Combinatory Logic

Lecture 7

Syntactic formalisms for natural language parsing

FI MU autumn 2011

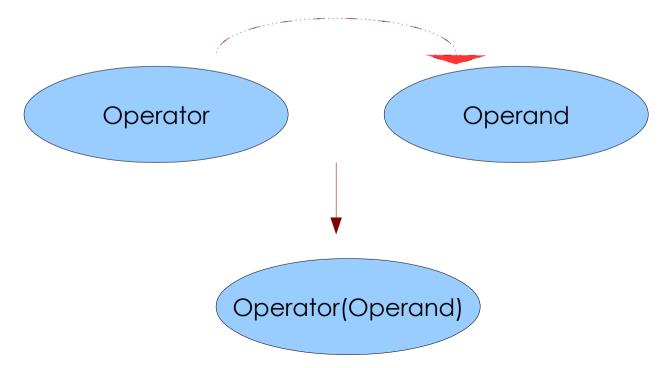
Outline

- Applicative system
- Combinators
- Combinators vs. λ -expressions
- Application to natural language parsing
- Combinators used in CCG

Applicative system

• CL (Curry & Feys, 1958, 1972) as an applicative system

CL is an applicative system because the basic unique operation in CL is the application of an <u>operator</u> to an <u>operand</u>



Combinators

CL defines general operators, called Combinators.

- Each combinator composes between them the <u>elementary</u> <u>combinators</u> and defines the <u>complexe combinators</u>.
- Certains combinators are considered as the basic combinators to define the other combinators.

• Elementary combinators

I =
$$_{def}$$
 $\lambda x.x$ (identificator)
K = $_{def}$ $\lambda x.\lambda y.x$ (cancellator)
W = $_{def}$ $\lambda x.\lambda y.xyy$ (duplicator)
C = $_{def}$ $\lambda x.\lambda y.\lambda z.xzy$ (permutator)
B = $_{def}$ $\lambda x.\lambda y.\lambda z.x(yz)$ (compositor)

 $S =_{def} \lambda x.\lambda y.\lambda z.xz(yz) \text{ (substitution)}$ $\Phi =_{def} \lambda x.\lambda y.\lambda z.\lambda u.x(yu)(zu) \text{ (distribution)}$ $\Psi =_{def} \lambda x.\lambda y.\lambda z.\lambda u.x(yz)(yu) \text{ (distribution)}$

• **B**-reductions

The combinators are associated with the **β-reductions** in a canonical form:

 $\ensuremath{\ensuremath{\mathcal{B}}\xspace}\xspace$ reduction relation between X and Y

 $X \geq_{\beta} Y$

Y was obtained from X by a ß-reduction

Ix	\geq_{β}	X
Kxy	$\geq_{_{\!$	X
Wxy	\geq_{β}	хуу
Cxyz	\geq_{β}	xzy
Bxyz	$\geq_{_{B}}$	x(yz)
Sxyz	≥ ₆	xz(yz)
Фxyzu	≥ ₆	x(yu)(zu)
ψxyzu	\geq_{β}	x(yz)(yu)

Each combinator is an operator which has a certain number of arguments (operands); sequences of the arguments which follow the comnator are called "the scope of combinator".

Intuitive interpretations of the elementary combinators are given by the associated **β-reductions**.

- > The combinator **I** expresses the identity.
- > The combinator K expresses the constant function.
- > The combinator **W** expresses the diagonalisation or the duplication of an argument.
- > The combinator C expresses the conversion, that is, the permutation of two arguments of an binary operator.
- > The combinator B expresses the functional composition of two operators.
- \succ The combinator ${\bf S}$ expresses the functional composition and the duplication of argument.
- > The combinator Φ expresses the composition in parallel of operators acting on the common data.
- > The combinator ψ expresses the composition by distribution.

• Introduction and elimination rules of combinators

Introduction and elimination rules of combinators can be presented in <u>the style of Gentzen</u> (*natural deduction*).

Elim. Rules	Intro. Rules		
If	f		
[e- I]	[i-I]		
f	If		
Kfx	f		
[e- K]	[i- K]		
f	Kfx		

Elim. Rules	Intro. Rules		
Cfx	xf		
[e-C]	[i- C]		
xf	Cfx		
Bfxy	f(xy)		
[e-B]	[i- B]		
f(xy)	B fxy		
Φfxyz	f(xz)(yz)		
[e-Φ]	[i- Φ]		
f(xz)(yz)	Φ fxyz		

Combinators vs. λ -expressions

The most important difference between the CL and λ -calculus is the use of the bounded variables.

Every combinator is an λ -expression.

$$\mathbf{B}fg \equiv \lambda x.f(g \ x)$$
$$\mathbf{T}x \equiv \lambda f.f \ x$$
$$\mathbf{S}fg \equiv \lambda x.fx(g \ x)$$

Application to natural language parsing

John is brilliant

- The predicate *is brilliant* is an operator which operate on the operand John to construct the final proposition.
- The applicative representation associated to this analysis is the following:

(is-brillant)John

• We define the operator **John*** as being constructed from the lexicon *John* by

 $[John^* = C^* John].$

- 1. John* (is-brillant)
- 2. [John* = **C*** John]
- 3. C*John (is-brillant)
- 4. is-brillant (John)

John is brilliant in λ -term

Operator <u>John</u>^{*} by λ -expression

 $[John^* = \lambda x.x (John')]$

1/ John*(\lambda x.is-brilliant'(x))
2/ [John* = \lambda x.x (John')]
3/ (\lambda x.x(John'))(\lambda x.is-brilliant'(x))
4/ (\lambda x.is-brilliant'(x))(John')
5/ is-brillinat'(John')

Consider the following sentences a. The man has been killed. b. One has killed him.

- \rightarrow Invariant of meaning
- \rightarrow Relation between two sentences
 - : a. unary passive predicate (*has-been-killed*)
 - : b. active transitive predicate (*have-killed*)

Definition of the operator of passivisation 'PASS'

$[PASS = B \sum C = \sum \circ C]$

where B and C are the combinator of composition and of conversion and where Σ is the existential quantificator which, by applying to a binary predicate, transforms it into the unary predicate.

$[PASS = B \sum C = \sum \circ C]$

1/ has-been-killed (the-man)	hypothesis
2/ [has-been-killed=PASS(has killed)]	passive lexical predicate
3/ PASS (has-killed)(the-man)	repl.2.,1.
4/ [PASS = $\mathbf{B} \sum \mathbf{C}$]	definition of 'PASS'
5/ $\mathbf{B} \sum \mathbf{C}$ (has-killed)(the-man)	repl.4.,3.
6/ \sum (C (has-killed))(the-man)	[e- B]
7/ (C (has-killed)) x (the-man)	[e-∑]
8/ (has-killed)(the-main) x	[e- C]
9/ [x in the agentive subject position = <i>one</i>]	definition of 'one'
10/ (has-killed)(the-man) <i>one</i>	repl.9.,8., normal form

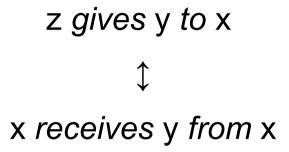
We establish the paraphrastic relation between the passive sentence with expressed agent and its active counterpart:

The man has been killed by the enemy

 \downarrow

The enemy has killed the man

Relation between *give-to* and *receive-from*



The lexical predicate "*give-to*" has a predicate converse associated to "*receive-from*";

[receive-from z y x = give-to x y z]

1/ (receive-from) z y x

2/ C((receive-from) z) x y

3/ **BC**(receive-from) z x y

4/ C(BC(receive-from)) z x y

5/ C(C(BC(receive-from)) x) y z

6/ BC(C(BC(receive-from))) x y z

7/ [give-to=BC(C(BC(receive-from)))]

8/ give-to x y z

Combinators used in CCG

Motivation of applying the combinators to natural language parsing

- Linguistic: complex phenomena of natural language applicable to the various languages
- Informatics: left to right parsing (LR)

ex: reduce the spurious-ambiguity

Step 1: tokenization

Step 2: tagging the concatenated lexicon

Step 3: calculate on types attributed to the concatenated lexicons by applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do on next week)

Step 5: finding the parsing results presented in the form of an operator/operand structure (predicate -argument structure)

Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization \rightarrow ex) POS Tagger, tokenizer, lemmatizer

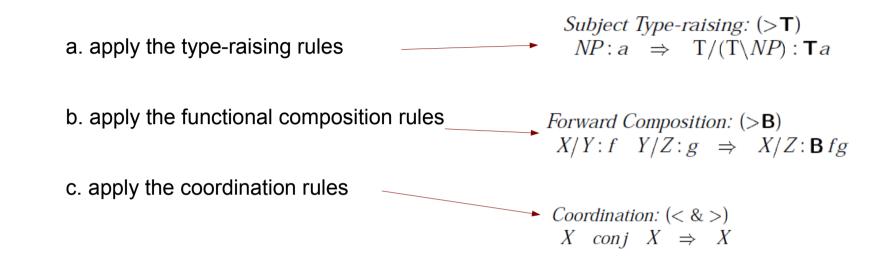
a. I-requested-and-would-prefer-musicals

b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions \rightarrow ex) Supertagger, Inventory of typed words

I	NP
Requested	(S∖NP)/NP
And	CONJ
Would	(S\NP)/VP
Prefer	VP/NP
musicals	NP

STEP 3 : categorial calculus



I-	requested-	and-	would-	prefer-	musica	als
1/ NP	(S\NP)/NP	CONJ	(S\NP)/VP	VP/NP	NP	
2/ S/(S\NP)	(S\NP)/NP	CONJ	(S\NP)/VP	VP/NP	NP	(> T)
3/ S/(S\NP)	(S\NP)/NP	CONJ	(S\NP)/NP		NP	(> B)
4/ S/(S\NP)	IP) (S\NP)/NP				NP	(> Φ)
5/ <u>S/(S\NP)</u>	(S\NP)/NP				NP	(> B)
6/	S/NP	-			NP	(>)
7/		S				

24

STEP 4 : semantic representation in term of λ -expression

Irequestedandwouldprefermusicals1/:i':request': and': will':prefer': musicals' $2/:\lambda f.f I'$: $\lambda x.\lambda y.will'(prefer'x)y$: $\lambda x.\lambda y.will'(prefer'x)y$ 3/: $\lambda tv\lambda x \lambda y. and'(will'(prefer'x)y))(tv xy)$ 4/: $\lambda tv\lambda x \lambda y. and'(will'(prefer'x)y))(tv xy)$ 5/: $\lambda x \lambda y. and'(will'(prefer'x)y)(request'xy)$ 6/: $\lambda y. and'(would'(prefer' musicals')y)(request' musicals' y)$

7/S: and'(will'(prefer' musicals') i')(request' musicals' i')

Semantic representation in term of the *combinators*

I-	requested-	and-	would-	prefer-	musica	als
1/ NP	(S\NP)/NP	CONJ	(S\NP)/VP	VP/NP	NP	
2/ S/(S\NP)	(S\NP)/NP	CONJ	(S\NP)/VP	VP/NP	NP	(>T)
C *I	requested an	d wo	ould p	refer	musica	als
3/ S/(S\NP)	(S\NP)/NP	CONJ	(S\N	P)/NP	NP	(> B)
C *I	requested and B would pref		refer	efer musicals		
4/ S/(S\NP)	(S\NI	P)/NP			NP	(> Φ)
C*I Ф and requested (B would prefer) musicals						
5/ S	/NP		NF	C		(> B)
B((C*I) (Φ and requested (B would prefer))) musicals						
6/	S					(>)
B((C*I) (Φ and requested (B would prefer))) musicals						

I requested and would prefer musicals

- S: B((C*I)(Φ and requested (B would prefer))) musicals
- 1/ B((C*I)(Φ and requested (B would prefer))) musicals
- 2/ (C*I)((Φ and requested (B would prefer))) musicals) [e-B]
- 3/ ((Φ and requested (B would prefer))) musicals) I [e-C*]
- 4/ (and (requested musicals) ((B would prefer) musicals)) I [e- Φ]
- 5/ ((and (requested musicals) (would (prefer musicals))) I) [e-B]

Normal form

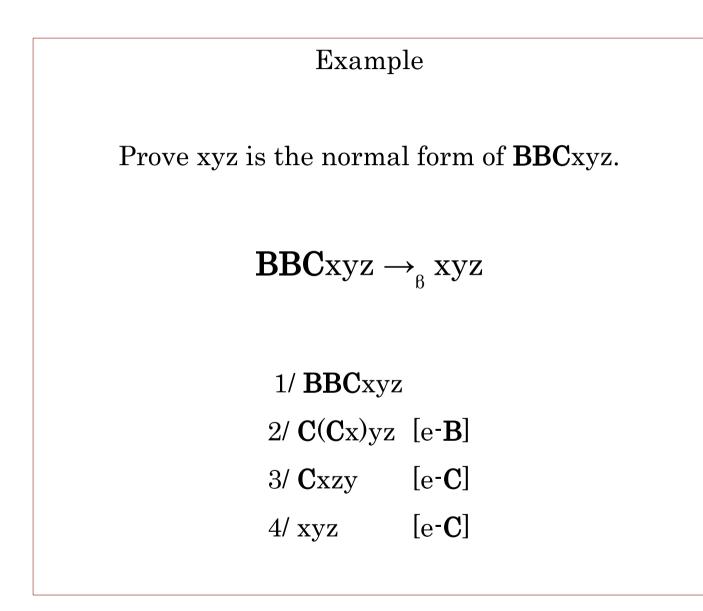
A **normal form** is a combinatory expression which is irreducible in the sense that it contain any occurrence of a redex.

If a combinatory expression X reduce to a combinatory expression N which is in <u>normal form</u>, so N is called the <u>normal form</u> of X.

Example

Bxyz is reducible to x(yz).

x(yz) is a normal form of the combinatory expression **B**xyz.



Classwork

Give the semantic representation in term of combinators. Please refer to the given paper on last lecture on CCG Parsing.