Parsing with CCG

- Lecture 6-

Syntactic formalisms for natural language parsing
FI MU autumn 2011

Categorial Grammar is

: a lexicalized theory of grammar along with other theories of grammar such as HPSG, TAG, LFG, . . .
: linguistically and computationally attractive
\longrightarrow language invariant combination rules, high efficient parsing

Outline

1. A-B categorial system

2. Lambek calculus
3. Extended Categorial Grammar

- Variation based on Lambek calculus
- Abstract Categorial Grammar, Categorial Type Logic
- Variation based on Combinatory Logic
- Combinatory Categorial Grammar (CCG)
- Multi-modal Combinatory Categorial Grammar

Main idea in CG and application operation

- All natural language consists of operators and of operands.
- Operator (functor) and operand (argument)
- Application: (operator(operand))
- Categorial type: typed operator and operand

1. A-B categorial system

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz's calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).
Given A, a finite set of atomic categories, the set of categories C is the smallest set such that:

- $A \subseteq C$
- $(X \mid Y),(X / Y) \in C$ if $X, Y \in C$
- Categories (type): primitive categories and derivative categories
- Primitive: S for sentence, N for nominal phrase
- Derivative: S/N, N/N, (SIN)/N, NN/N, S/S...
- Forward(>) and backward (<) functional application

$$
\begin{align*}
& \text { a. } X / Y Y \Rightarrow X \tag{>}\\
& \text { b. } Y X I Y \Rightarrow X \tag{<}
\end{align*}
$$

- Calculus on types in CG are analogue to arithmetic subtraction

$$
x / y x \rightarrow y \quad 2 / 4 * 2=4
$$

Applicative tree of Brazil defeated Germany

Limitation of $A B$ system

1. Relative construction

a. team ${ }_{i}$ that t_{i} defeated Germany
b. team ${ }_{i}$ that Brazil defeated t_{i}

a^{\prime}. that $(n \backslash n) /(\sin)$	team	[that] $_{(\text {(nin)/(sin) }}$	[defeated Germany] ${ }_{\text {sin }}$
b^{\prime}. that ($\left.n \backslash n\right) /(s / n)$	team	[that] $_{(\text {(nln)/(s/n) }}$	$\left[\right.$ Brazil defeated] ${ }_{s / n}$

team	$\begin{aligned} & \text { that B } \\ & (\mathrm{n} \ln) /(\mathrm{s} / \mathrm{n}) \end{aligned}$	Brazil	defeated $(\mathrm{s} \ln) / \mathrm{n}$

2. Agrammatical sentence considered as well-formed structure
```
*a man good
    n/n n n\n
        n : ((good)man)
        n : (a((good)man))
a good man
n/n n\n n
    n :((good)man)
n : (a((good)man))
```

3. Many others complex phenomena

- Coordination
- Object extraction, unbounded dependencies,...

4. $A B$'s generative power is too weak.

2. Lambek calculus (Lambek, 1958, 1961)
 - on the calculus of syntactic types

The axioms of Lambek calculus are the following:

1. $x \rightarrow x$
2. ($x y$) $z \rightarrow x(y z) \rightarrow(x y) z$ (the axioms 1,2 with inference rules, $3,4,5$)
3. If $x y \rightarrow z$ then $x \rightarrow z / y$, if $x y \rightarrow z$ then $y \rightarrow x \backslash z$;
4. If $x \rightarrow z / y$ then $x y \rightarrow z$, if $y \rightarrow x \mid z$ then $x y \rightarrow z$;
5. If $x \rightarrow y$ and $y \rightarrow z$ then $x \rightarrow z$.

The rules obtained from the previous axioms are the following:

1. Hypothesis: if x and y are types, then x / y and ylx are types.

2 . Application rules : $(\mathrm{x} / \mathrm{y}) \mathrm{y} \rightarrow \mathrm{x}, \mathrm{y}(\mathrm{y} \mid \mathrm{x}) \rightarrow \mathrm{x}$
ex: Poor John works.
3 . Associativity rule : $(x \mid y) / z \leftrightarrow x \mid(y / z)$
ex: John likes Jane.
4. Composition rules : $(x / y)(y / z) \rightarrow x / z,(x / y)(y / z) \rightarrow x / z$
ex: He likes him.

$$
\mathrm{s} /(\mathrm{n} \backslash \mathrm{~s}) \mathrm{n} \mid \mathrm{s} / \mathrm{n}
$$

5. Type-raising rules : $x \rightarrow y /(x / y), x \rightarrow(y / x) / y$

3. Combinatory Categorial Grammar

- Developed originally by M. Steedman (1988, 1990, 2000, ...)
. Combinatory Categorial Grammar (CCG) is a grammar formalism equivalent to Tree Adjoining Grammar, i.e.
x it is lexicalized
* it is parsable in polynomial time (See Vijay-Shanker and Weir, 1990)
x it can capture cross-serial dependencies
, Just like TAG, CCG is used for grammar writing
. CCG is especially suitable for statistical parsing
- several of the combinators which Curry and Feys (1958) use to define the $\boldsymbol{\lambda}$-calculus and applicative systems in general are of considerable syntactic interest (Steedman, 1988)
- The relationships of these combinators to terms of the λ-calculus are defined by the following equivalences (Steedman, 2000b):

$$
\begin{aligned}
& \text { a. } \mathbf{B} f g \equiv \lambda x . f(g x) \\
& \text { b. } \mathbf{T} x \equiv \lambda f . f x \\
& \text { c. } \mathbf{S} f g \equiv \lambda x . f x(g x)
\end{aligned}
$$

CCG categories

- Atomic categories: S, N, NP, PP, TV. . .
- Complex categories are built recursively from atomic categories and slashes
- Example complex categories for verbs:
- intransitive verb: SINP walked
- transitive verb: (SINP)/NP respected
- ditransitive verb: ((SINP)/NP)/NP gave

Lexical categories in CCG

- An elementary syntactic structure - a lexical category - is assigned to each word in a sentence, eg:
walked: SINP 'give me an NP to my left and I return a sentence'
- Think of the lexical category for a verb as a function: NP is the argument, S the result, and the slash indicates the direction of the argument

The typed lexicon item

- The CCG lexicon assigns categories to words, i.e. it specifies which categories a word can have.
- Furthermore, the lexicon specifies the semantic counterpart of the syntactic rules, e.g.:
love (SINP)/NP $\lambda x \lambda y . l o v e s ' x y$
- Combinatory rules determine what happens with the category and the semantics on combination
- Attribution of types to lexical items: examples

Predicate

ex: is as an identificator of nominal
as an operator of predication from a nominal (SINP)/NP from an adjective $\longrightarrow(\mathrm{S} \backslash \mathrm{NP}) /(\mathrm{N} / \mathrm{N})$ from an adverb $\quad \longrightarrow \quad(S I N P) /(S T N P) \backslash(S \backslash N P)$ from a preposition $\longrightarrow(S \backslash N P) /((S \backslash N P) \backslash(S I N P) / N P)$
ex: verbs

- unary (SINP)
- binary (SINP)/NP
- ternary (SINP)/NP/NP

Adverbs

Adverb of verb
Adverb of proposition
Adverb of adjective
(SINP)/(SINP)
(N/N)/(N/N)
Adverb of adverb
(NIN)/(NTN)
(SINP)/(SINP)/(SINP)/(SINP)
(SINP)/NP/(SINP)/NP/(SINP)/NP/(SINP)/NP

Adverb: operator of determination of type (X/X)

Preposition

Prep. 1:
constructor of adverbial phrase
(SINP)
(SINP)/NP
(S/S)/NP
(S/S)/N

Prep. 2:
constructor of adjectival phrase
(NTN)/NP
(NIN)/N

Preposition: constructor of determination of type (XIX)

Dictionary of typed words

Syntactic categories	Syntactic types	Lexical entries
Nom.	N	Olivia, apple...
Completed nom.	NP	an apple, the school
Pron.	NP	She, he...
Adj.	(N/N), (NIN)	pretty woman,...
Adv.	(N/N)/(N/N), (SINP) (SINP)	very delicious,...
Vb	(SINP), (SINP)/NP...	run, give...
Prep.	(SINP) $($ SINP)/NP	run in the park,
	(NPINP)/NP...	book of John,...
Relative	(SINP)/S...	I believe that...

Combinatorial categorial rules

- Functional application (>,<)
- Functional composition ($>\mathbf{B},<\mathbf{B}$)
- Type-raising ($<\mathbf{T},>\mathbf{T}$)
- Distribution ($<\mathbf{S},>\mathbf{S}$)
- Coordination ($<\boldsymbol{\Phi},>\boldsymbol{\Phi}$)

Functional application (FA)

$$
\begin{aligned}
& X / Y: f \quad Y: a \Rightarrow \quad X: f a \text { (forward functional application, >) } \\
& \text { Y:a } \quad \text { XIY:f } \Rightarrow \text { X:fa (backward functional application, <) }
\end{aligned}
$$

- Combine a function with its argument:

```
NP SINP
S
    Mary sleeps }->\mathrm{ (sleeps (Mary))
NP (SINP)/NP NP
        SINP }->\mathrm{ (likes (Mary))
        S
John likes Mary -> ((likes (Mary))John)
```

- Direction of the slash indicates position of the argument with respect to the function

Derivation in CCG

- The combinatorial rule used in each derivation step is usually indicated on the right of the derivation line
- Note especially what happens with the semantic information

$$
\frac{\frac{\text { John }}{N P: \text { John' }^{\prime}} \frac{\frac{\text { loves }}{(S \backslash N P) / N P: \lambda x \lambda y \cdot \text { loves' }^{\prime} x y} \frac{\text { Mary }}{N P: \text { Mary }^{\prime}}}{\frac{S \backslash N P: \lambda y \cdot \text { loves' }^{\prime} \text { Mary }^{\prime} y}{S:{\text { loves' }{ }^{\prime} \text { Mary' John' }}^{\prime}}} \gg}{}>
$$

Function composition (FC)

Generalized forwerd composition (>Bn)

$$
X / Y: f \quad Y / Z: g \quad \Rightarrow_{B} X / Z: \lambda x . f(g x) \quad \text { (>B) }
$$

- Functional composition composes two complex categories (two functions):

$$
\begin{aligned}
(\mathrm{S} \backslash \mathrm{NP}) / \mathrm{PP} & (\mathrm{PP} / \mathrm{NP}) \Rightarrow_{\mathrm{B}}(\mathrm{~S} \backslash \mathrm{NP}) / \mathrm{NP} \\
\mathrm{~S} /(\mathrm{S} \backslash \mathrm{NP}) & (\mathrm{S} \backslash \mathrm{NP}) / \mathrm{NP} \Rightarrow_{\mathrm{B}} \mathrm{~S} / \mathrm{NP} \\
& \frac{\text { birds }}{\frac{N P}{S /(S \backslash N P)}}>\mathbf{T} \frac{\text { like }}{(S \backslash N P) / N P} \quad \frac{\text { bugs }}{N P} \\
& \frac{S / N P}{S}>\mathbf{B}
\end{aligned}
$$

Generalized backward composition (<Bn)

$$
Y \backslash Z: f \quad X \backslash Y: g \quad \Rightarrow_{\mathbf{B}} X \backslash Z: \lambda x . f(g x) \quad(<\mathbf{B})
$$

The referee gave	Unsal	a card	and	Rivaldo	the ball
$(\mathrm{s} / \mathrm{np}) / \mathrm{np}$	np	np	$\overline{(X \mid X) / X}$	np	np
	$\overline{(s / n p) \((s / n p) / n p)}$	$\overline{s)(s / n p)}$		$\overline{(s / n p) \backslash((s / n p) / / n p)}$	$\overline{s)(s / n p)}$
	$\mathrm{s} \backslash((\mathrm{s} / \mathrm{np}) / \mathrm{np})$			$\mathrm{s} \backslash(\mathrm{s} / \mathrm{np}) / \mathrm{np})$	
	$\mathrm{s} \backslash((5 / n \mathrm{p}) / \mathrm{np})$				

Type-raising (T)

$$
\begin{gathered}
\text { Forward type-raising (>T) } \\
X: a \quad \Rightarrow \quad T /(T \backslash X): \lambda f . f a \quad(>T)
\end{gathered}
$$

- Type-raising turns an argument into a function (e.g. for case assignment)
$N P \Rightarrow S /(S I N P)$ (nominative)

- This must be used e.g. in the case of WH-movement

Example of functional composition (>B) and type-raising (T)

Backward type-raising (<T)

$$
X: a \quad \Rightarrow \quad T \backslash(T / X): \lambda f . f a \quad(<T)
$$

- Type-raising turns an argument into a function (e.g. for case assignment)

$$
N P \Rightarrow(S I N P) \backslash((S I N P) / N P) \quad \text { (accusative) }
$$

Coordination (\&)

X CONJ $\mathrm{X} \Rightarrow_{\Phi} \mathrm{X} \quad$ (Coordination (Φ))

Substitution (S)

Forward substitution (>S)

$$
(X / Y) / Z Y / Z \Rightarrow_{s} X / Z
$$

- Application to parasitic gap such as the following:
a. team that I persuaded every detractor of to support

Substitution (S)

Backward crossed substitution (<Sx)

$$
\mathrm{Y} / \mathrm{Z}(\mathrm{XIY}) / Z \Rightarrow_{\mathrm{s}} \mathrm{X} / \mathrm{Z}
$$

- Application to parasitic gap such as the following:
a. John watched without enjoying the game between Germany and Paraguay.
b. game that John watched without enjoying
game that John [watched] $]_{(\text {slnp /np }}[\text { without enjoying }]_{((\operatorname{sinn}))(\text { slnp))/np }}$

Limit on possible rules

, The Principle of Adjacency:
Combinatory rules may only apply to entities which are linguistically realised and adjacent.
> The Principle of Directional Consistency:
All syntactic combinatory rules must be consistent with the directionality of the principal function. ex: XIY Y \#> X
, The Principle of Directional Inheritance:
If the category that results from the application of a combinatory rule is a function category, then the slash defining directionality for a given argument in that category will be the same as the one defining directionality for the corresponding arguments in the input functions. ex: X/Y Y/Z \#> XIZ.

Semantic in CCG

- CCG offers a syntax-semantics interface.
- The lexical categories are augmented with an explicit identification of their semantic interpretation and the rules of functional application are accordingly expanded with an explicit semantics.
- Every syntactic category and rule has a semantic counterpart.
- The lexicon is used to pair words with syntactic categories and semantic interpretations:
love (SINP)/NP $\Rightarrow \lambda x \lambda y$.loves'xy
- The semantic interpretation of all combinatory rules is fully determined by the Principle of Type Transparency:
- Categories: All syntactic categories reflect the semantic type of the associated logical form.
- Rules: All syntactic combinatory rules are type-transparent versions of one of a small number of semantic operations over functions including application, composition, and type-raising.
proved := $\left(\mathrm{SINP}_{3 \mathrm{~s}}\right) / \mathrm{NP}: \lambda x \lambda y$.prove'xy
- the semantic type of the reduction is the same as its syntactic type, here functional application.

CCG with semantics : Mary will copy and file without reading these articles

Mary will	1 copy	and	file	without	reading	these articles.
$\begin{aligned} & \text { S/VP } \\ & \text { :p.Mary' } \end{aligned}$	VP/NP λ p.will'	CONJ : copy	VP/NP	(VP\VP)/VPing	VPing/NP	NP
			: and'	: file ${ }^{\prime} \quad: \lambda$ p. λ q.wi	out'pq : read'	: articles'
			(VP\VP) /NP $: \lambda x . \lambda q$.without' $\left(\right.$ read $\left.^{\prime} \mathrm{x}\right) \mathrm{q}$			
					$<\mathrm{S}$	
			VP/NP$: \lambda x$. without' read $\left.^{\prime} \mathrm{x}\right)\left(\right.$ file $\left.^{\prime} \mathrm{x}\right)$			
		VP/NP $: \lambda x$. and ${ }^{\prime}\left(\right.$ without $^{\prime}\left(\right.$ read $\left.^{\prime} \mathrm{x}\right)\left(\right.$ file $\left.\left.^{\prime} \mathrm{x}\right)\right)\left(\right.$ copy $\left.^{\prime} \mathrm{x}\right)$				
		VP				
		and $^{\prime}($ without')(read'articles')(file'articles'))(copy'articles')				
				S		
		$11{ }^{\prime}\left(\right.$ and $^{\prime}($ w	out')(rea	d'articles')(file'artic	es')((copy'articl	les')) mary ${ }^{\prime}$

Parsing a sentence in CCG

Step 1: tokenization
Step 2: tagging the concatenated lexicon
Step 3: calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do on next week)
Step 5: finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization \rightarrow ex) POS Tagger, tokenizer, lemmatizer
a. I-requested-and-would-prefer-musicals
b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions \rightarrow ex) Supertagger, Inventory of typed words

I	NP
Requested	$(S \backslash N P) / N P$
And	CONJ
Would	$($ SINP $) / \mathrm{VP}$
Prefer	VP/NP
musicals	NP

STEP 3 : categorial calculus

STEP 4 : semantic representation (predicate-argument structure)

Variation of CCG : Multi-modal CCG (Baldridge, 2002)

- Modalized CCG system
- Combination of Categorial Type Logic (CTL, Morrill, 1994; Moortgat, 1997) into the CCG (Steedman, 2000)
- Rules restrictions by introducing the modalities: *, $\mathrm{x}, \bullet, \diamond$
- Modalized functional composition rules

$$
\begin{array}{llll}
(>\mathbf{B}) & \mathrm{X} / \diamond \mathrm{Y} & \mathrm{Y} / 0 \mathrm{Z} & \Rightarrow \mathrm{X} / \circ \mathrm{Z} \\
(<\mathbf{B}) & \mathrm{Y} \mid \% \mathrm{Z} & \mathrm{X} b_{0} \mathrm{Y} & \Rightarrow \mathrm{X} / 0 \mathrm{Z}
\end{array}
$$

- Invite you to read the paper "Multi-Modal CCG" of (Baldridge and M.Kruijff, 2003)

The positions of several formalisms on the Chomsky hierarchy

Classwork

Exercise of taggings and of categorial calculus

See the given paper!!

