Parsing with CCG

- Lecture 6-

Syntactic formalisms for natural language parsing

FI MU autumn 2011

Categorial Grammar is

: a lexicalized theory of grammar along with other theories of grammar such as HPSG, TAG, LFG, . . .

- : linguistically and computationally attractive
 - ► language invariant combination rules, high efficient parsing

Outline

1. A-B categorial system

2. Lambek calculus

3. Extended Categorial Grammar

- Variation based on Lambek calculus
 - Abstract Categorial Grammar, Categorial Type Logic
- Variation based on Combinatory Logic
 - Combinatory Categorial Grammar (CCG)
 - Multi-modal Combinatory Categorial Grammar

Main idea in CG and application operation

- All natural language consists of <u>operators</u> and of <u>operands</u>.
 - Operator (functor) and operand (argument)
 - Application: (operator(operand))
 - Categorial type: typed operator and operand

1. A-B categorial system

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz's calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).

Given A, a finite set of atomic categories, the set of categories C is the smallest set such that:

- *A*⊆*C*
- $(X \setminus Y)$, $(X/Y) \in C$ if $X, Y \in C$

- Categories (type): primitive categories and derivative categories
 - Primitive: S for sentence, N for nominal phrase
 - Derivative: S/N, N/N, (S\N)/N, NN/N, S/S...

Forward(>) and backward (<) functional application

a.
$$X/Y Y \Rightarrow X$$

b.
$$Y X \setminus Y \Rightarrow X$$

• Calculus on types in CG are analogue to arithmetic subtraction

$$x/y \quad x \rightarrow y \approx 2/4 \quad 2 = 4$$

Applicative tree of *Brazil defeated Germany*

Limitation of AB system

1. Relative construction

- a. $team_i that t_i$ defeated Germany
- b. team, that Brazil defeated t_i
 - a'. that $(n \mid n)/(s \mid n)$
 - b'. that $(n \cdot n)/(s/n)$

team	[that] _{(n\n)/(s\n)}	[defeated Germany] _{s\n}		
team	[that] _{(n\n)/(s/n)}	[Brazil defeated] _{s/n}		

```
team that Brazil defeated
(n\n)/(s/n) n (s\n)/n

◄ (?)
```

2. Agrammatical sentence considered as well-formed structure

3. Many others complex phenomena

- Coordination
- Object extraction, unbounded dependencies,...

4. AB's generative power is too weak.

2. Lambek calculus (Lambek, 1958, 1961)

- on the calculus of syntactic types

The axioms of Lambek calculus are the following:

- $1. X \rightarrow X$
- 2. $(xy)z \rightarrow x(yz) \rightarrow (xy)z$ (the axioms 1, 2 with inference rules, 3, 4, 5)
- 3. If $xy \to z$ then $x \to z/y$, if $xy \to z$ then $y \to x\z$;
- 4. If $x \to z/y$ then $xy \to z$, if $y \to x \ then <math>xy \to z$;
- 5 . If $x \to y$ and $y \to z$ then $x \to z$.

The rules obtained from the previous axioms are the following:

- 1. Hypothesis: if x and y are types, then x/y and y/x are types.
- 2 . Application rules : $(x/y)y \rightarrow x$, $y(y/x) \rightarrow x$

ex: Poor John works.

3 . Associativity rule : $(x\y)/z \leftrightarrow x\(y/z)$

ex: John likes Jane.

4. Composition rules : $(x/y)(y/z) \rightarrow x/z$, $(x/y)(y/z) \rightarrow x/z$

ex: He likes him.

 $s/(n\s) n\s/n$

5. Type-raising rules : $x \rightarrow y/(x/y)$, $x \rightarrow (y/x)\y$

3. Combinatory Categorial Grammar

- Developed originally by M. Steedman (1988, 1990, 2000, ...)
- Combinatory Categorial Grammar (CCG) is a grammar formalism equivalent to Tree Adjoining Grammar, i.e.
 - it is lexicalized
 - it is parsable in polynomial time (See Vijay-Shanker and Weir, 1990)
 - it can capture cross-serial dependencies
- Just like TAG, CCG is used for grammar writing
- CCG is especially suitable for statistical parsing

- several of the <u>combinators which Curry and Feys</u> (1958) use to define the λ-calculus and applicative systems in general are of considerable syntactic interest (Steedman, 1988)
- The relationships of these combinators to terms of the λ-calculus are defined by the following equivalences (Steedman, 2000b):

a. **B**
$$fg \equiv \lambda x. f(g x)$$

b.
$$\mathbf{T}x \equiv \lambda f.fx$$

c.
$$\mathbf{S} f g \equiv \lambda x. f x (g x)$$

CCG categories

- Atomic categories: S, N, NP, PP, TV. . .
- Complex categories are built recursively from atomic categories and slashes
- Example complex categories for verbs:
 - intransitive verb: S\NP walked
 - transitive verb: (S\NP)/NP respected
 - ditransitive verb: ((S\NP)/NP)/NP gave

Lexical categories in CCG

 An elementary syntactic structure – a lexical category – is assigned to each word in a sentence, eg:

walked: S\NP 'give me an NP to my left and I return a sentence'

 Think of the lexical category for a verb as a function: NP is the argument, S the result, and the slash indicates the direction of the argument

The typed lexicon item

- The CCG lexicon assigns categories to words, i.e. it specifies which categories a word can have.
- Furthermore, the lexicon specifies the semantic counterpart of the syntactic rules, e.g.:

love (S\NP)/NP λxλy.loves'xy

Combinatory rules determine what happens with the category and the semantics on combination

Attribution of types to lexical items: examples

Predicate

ex: is as an identificator of nominal

```
as an <u>operator of predication</u> from a nominal \longrightarrow (S\NP)/NP from an adjective \longrightarrow (S\NP)/(N/N) from an adverb \longrightarrow (S\NP)/(S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\((S\NP)\(S\NP)\((S\N
```


 $(S\NP)/(S\NP)/(S\NP)/(S\NP) \\ (S\NP)/NP/(S\NP)/NP/(S\NP)/NP \\ (S\NP)/NP/(S\NP)/NP \\ (S\NP)/NP/(S\NP)/NP \\ (S\NP)/NP \\ (S\NP$

Adverb: operator of determination of type (X/X)

Preposition

Prep. 1: constructor of adverbial phrase

Prep. 2: constructor of adjectival phrase

(S\NP)\(S\NP)/NP (S/S)/NP (S/S)/N

(N\N)/NP (N\N)/N

Preposition: constructor of determination of type (X/X)

Dictionary of typed words

Syntactic categories	Syntactic types	Lexical entries
Nom.	N	Olivia, apple
Completed nom.	NP	an apple, the school
Pron.	NP	She, he
Adj.	(N/N), (N\N)	pretty woman,
Adv.	(N/N)/(N/N), (S\NP)\(S\NP)	very delicious,
Vb	(S\NP), (S\NP)/NP	run, give
Prep.	(S\NP)\(S\NP)/NP (NP\NP)/NP	run in the park, book of John,
Relative	(S\NP)/S	I believe that

Combinatorial categorial rules

- Functional application (>,<)
- Functional composition (>B, <B)
- Type-raising (<T,>T)
- Distribution ($\langle S, \rangle S$)
- Coordination $(<\Phi, >\Phi)$

Functional application (FA)

```
X/Y:f Y:a \Rightarrow X:fa (forward functional application, >)
Y:a X\Y:f \Rightarrow X:fa (backward functional application, <)
```

Combine a function with its argument:

• Direction of the slash indicates position of the argument with respect to the function

Derivation in CCG

- The combinatorial rule used in each derivation step is usually indicated on the right of the derivation line
- Note especially what happens with the semantic information

Function composition (FC)

Generalized forward composition (>Bn)

$$X/Y:f Y/Z:g \Rightarrow_{B} X/Z:\lambda x.f(gx) (>B)$$

Functional composition composes two complex categories (two functions):

$$(S\NP)/PP (PP/NP) \Rightarrow_{R} (S\NP)/NP$$

$$S/(SNP)$$
 $(SNP)/NP \Rightarrow_{B} S/NP$

$$\begin{array}{c|c} \underline{ \text{birds}} & \underline{ \text{like}} & \underline{ \text{bugs}} \\ \hline \underline{ NP} \\ \underline{ S/(S\backslash NP)} \\ > \mathbf{T} \\ \hline \underline{ S/(S\backslash NP)} \\ > \mathbf{B} \\ \hline \underline{ S/NP} \\ > \\ \\ S \end{array} >$$

Generalized backward composition (<Bn)

$$Y \setminus Z:f \qquad X \setminus Y:g \implies_{\mathbf{B}} X \setminus Z:\lambda x.f(gx) \qquad (<\mathbf{B})$$

The referee gave	Unsal	a card	and	Rivaldo	the ball
(s/np)/np	np	np _	$\overline{(X\backslash X)/X}$	np	np _
	$\overline{(s/np)\setminus((s/np)/np)}^{< T}$	s\(s/np)		$\frac{\langle s/np \rangle \langle ((s/np)/np) \rangle}{\langle s/np \rangle \langle ((s/np)/np) \rangle}$	s\(s/np)
	s\((s/np)/n	p) <b< td=""><td></td><td>s\((s/np)/n</td><td></td></b<>		s\((s/np)/n	
	$s\setminus ((s/np)/np)$				
		ç		<	

Type-raising (T)

Forward type-raising (>T)

$$X:a \Rightarrow T/(T\backslash X):\lambda f.fa \quad (>T)$$

• Type-raising turns an <u>argument</u> into a <u>function</u> (e.g. for case assignment)

$$NP \Rightarrow S/(S \setminus NP)$$
 (nominative)

$$\begin{array}{c|c} \underline{\text{birds}} & \underline{\text{fly}} \\ \underline{NP} & \underline{S \backslash NP} \\ S & \underline{S / (S \backslash NP)} > \mathbf{T} \\ \end{array} \qquad \begin{array}{c|c} \underline{\text{fly}} \\ \underline{S / (S \backslash NP)} \\ S & \underline{S / (S \backslash NP)} > \mathbf{T} \\ \end{array}$$

• This must be used *e.g.* in the case of WH-movement

Example of <u>functional composition (>B)</u> and <u>type-raising (T)</u>

Backward type-raising (<T)

$$X:a \Rightarrow T\setminus (T/X):\lambda f.fa \quad ($$

Type-raising turns an <u>argument</u> into a <u>function</u> (e.g. for case assignment)

$$NP \Rightarrow (S\NP)\((S\NP)/NP)$$
 (accusative)

$$\frac{ \text{The referee gave}}{(s/np)/np} = \frac{Unsal}{np \atop (s/np) \setminus ((s/np)/np)} = \frac{a \ card}{np \atop (s/np) \setminus ((s/np)/np)} = \frac{a \ card}{(X \setminus X)/X} = \frac{Rivaldo}{np \atop (s/np) \setminus ((s/np)/np)} = \frac{np}{s \setminus ((s/np)/np)} < \frac{T}{s \setminus (s/np)} < \frac{np}{s \setminus ((s/np)/np)} < \frac{T}{s \setminus (s/np)/np} < \frac{T}{s \setminus (s$$

Coordination (&)

$$X CONJ X \Rightarrow_{\Phi} X$$
 (Coordination (Φ))

Substitution (S)

Forward substitution (>S)

$$(X/Y)/Z Y/Z \Rightarrow_S X/Z$$

- Application to parasitic gap such as the following:
 - a. team that I persuaded every detractor of to support

Substitution (S)

Backward crossed substitution (<Sx)

$$Y/Z (XY)/Z \Rightarrow_S X/Z$$

- Application to parasitic gap such as the following:
 - a. John watched without enjoying the game between Germany and Paraguay.
 - b. game that John watched without enjoying

$$\frac{ \text{game} }{ \frac{(n \setminus n)/(s/np)}{(n \setminus n)/(s/np)}} \frac{ \frac{ \text{John} }{np} }{ \frac{(s \setminus np)/np}{(s \setminus np)/(s \setminus np)/(np)} \frac{(s \setminus np)/(s \setminus np))/np}{(s \setminus np)/np} > B }$$

Limit on possible rules

The Principle of Adjacency:

Combinatory rules may only apply to entities which are linguistically realised and adjacent.

The Principle of Directional Consistency:

All syntactic combinatory rules must be consistent with the directionality of the principal function. ex: $XYY \neq X$

> The Principle of Directional Inheritance:

If the category that results from the application of a combinatory rule is a function category, then the slash defining directionality for a given argument in that category will be the same as the one defining directionality for the corresponding arguments in the input functions. ex: $X/Y Y/Z \neq > X\Z$.

Semantic in CCG

- CCG offers a syntax-semantics interface.
- The lexical categories are augmented with an explicit identification of their semantic interpretation and the rules of functional application are accordingly expanded with an explicit semantics.
- Every syntactic category and rule has a semantic counterpart.

 The lexicon is used to pair words with syntactic categories and semantic interpretations:

love (S\NP)/NP
$$\Rightarrow \lambda x \lambda y. loves'xy$$

- The semantic interpretation of all combinatory rules is fully determined by the Principle of Type Transparency:
 - <u>Categories</u>: All syntactic categories reflect the semantic type of the associated logical form.
 - Rules: All syntactic combinatory rules are type-transparent versions of one of a small number of semantic operations over functions including application, composition, and type-raising.

proved := $(S\NP_{3s})/NP : \lambda x \lambda y. prove'xy$

• the semantic type of the reduction is the same as its syntactic type, here functional application.

CCG with semantics: Mary will copy and file without reading these articles

Parsing a sentence in CCG

- Step 1: tokenization
- Step 2: tagging the concatenated lexicon
- Step 3: calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules
- Step 4: eliminate the applied combinators (we will see how to do on next week)
- **Step 5:** finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization → ex) POS Tagger, tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals

b. l-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions → ex) Supertagger, Inventory of typed words

I NP

Requested (S\NP)/NP

And CONJ

Would (S\NP)/VP

Prefer VP/NP

musicals NP

STEP 3 : categorial calculus

a. apply the type-raising rules
$$NP: a \Rightarrow T/(T \setminus NP): Ta$$

b. apply the functional composition rules $X/Y: f Y/Z: g \Rightarrow X/Z: \mathbf{B} fg$

c. apply the coordination rules $X/X: f Y/Z: g \Rightarrow X/Z: \mathbf{B} fg$

I-	requested-	and-	would-	prefer-	musica	als
1/ NP	(S\NP)/NP	CONJ	(S\NP)/VP	VP/NP	NP	
2/ S/(S\NP)	(S\NP)/NP	CONJ	(S\NP)/VP	VP/NP	NP	(> T)
3/ S/(S\NP)	(S\NP)/NP	CONJ	(S\NI	P)/NP	NP	(>B)
4/ S/(S\NP)	(S\NI	P)/NP			NP	(>Ф)
5/ S/(S\NP)	(S\NI	P)/NP			NP	(> B)
6/	S/NP				NP	(>)
7/		S				

STEP 4: semantic representation (predicate-argument structure)

```
I requested and would prefer musicals 1/:i' :request' :and' : will' :prefer' : musicals' 2/:\lambda f:fI' 3/ : \lambda x.\lambda y.will'(prefer'x)y 4/ : \lambda tv\lambda x\lambda y.and'(will'(prefer'x)y))(tv xy) 5/ : \lambda x\lambda y.and'(will'(prefer'x)y)(request'xy) 6/ :\lambda y.and'(would'(prefer' musicals')y)(request' musicals' y) 7/S: and'(will'(prefer' musicals') i')(request' musicals' i')
```

Variation of CCG: Multi-modal CCG (Baldridge, 2002)

- Modalized CCG system
- Combination of Categorial Type Logic (CTL, Morrill, 1994; Moortgat, 1997) into the CCG (Steedman, 2000)
- Rules restrictions by introducing the modalities: *, x, •, ◊
- Modalized functional composition rules

$$\begin{array}{ccccc} (> \textbf{B}) & & X/_{\diamond}Y & Y/_{\diamond}Z & \Rightarrow & X/_{\diamond}Z \\ (< \textbf{B}) & & Y/_{\diamond}Z & X/_{\diamond}Y & \Rightarrow & X/_{\diamond}Z \end{array}$$

Invite you to read the paper "Multi-Modal CCG" of (Baldridge and M.Kruijff, 2003)

The positions of several formalisms on the Chomsky hierarchy

Classwork

Exercise of taggings and of categorial calculus

See the given paper!!