Combinatory Logic

Lecture 7

Syntactic formalisms for natural language parsing

FI MU autumn 2011

Outline

- Applicative system
- Combinators
- Combinators vs. λ-expressions
- Application to natural language parsing
- Combinators used in CCG

Applicative system

- CL (Curry \& Feys, 1958, 1972) as an applicative system

CL is an applicative system because the basic unique operation in CL is the application of an operator to an operand

Combinators

CL defines general operators, called Combinators.

- Each combinator composes between them the elementary combinators and defines the complexe combinators.
- Certains combinators are considered as the basic combinators to define the other combinators.

- Elementary combinators

$$
\begin{array}{llll}
\text { I } & =_{\text {def }} & \lambda x \cdot x & \text { (identificator) } \\
\text { K } & =_{\text {def }} & \lambda x \cdot \lambda y \cdot x & \text { (cancellator) } \\
\text { W } & =_{\text {def }} & \lambda x \cdot \lambda y \cdot x y y & \text { (duplicator) } \\
\text { C } & =_{\text {def }} & \lambda x \cdot \lambda y \cdot \lambda z \cdot x z y & \\
\text { (permutator) } \\
\text { B } & =_{\text {def }} & \lambda x \cdot \lambda y \cdot \lambda z \cdot x(y z)(\text { compositor })
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{S} & =_{\text {def }} & \lambda x \cdot \lambda y \cdot \lambda z \cdot x z(y z) \text { (substitution) } \\
\Phi & =_{\text {def }} & \lambda x \cdot \lambda y \cdot \lambda z \cdot \lambda u \cdot x(y u)(z u) \text { (distribution) } \\
\Psi & =_{\text {def }} & \lambda x \cdot \lambda y \cdot \lambda z \cdot \lambda u \cdot x(y z)(y u) \text { (distribution) }
\end{array}
$$

- B-reductions

The combinators are associated with the B-reductions in a canonical form:
β-reduction relation between X and Y

$$
\mathrm{X} \quad \geq_{B} \quad \mathrm{Y}
$$

Y was obtained from X by a β-reduction

Ix	\geq_{B}	x
Kxy	\geq_{B}	x
Wxy	\geq_{8}	xyy
Cxyz	$\geq_{\text {B }}$	xzy
Bxyz	$\geq_{\text {B }}$	$\mathrm{x}(\mathrm{yz})$
Sxyz	\geq_{B}	xz(yz)
Фxyzu	\geq_{8}	$\mathrm{x}(\mathrm{yu})(\mathrm{zu})$
чxyzu	\geq_{B}	x (yz)(yu)

Each combinator is an operator which has a certain number of arguments (operands); sequences of the arguments which follow the comnator are called "the scope of combinator".

Intuitive interpretations of the elementary combinators are given by the associated 8 -reductions.

, The combinator \mathbf{I} expresses the identity.
, The combinator \mathbf{K} expresses the constant function.
, The combinator \mathbf{W} expresses the diagonalisation or the duplication of an argument.
, The combinator \mathbf{C} expresses the conversion, that is, the permutation of two arguments of an binary operator.
, The combinator B expresses the functional composition of two operators.
, The combinator \mathbf{S} expresses the functional composition and the duplication of argument.
, The combinator $\boldsymbol{\Phi}$ expresses the composition in parallel of operators acting on the common data.
, The combinator ψ expresses the composition by distribution.

- Introduction and elimination rules of combinators

Introduction and elimination rules of combinators can be presented in the style of Gentzen (natural deduction).

Elim. Rules	Intro. Rules
If$---\quad[e-I]$	f
	---[i-I]
	If
Kfx	f
----- [e-K]	----[i-K]
	Kfx

Elim. Rules
Cfx

xf
Bfxy
$\cdots---\quad[e-B]$
$\mathrm{f}(\mathrm{xy})$
Фfxyz
----- [e- $\boldsymbol{\Phi}]$
$\mathrm{f}(\mathrm{xz})(\mathrm{yz})$

Intro. Rules
xf
---[i-C]
Cfx
$\mathrm{f}(\mathrm{xy})$
----[i-B]
Bfxy
$\mathrm{f}(\mathrm{xz})(\mathrm{yz})$
----[i- Φ]
$\boldsymbol{\Phi} \mathrm{fxyz}$

Combinators vs. λ-expressions

The most important difference between the CL and λ-calculus is the use of the bounded variables.

Every combinator is an λ-expression.

$$
\begin{aligned}
& \mathbf{B} f g \equiv \lambda x \cdot f(g x) \\
& \mathbf{T} x \equiv \lambda f \cdot f x \\
& \mathbf{S} f g \equiv \lambda x \cdot f x(g x)
\end{aligned}
$$

Application to natural language parsing

John is brilliant

- The predicate is brilliant is an operator which operate on the operand John to construct the final proposition.
- The applicative representation associated to this analysis is the following: (is-brillant)John
- We define the operator John* as being constructed from the lexicon John by
[John* = C* John].

1. John* (is-brillant)
2. [John* = C* John]
3. C*John (is-brillant)
4. is-brillant (John)

John is brilliant in λ-term

Operator John* by λ-expression

$$
\text { [John* = } \lambda \mathrm{x} . \mathrm{x}(\mathrm{John} \text { ')] }
$$

1/ John*(λx.is-brilliant'(x))
2/ [John* = $\lambda \mathrm{x} . \mathrm{x}$ (John')]
$3 /(\lambda x . x(J o h n '))(\lambda x . i s-b r i l l i a n t '(x))$
4/ (λx.is-brilliant'(x))(John')
5/ is-brillinat'(John')

Passivisation

Consider the following sentences
a. The man has been killed.
b. One has killed him.
\rightarrow Invariant of meaning
\rightarrow Relation between two sentences
: a. unary passive predicate (has-been-killed)
: b. active transitive predicate (have-killed)

Definition of the operator of passivisation 'PASS'

$\left[\mathrm{PASS}=\mathrm{B} \sum \mathrm{C}=\Sigma \circ \mathrm{C}\right]$

where B and C are the combinator of composition and of conversion and where Σ is the existential quantificator which, by applying to a binary predicate, transforms it into the unary predicate.

$\left[\mathrm{PASS}=\mathrm{B} \sum \mathrm{C}=\sum \circ \mathrm{C}\right]$

1/ has-been-killed (the-man)
2/ [has-been-killed=PASS(has killed)]
3/ PASS (has-killed)(the-man)
4/ $\left[\mathrm{PASS}=\mathrm{B} \sum \mathrm{C}\right]$
5/ B $\sum \mathbf{C}$ (has-killed) (the-man)
$6 / \sum(\mathbf{C}($ has $-k i l l e d))($ the-man $)$
7/ (C(has-killed)) x (the-man)
$8 /$ (has-killed)(the-main) x
9/ [x in the agentive subject position $=$ one] 10/ (has-killed)(the-man) one

hypothesis

passive lexical predicate repl.2.,1.
definition of 'PASS'
repl.4.,3.
[$\mathrm{e}-\mathrm{B}$]
[$\mathrm{e}-\mathrm{\Sigma}$]
[$\mathrm{e}-\mathrm{C}$]
definition of 'one'
repl.9.,8., normal form

We establish the paraphrastic relation between the passive sentence with expressed agent and its active counterpart:

$$
\begin{aligned}
& \text { The man has been killed by the enemy } \\
& \qquad \downarrow
\end{aligned}
$$

The enemy has killed the man

Relation between give-to and receive-from

> z gives y to x \uparrow x receives y from x

The lexical predicate "give-to" has a predicate converse associated to "receive-from";
[receive-from z y x = give-to x y z]

1/ (receive-from) zyx
2/ C((receive-from) z) xy
3/BC(receive-from) zxy
4/ C(BC(receive-from)) z x y
5/ C(C(BC(receive-from)) x) y z
6/ BC(C(BC(receive-from))) x y z
7/ [give-to= $\operatorname{BC}(\mathbf{C}(\mathbf{B C}($ receive-from $))$)]
8/ give-to xyz

Combinators used in CCG

Motivation of applying the combinators to natural language parsing

- Linguistic: complex phenomena of natural language applicable to the various languages
- Informatics: left to right parsing (LR) ex: reduce the spurious-ambiguity

Parsing a sentence in CCG

Step 1: tokenization
Step 2: tagging the concatenated lexicon
Step 3: calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do on next week)
Step 5: finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization \rightarrow ex) POS Tagger, tokenizer, lemmatizer
a. I-requested-and-would-prefer-musicals
b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions \rightarrow ex) Supertagger, Inventory of typed words

I	NP
Requested	$(S \backslash N P) / N P$
And	CONJ
Would	$($ SINP $) / \mathrm{VP}$
Prefer	VP/NP
musicals	NP

STEP 3 : categorial calculus

STEP 4 : semantic representation in term of λ-expression

Semantic representation in term of the combinators

$\begin{array}{r} \mathrm{I}- \\ 1 / \mathrm{NP} \end{array}$		requested-	and-	would-	prefer-	mus	
		(SINP)/NP	CONJ	(SINP)/VP	VP/NP	NP	
2/ S/(SINP)		(SINP)/NP	CONJ	(SINP)/VP	VP/NP	NP	($>$ T)
C*		requested a	w	ould	fer	music	
3/ S/(SINP)		(SINP)/NP	CONJ		/NP		(>B)
C*		reques	ed and	B would p			icals
4/ S/(SINP)		(SIN	/NP				(>Ф)
C*		Φ and requested (B would prefer) musicals					
5/	S/NP	NP				(>B)	
$\mathrm{B}\left(\left(\mathrm{C}^{*}\right)\right.$ (Φ and requested (B would prefer))) musicals							
6/	S					(>)	
	$B\left(\left(C^{*}\right)\right.$ (Φ and requested (B would prefer))) musicals						

I requested and would prefer musicals

S: $\mathrm{B}\left(\left(\mathrm{C}^{*}\right)(\Phi\right.$ and requested (B would prefer))) musicals

1/ $B\left(\left(C^{*}\right)(\Phi\right.$ and requested (B would prefer))) musicals
$2 /\left(C^{*}\right)((\Phi$ and requested (B would prefer))) musicals) [e-B]
$3 /((\Phi$ and requested (B would prefer))) musicals)I [e-C*]
$4 /$ (and (requested musicals) ((B would prefer) musicals)) I [e-Ф]
$5 /(($ and $($ requested musicals) (would (prefer musicals))) I) [e-B]

Normal form

A normal form is a combinatory expression which is irreducible in the sense that it contain any occurrence of a redex.

If a combinatory expression X reduce to a combinatory expression N which is in normal form, so N is called the normal form of X .

> Example
> Bxyz is reducible to $\mathrm{x}(\mathrm{yz})$.
> $\mathrm{x}(\mathrm{yz})$ is a normal form of the combinatory expression Bxyz.

Example

Prove xyz is the normal form of BBCxyz.

$$
\text { BBCxyz } \rightarrow_{B} \mathrm{xyz}
$$

1/ BBCxyz

2/ C(Cx)yz [e-B]
3/ Cxzy [e-C]
4/ xyz [e-C]

Classwork

Give the semantic representation in term of combinators. Please refer to the given paper on last lecture on CCG Parsing.

