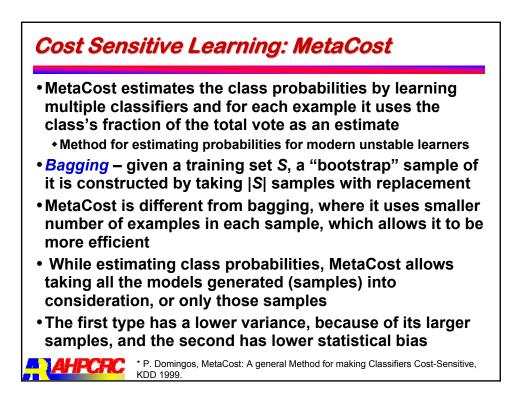
- If M is the confusion matrix for a classifier: M(i,j) is the number of test examples that are predicted to be in class i when their true class is j
- Expected misclassification cost is Hadamard product of M and C divided by the number of test examples N:

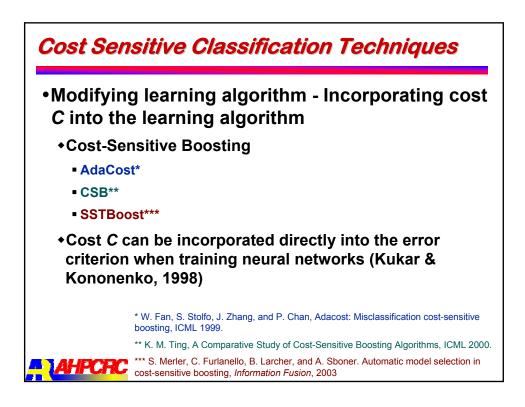
 $\frac{1}{N} \sum_{i=1}^{N} M(i,j) \cdot C(i,j)$

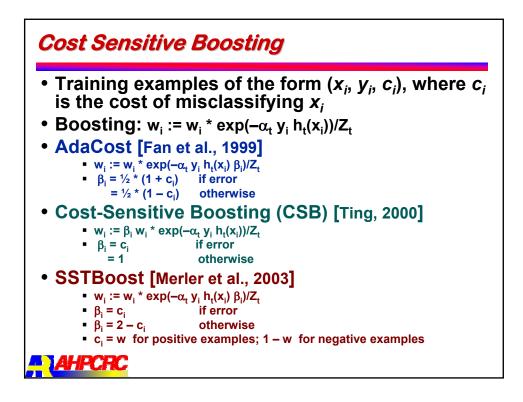


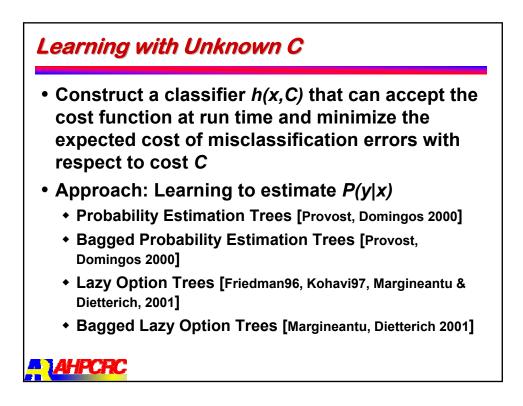


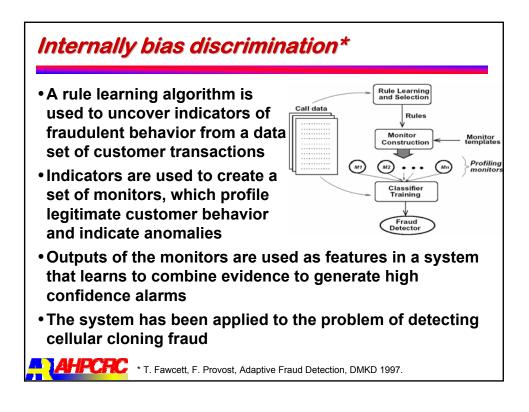


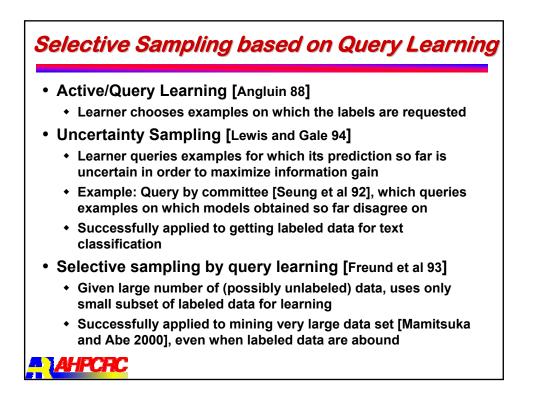


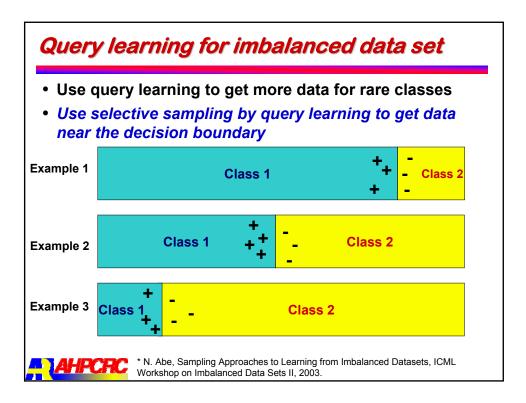




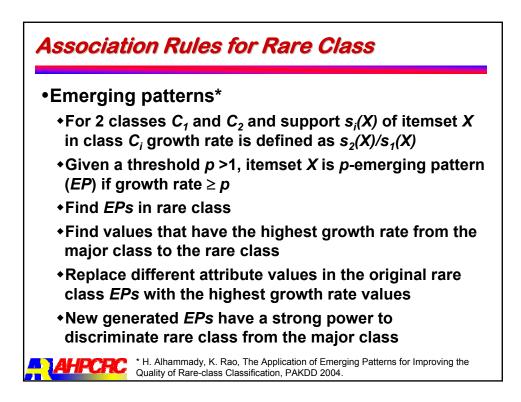


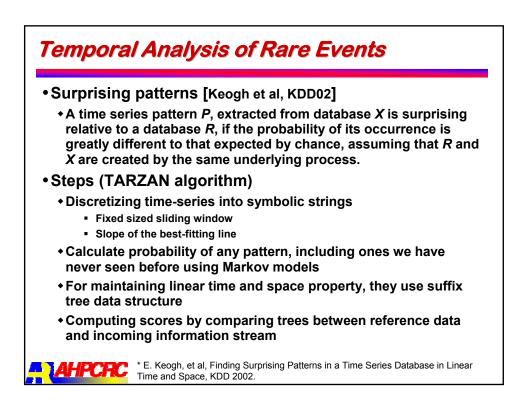


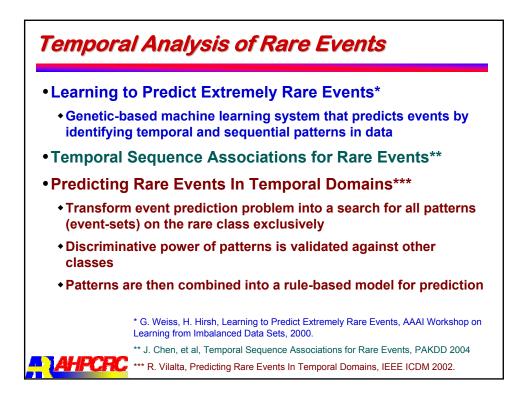


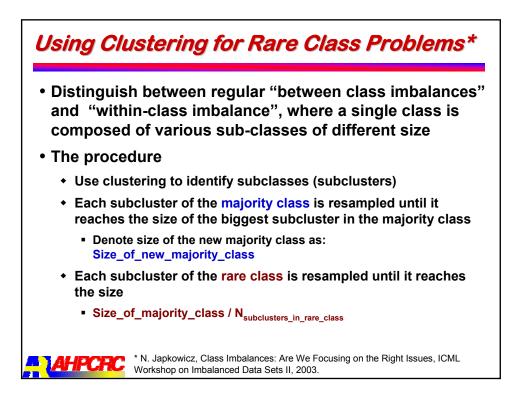


• Cost C depends on particular example x				
	True = 0	True = 1		
Predict	$= 0 \qquad C(\theta, \theta, x)$	$C(\theta,1,x)$		
Predict =	$= 1 \qquad C(1,\theta,\mathbf{x})$	C(1,1,x)	_	
Presents reduc	tion of cost-sensit	tive learning to	classification	
proportional t	riginal example distr o the relative cost of assifier accomplish e oution	each example, i	makes any error	
• Proposes Cos	ting (cost-sensitive	ensemble learni	ng)	
Empirical evalumarketing dom	ation using bench ain	ımark data sets	s from targeted	
 Costing has e 	xcellent predictive p	erformance (w.r.	t. cost minimization)	
 Costing is cor 	nputationally efficier	nt		
	B. Zadrozny, J. Langford, N.			





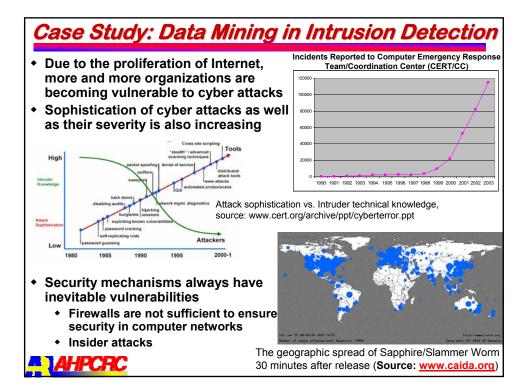


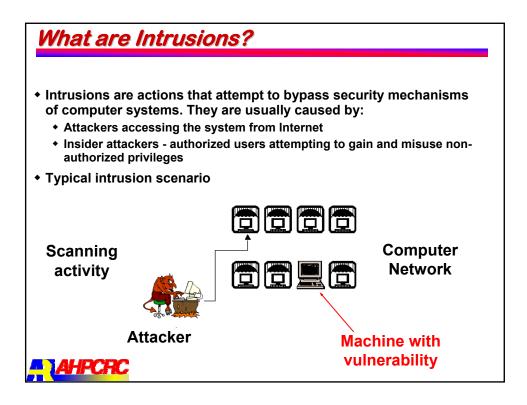


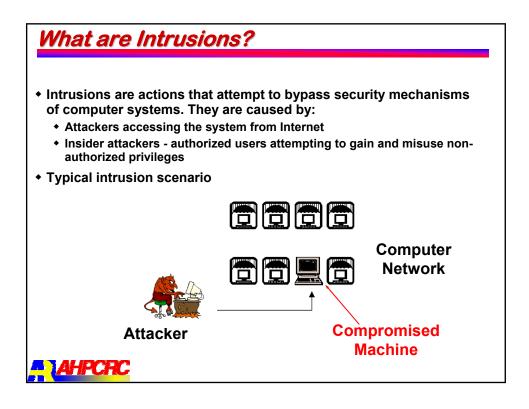
Case Studies

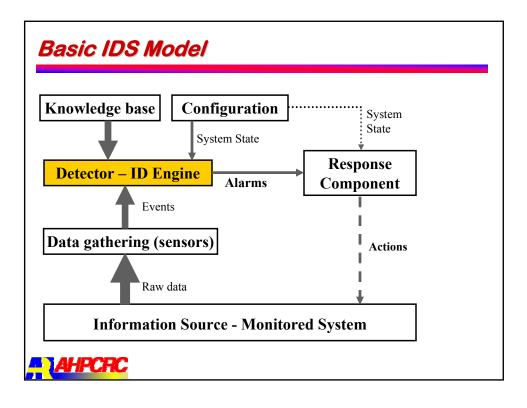
- Intrusion Detection
 - Network Intrusion Detection
 - Host based Intrusion Detection
- Fraud Detection
 - Credit Card Fraud
 - Insurance Fraud Detection
 - Cell Fraud Detection
- Medical Diagnostics
 - Mammogramy images
 - Health Care Fraud

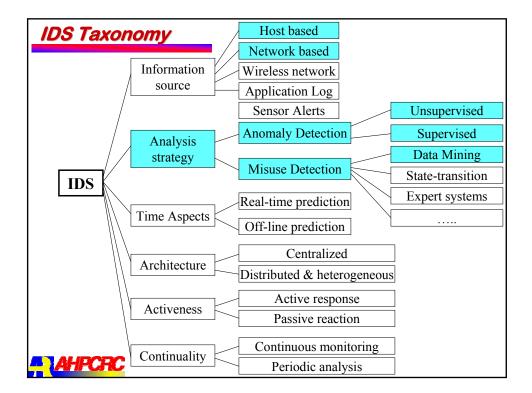
AHPCRC









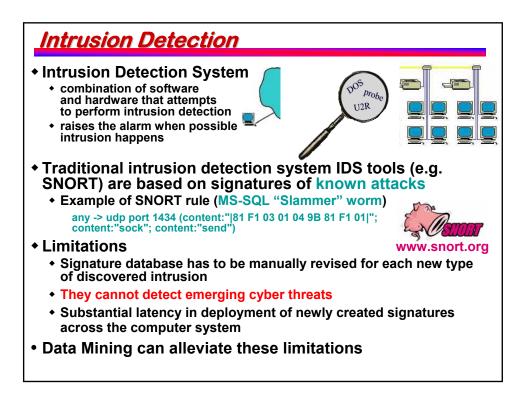


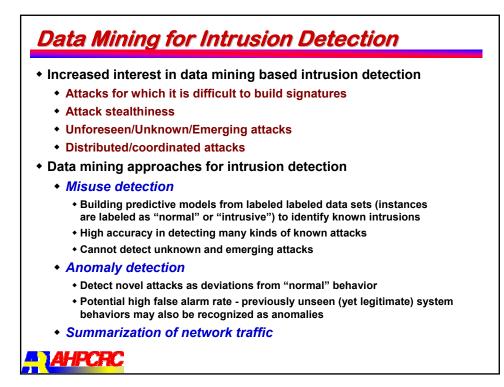
IDS - Analysis Strategy

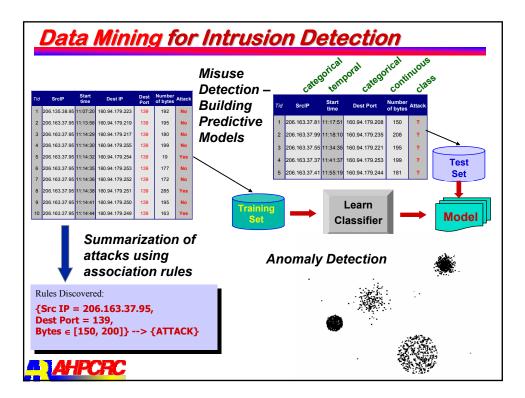
 Misuse detection is based on extensive knowledge of patterns associated with known attacks provided by human experts

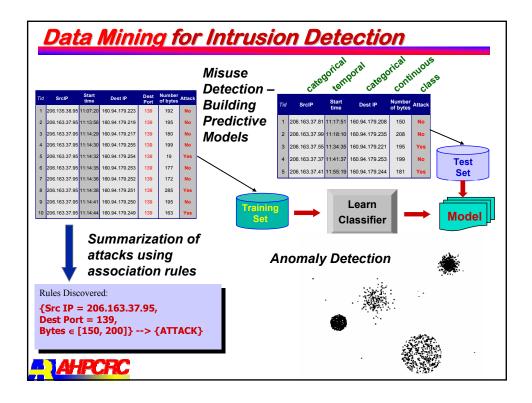
- Existing approaches: pattern (signature) matching, expert systems, state transition analysis, data mining
- Major limitations:
 - Unable to detect novel & unanticipated attacks
 - Signature database has to be revised for each new type of discovered attack
- Anomaly detection is based on profiles that represent normal behavior of users, hosts, or networks, and detecting attacks as significant deviations from this profile
 - Major benefit potentially able to recognize unforeseen attacks.
 - Major limitation possible high false alarm rate, since detected deviations do not necessarily represent actual attacks
 - Major approaches: statistical methods, expert systems, clustering, neural networks, support vector machines, outlier detection schemes

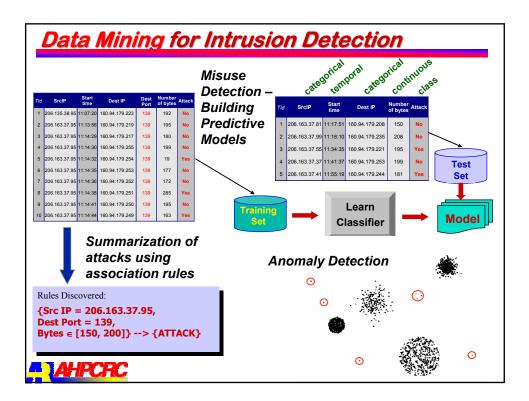
AHPCRC

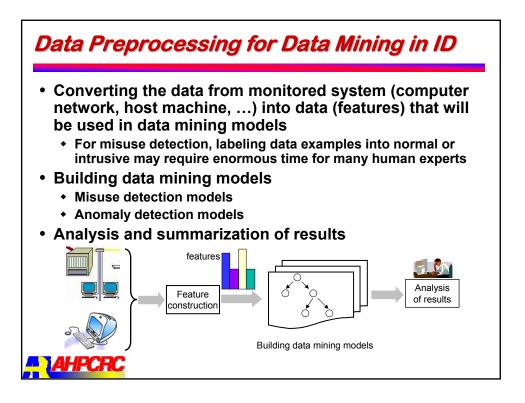


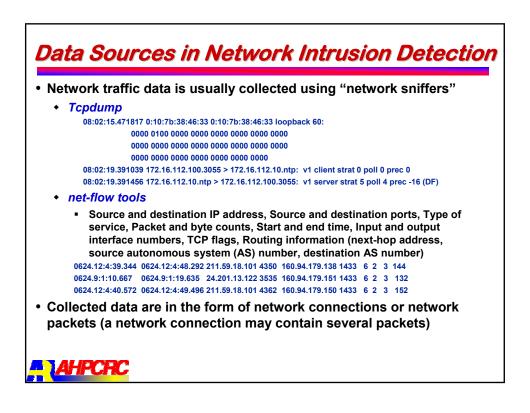


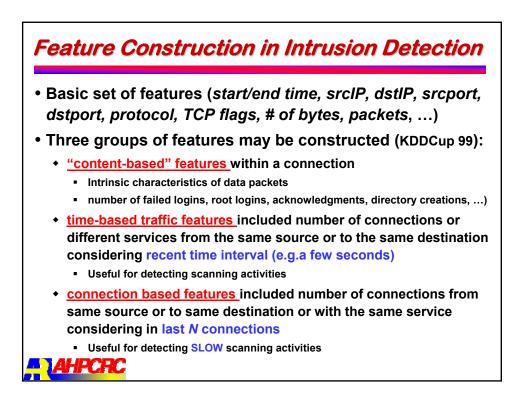


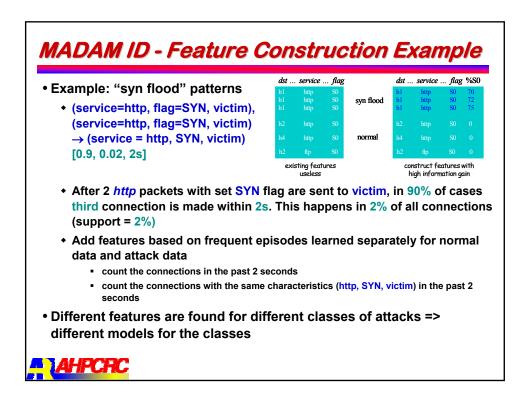


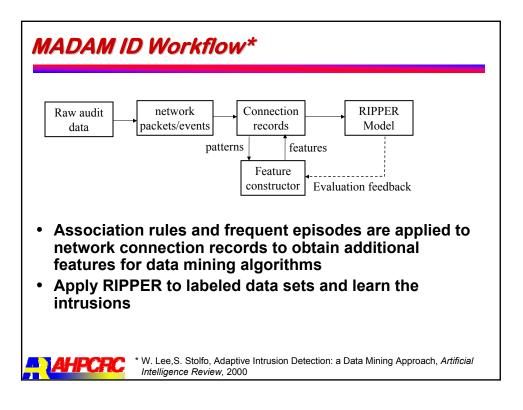


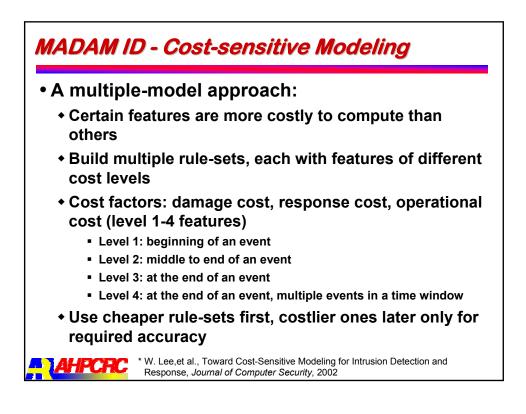


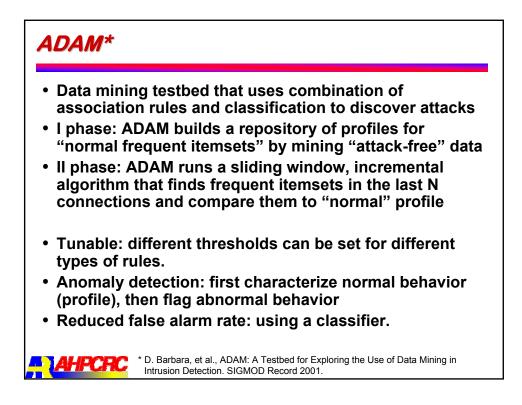


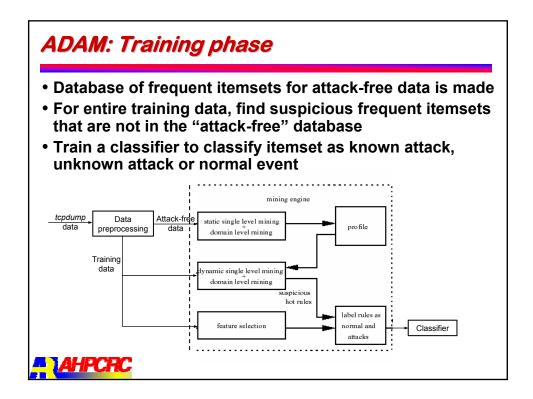


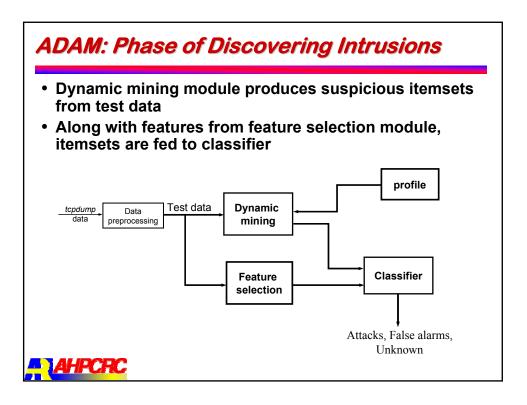


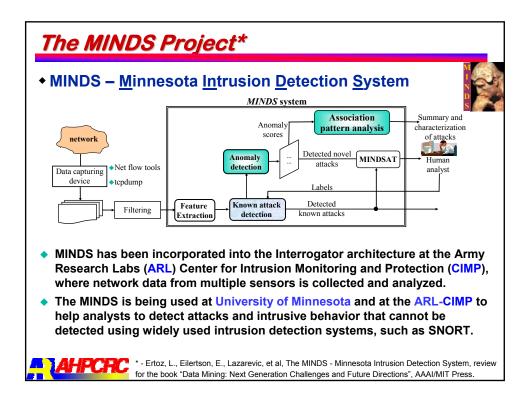


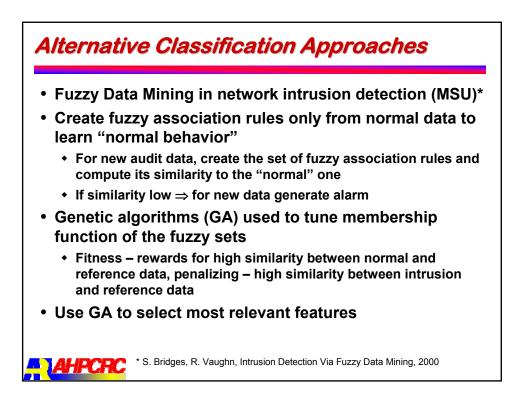


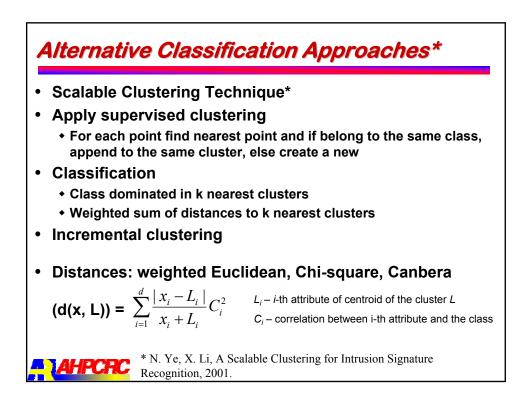




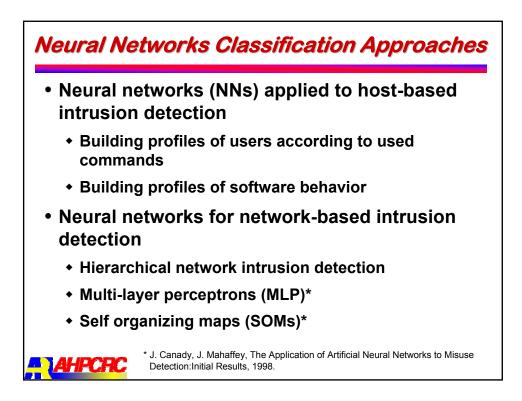


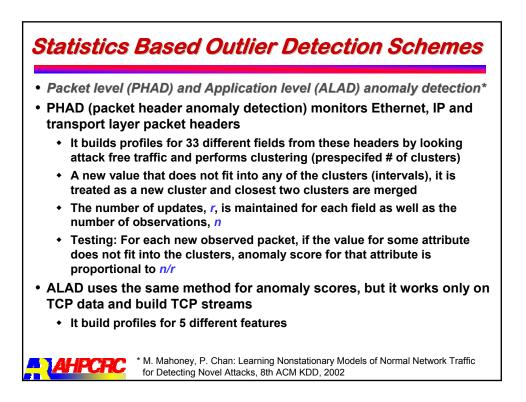


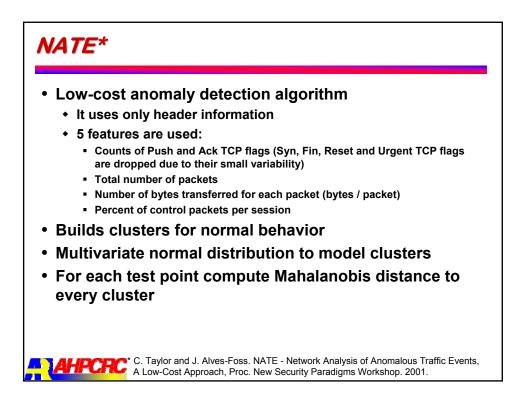




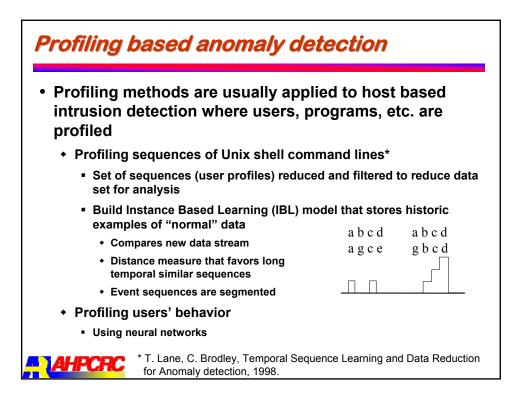
- 44 -

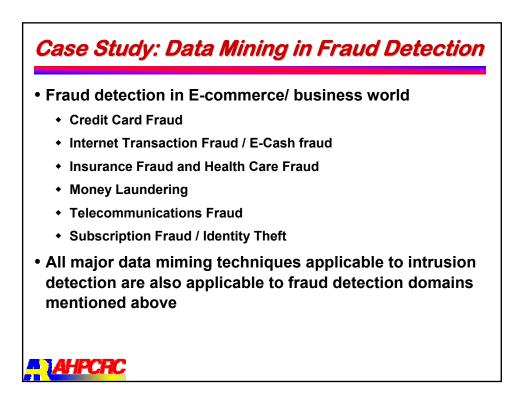






• \		yam	nle: .la	nuai	rv 2	26	200	3 (48	hours	af	ter the Slammer worm)
core	srcIP	sPort	dstiP		-			ts bytes	inours	u	
7674.69	63.150.X.253	1161	128,101,X29		17	16	[0.2)	[0,1829)			
6676.62	63.150.X.253	1161	160.94.X.134	1434		16	[0,2)	[0,1829)			
4323.55	63.150.X.253	1161	128.101.X185	1434	17	16	[0,2)	[0,1829)			
21169.49	63.150.X.253	1161	160.94.X.71	1434	17	16	[0,2)	[0,1829)			
9525.31	63.150.X.253	1161	160.94.X.19	1434	17	16	[0,2)	[0,1829)			
19235.39	63.150.X.253	1161	160.94.X.80	1434	17	16	[0,2)	[0,1829)			Potential Rules:
17679.1	63.150.X.253	1161	160.94.X.220		17	16	[0,2)	[0,1829)			i otentiai ivutes.
8183.58	63.150.X.253	1161	128.101.X.108	1434		16	[0,2)	[0,1829)			1.
7142.98	63.150.X.253	1161	128.101.X.223		17	16	[0,2)	[0,1829)			1.
5139.01	63.150.X.253	1161	128.101.X142		17	16	[0,2)	[0,1829)			{Dest Port = 1434/UDP
4048.49	142.150.Y.101	0	128.101.X 127	2048	1	16	[2,4)	[0,1829)			
4008.35	200.250.Z.20		128.101.X116		17	16	[2,4)	[0,1829)			#packets ∈ [0, 2)}>
3657.23	202.175.Z.237		128.101.X116		17	16	[2,4)	[0,1829)			Highly anomalous behavior
3450.9	63.150.X.253	1161	128.101.X.62		17	16	[0,2)	[0,1829)			
3327.98	63.150.X.253	1161	160.94.X.223		17	16	[0,2)	[0,1829)			(Slammer Worm)
2796.13	63.150.X.253	1161	128.101.X.241		17	16	[0,2)	[0,1829)			-
2693.88	142.150.Y.101 63.150 X 253	0	128.101.X.168	2048		16	[2,4)	[0,1829)			2.
2683.05 2444.16	142,150,Y.236	0	160.94.X.43 128.101.X.240	1434 2048		16 16	[0,2)	[0,1829)			(Cre TD - 142 150 V 101
		0	128.101.X.240 128.101.X.45				[2,4)	[0,1829)			{Src IP = 142.150.Y.101,
2385.42 2114.41	142.150.Y.101 63.150.X.253	1161	128.101.X.45 160.94.X.183	2048 1434		16 16	[0,2)	[0,1829) [0,1829)			Dest Port = 2048/ICMP
	142,150,Y,101	0	128.101.X 161	2048		16	[0,2)	[0, 1829)			#bytes ∈ [0, 1829]}>
2057.15 1919.54	142.150.Y.101	0	128.101.X.101			16	[0,2)	[0, 1829)			
1634.38	142.150.Y.101	0	128.101.X.99			16	[2,4)	[0, 1829)			Highly anomalous behavior
1596.26	63.150.X.253	1161	128.101.X 160	1434		16	[0,2)	[0, 1829)			(ping – scan)
1513.96	142.150.Y.107	0	128.101.X2	2048	1	16	[0,2)	[0,1829)			
1389.09	63.150.X.253	1161	128.101.X30		17	16	[0,2)	[0,1829)			
1315.88	63.150.X.253	1161	128.101.X40		17	16	[0,2)	[0,1829)			
1279.75	142.150.Y.103	0	128.101.X.202	2048	1	16	[0,2)	[0,1829)			
237.97	63.150.X.253	1161	160.94.X.32		17	16	[0,2)	[0,1829)			
1180.82	63.150.X.253	1161	128.101.X.61	1434	17	16	[0,2)	[0,1829)			
1107.78	63.150.X.253	1161	160.94.X.154	1434	17	16	[0,2)	[0,1829)			



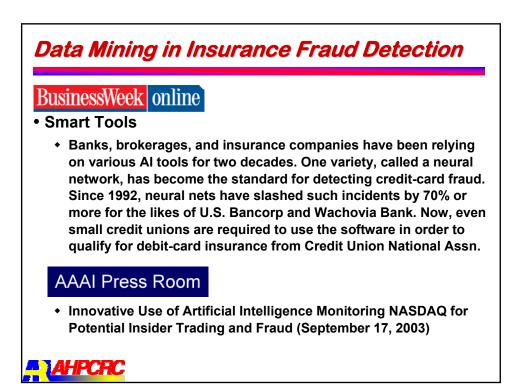


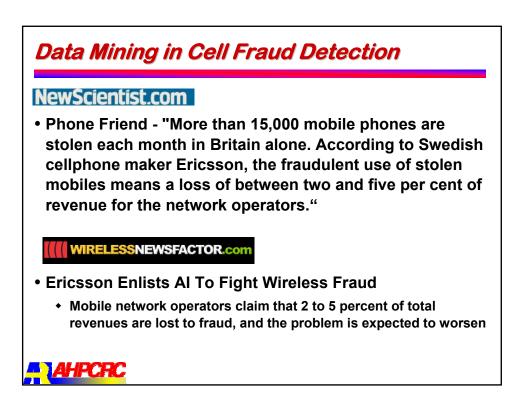
Data Mining in Credit Fraud Detection

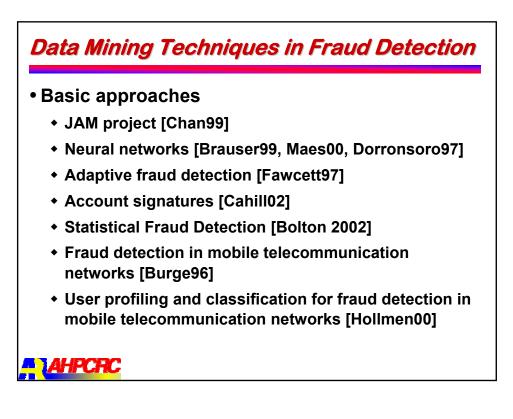
The Washington Post

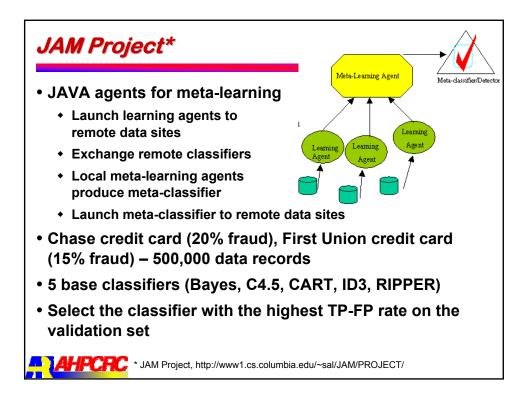
 Credit Card Companies Turn To Artificial Intelligence - "Credit card fraud costs the industry about a \$billion a year, or 7 cents out of every \$100 spent. But that is down significantly from its peak about a decade ago, Sorrentino says, in large part because of powerful technology that can recognize unusual spending patterns."

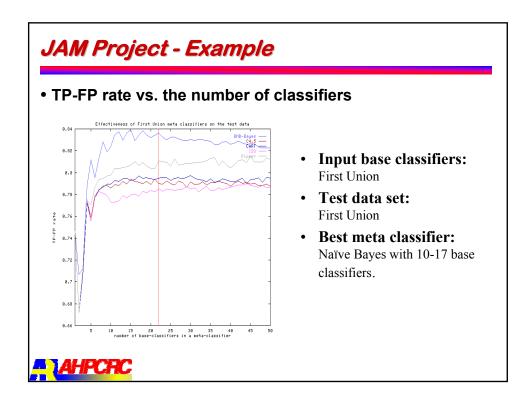
AHPCRC

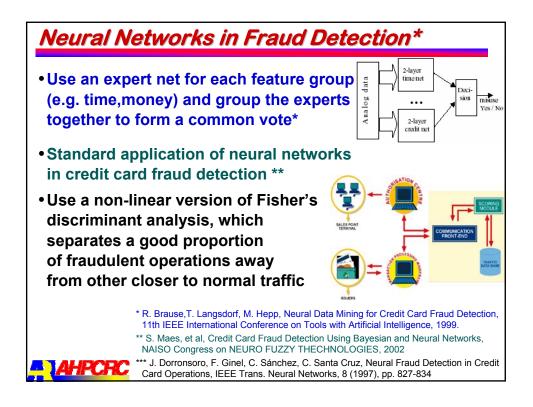


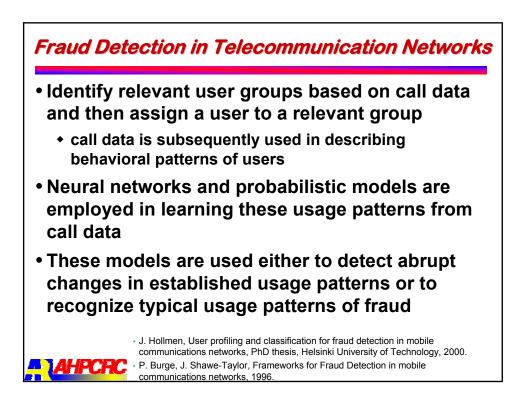




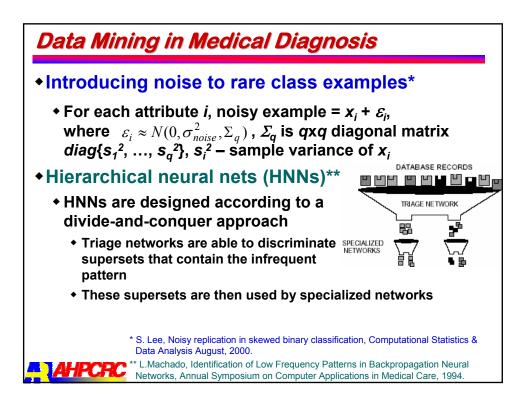


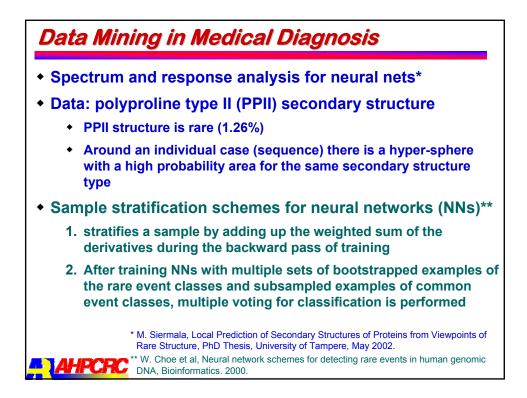


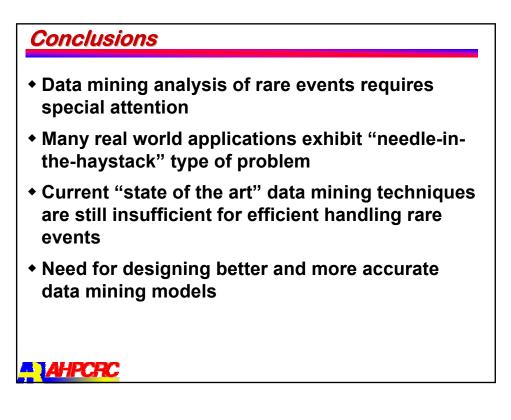




Cost of false positive error: Unnecessary treatment; unnecessary worry Cost of false negative error: Postponed treatment or failure to treat; death or injury							
Event		rence					
Bleeding in outpatients on warfarin	6.7%/yr	Beyth 1998					
Medication errors per order	5.3% (n=10070)	Bates 1995					
Medication error per order	0.3% (n=289000)	Lesar 1997					
Adverse drug events per admission	6.5%	Bates 1995					
Adverse drug events per order	0.05% (n=10070)	Bates 1995					
Adverse drug events per patient	6.7%	Lazarou 1998					
Adverse drug events per patient	1.2%	Bains 1999					
	1.89/100 pt-months	Gurwitz					
Adverse drug events in nursing home patients		D. 4. 1311 2000					
Adverse drug events in nursing home patients Nosocomial infections in older hospitalized patients	5.9 to 16.9 per 1000 days	Rothchild 2000					







Links

- Intrusion Detection bibliography
 - www.cs.umn.edu/~aleks/intrusion_detection.html
 - www.cs.fit.edu/~pkc/id/related/index.html
 - www.cc.gatech.edu/~wenke/ids-readings.html
 - www.cerias.purdue.edu/coast/intrusion-detection/welcome.html
 - http://cnscenter.future.co.kr/security/ids.html
 - www.cs.purdue.edu/homes/clifton/cs590m/
 - www.cs.ucsb.edu/~rsg/STAT/links.html
- Fraud detection bibliography
 - www.hpl.hp.com/personal/Tom_Fawcett/fraud-public.bib.gz
 - http://dinkla.net !!!!!
 - http://www.aaai.org/AITopics/html/fraud.html
- Fraud detection solutions
 - www.kdnuggets.com/solutions/fraud-detection.html

AHPCRC

