An Introduction to Tkinter

Fredrik Lundh



An Introduction to Tkinter
by Fredrik Lundh

Copyright © 1999 by Fredrik Lundh



Table of Contents

[ =] = Uo] =P UPRR PPN i
(I Ha) o oo 1ot 1g Vo N I 2T} L= S 1
WAE'S TKINTEI? oottt e e e e 1
HEHIO, TRINTOI ..t et e eees 2
Running the EXample ... 2
[0 - T 2

o 1= 1 (o TR0 -V 4
RUNNING the EXAMPIE ...ooei e e e 4
DtAIIS ..t 4
More onN WIdget FefErENCES ... .ovuiie e 5
MOKe 0N WIHQET NAIMES ...ttt r e 6

BN 2ST LT O =T = T ST 7
WiAQET ClASSES ..ttt ettt e e e 7
IVEEXENIS e ettt et et e e e 8
IMplementation MIXIiNS.........ooiiiii e 8

GEOMETIY MIXINS ..ottt e e e e e e e e ees 8

Widget configuration management ...........ccooevviieiiiiiiiiiiiiiee e 8

Widget CONFIQUIATION ......ieeiiii e 9
Configuration INTEITaCE. .......ooviii e 9

11T Lo =1 o] =T 9

(o]0 = PP PPR 9

(oo 1o 11 - 9

K Y S ettt 9
ComMPAtIDITITY ..o 10
WiAGET SEYIING. et e 11
(070] (0] - T PP PP TPPTRUPTRPIN 11
(070] [o] gl N\ E=T 0 T2 S PP PP PT PP 11

RGB SPeCIfiCatiONS .......oviiiiii e 11

OIS e 12
FONEAESCIIPIONS .. e e 12

FONT NAMES L. 13

SYSTEM fONTS Lot 14

DG oL 8B LY o] ] o) o] 14

TEXE FOrMAtEiNG .ovniiii e 14

2 T0] o =] PRSPPI 15
= 1 15

Focus Highlights .......coouiii e 15

LOT T 10 ] PSPPI 15
EVENtS and BiNAiNgS .....couiiiiiiiii e e e 16
BV TS e 16

The EVENT ODJECT. ...t 18

Instance and Class BiNdiNgS.........oovuuiiiiiiiiiiiici e 18

PrOTOCOIS ... e e 19

Other ProtOCOIS .. ....iiee e 20

PN o] o] H o= U To] YAV o o (o 1LY 21
BaSE WINAOWS ...ttt ettt e e e ea e 21

THE WOIK AT . ettt et e e e e e ans 21



TOOIDAIS .. 21
SEALUS BaalS. ... e 21
STANAAId DIAlOGS ... . ceeeeei e 23
MESSAQE BOXES ...ttt e 23
Message BOX OPLiONS .....ivuiiiii i e e 24

DT |- 1 = 011 VPRSP PRPPPPN 24

) £ 1 1o PRSP 25
NUMEFICVAIUBS ... .ot 25

T L AN = g 1= 26

(070] (0] ¢ S TP 27

Dialog WINOOWS ....oeie et e e e e e e et eaaaaanas 28
(€ o = Yo 11 | 32
Validating Data .....c.uoviiiii e 34

O I T ) =] g R (=] = 1o = 35
The BUTTON WIQET ..ot e e e e e e e ees 35
BULEON PaEEINS ...t e e e 35
V1= o T £ 36
FlaS 36

TNVOKE .ttt 36

HeEIPEIS o e 36

(0] o] 110 o [ J PSP PTUPTPPTPPTRP 36

The CanVas WIQET ... e 39
[ OL0] g [o7=T o) £ PR 39
M IS e 39
CoordiNate SYSTEIMS ...uuiii i 39

1EeM SPECITIBIS .ot 40

PrINTING .o 40

P A I IS . e e 41
V1= o T £ 41

(o] €T LU o TP PUPRPTRR 41

Create DitmMaD .o 41

(o] =T =T 10 0 F= o [ N 41
CrEATE N Lot 41
CrEALE_OVAl ..oee it e 41
Create_POIYGON. . .oeu e 41
Create_reCtaANgle. . ..o 41

(o] €T Y (T (=) TP PR PUPRPTRR 41

(o == (T o [0 1 N 41

[0 =] 1= 1= PSP 41

(170 ol 1<) ST PPTPPTPP 42
TEEMCONTIG. et e 42

(o700 ] o [ PP 42

(o700 o [ S PP 42

DX e 42

(051 1721 PP 42

TG DN ..o 42
Tag_UNDING ..o 42
L1702 PP PIPPEPRPPRN 42

11 PP 43

JOWVBT e 43



0101 £-Ted 4 1o ) AT 43
S e 44
Searching for ITEMS ... 44
FINA_ADOVE. ... 44
FINA_all. . 44
FINA_DEIOW. ... 44
FINA_ClOSEST .uniinii i 44
FINA_ENCIOSEA ... 44
FINA_OVErIapPiNg ... cooveiee e 44
FINA_WIthtag . .ceeie e 44

Y =X 1] o101 F= U AT g T I I Vo 44
addtag_AabOVE. .. ... 45
addtag_all......coouii 45
Addtag_DEIOW ... 45
AAALAG__CIOSEST ...t 45

F=To Lo ) 7 Vo T =T 0 T4 [o <= T 45
addtag_oVerlappPing.......covu i 45
addtag_ WIthTag .. ..vvee i 45

(o | 2= Vo P PRPTRSN 45
BTLAGS - 45
Special Methods for TeXt ItemMS .........ovvviiiiiiiii e 45
ONATS e 45
FOCUS . e 46

(o0 ] o] PP PPN 46
110 1= PSPPI 46

[ 11T o S PP 46
SEIECT_AAJUST ...t 46

ESY=] =T A o] =T U 46
SEIECT frOM . e 46
SEIECT ITBIM oo 46
SBIBCE L0 e i 46
SCIOIIING .o 46
scan_mark, SCAN_Aragto ........couiiniiieii e 46
XVEBW, YVIBW ettt ettt e e e e e e e e e e e e aeees 47
XVEBW, YVIBW oottt e e e e e e e e e aeees 47
(@7 1 [0 o 1= 47
The CanVas ArC TEEM . ... e e e e e 49
METNOAS ..o e 49
(o] T =L o O 49
EIBTE . e 49
(o700 ] o [ PP 49
IEEMCONTIGUIE . oo 49
(@] 1 10] o 1= PPN 49
The Canvas Bitmap TTeM ........iii e 51
V=3 o T £ 51
Create DItMaD coove i 51
EIBTE . e 51
(o100 o [ PP PPPTUPT 51
IEEMCONTIGUIE ..o 51

(O o] £ 1o o [ J PP TPPTTPTIPIN 51



The Canvas IMage ItemM ... ..o 53

METNOAS ... e e 53
CrEATE_IMAJTE . ou ittt ettt et et e 53

[0 =] 1= =P 53

(o0 o] o [ PP 53
IEEMCONTIGUIE ..ot 53

(@7 1 [0 o 1= 53

The Canvas Line TTeM . ... e e e e e 54
METNOAS <. e 54

(o =T (T T 1= 54

EIBTE . e 54

(o700 ] o [ PP P TP 54
IEEMCONTIGUIE ..oee e 54

(@] 1 10] o 1= PPN 54

The Canvas OVal TTEIM ... e 56
V1= o T £ 56

(o] 0= U (= 0 17> Y 56

EIBTE . e 56

(o700 o [ S PP 56
IEEMCONTIGUIE ... 56

(0] o] 110 o [ J PSP PTUPTPPTPPTRP 56

The Canvas POIYGON TTEM ... 57
METROAS ... e 57
Create _POIYGON. ...t 57

EIBTE .. 57

(o700 o [ TP 57
TEEMICONTIQUIE ...t e 57

(0] o] 110 o [ J PP PPTPPTRP 57

The Canvas Rectangle TTem ... ..o e e e 59
METNOAS ...t e 59
Create _reCtaNgle. .. .vi i 59

(o ] ] (TP 59

(o0 T ] o KPP PRPTRN 59
TEEMICONTIQUIE ... et 59

(@ 1 0] o 59

The Canvas TexXt ITEIM ... et 60
METNOAS ...t e 60

(o] €= T L T (=) P PP 60

IOt . e 60

o0 T o P 60
IEEMCONTIGUIE ..o e 60

(@ 4 0] o 60

The Canvas WindOW TTEIM ... e 62
METNOAS ... e 62
Create  WINAOW. .. e e e e e 62

[0 =] 1= 1= 62

(o0 o] o [ PP PTPPT 62
IEEMCONTIGUIE ..oee e 62

(@7 1 [0 o 1= 62

The CheckbUutton WiIdget... ..o 63
CheCkbUTION PAtIErNS . ... e e e e 63



ESEIECT. .. e 64
FlaSh e 64
INVOKE ... e 64
SBIECT .. 64

{0 o 0| - 64
(@7 1 [0 o 1= 64
The ENTry Widget ... e e e e 67
COMCEPES . et 67
L0 1= = PP 67
=L (] 0 1 PP 67
METNOAS ... e 67
([ E1:T o PP PPTRPN 67

(o ] ] (PP TR 67

(Lol U] <10 ] oo PP 68

8 =] PP 68
(110 1= G TP TUPTOUPPTRPPN 68
Selection MEthOdS ........viviii e 68
Selection_adjuSt........coviiii 68
SEIECTION. _CIEAN ...ev i 68
SEIECTION_TrOM ..ot 68
SEIECTION_PFESENT ...ttt 68

EY=] [=Tox T o T =V g o 1= 68

EY=] [=Tex 4 o T o P 68
SCrolling MethOAS ... ... 68
scan_mark, SCaN_dragto........c.iiiiiiieiii i 69

QYA =P 69

DAV =TV 0 101 Y/=1 (o T 69

DAV 1=V 1o o1 69
(@ 4 0] o 69
THE FONT CIaSS. .. ettt et 71
P AT O IS . e 71
METNOAS L. e 71
(0107 o ) 71
ACTUAL . cee e 71

(o]0 ) PP PP PRI 71
CONFIQ, CONFIQUIE. . oe e 71

(0 CF U | IR 71

[0 T=1 8 oE TP 71

T T4 o TP 71
FAMITIES. e 71

(=1 0= TP 71
(@7 1 [0 o 1= 72
The Frame Widget ... ... e e e 73
L1 K= 0 L P PP PP TP TUPRPPIPPITN 73
METNOAS <. e 73
(@ 1 0] o 73
The Grid GEOMELIY MaNAQET .. .vuiieiie e e e e e e e e ees 75
When to use the Grid Manager.........cooueiiiiiiiece e 75
L1 K= 0 L S PP UP PP TUPRTPIPPIN 75
WiIdQet MEtNOUS ....ieiiii e 77



OrId FOrget . e 77
OFIO_INTO oo 77
OFIO_TEIMOVE ..ottt et 77
Manager MethodS. ........ovuu i 77
columnconfigure, rowCONFIQUIE .......c.viiiiii e 77
grid_10CALION ..oe 78

O _ProPaAgALE ...vvii i 78
OFIO_SIZE e 78
OFTIO_SIAVES oot 78
(@ 1 0] o 78
LI =3 Lo 1= A o Lo 1= 80
P B NI et 80
METNOAS ... e e 80
(0] o] 110 o [ J PSP PTUPTPPTPPTRP 80
The LIiStDOX WIQET ...t 83
=L (] 0 1 PP 83
METNOAS ...t e 85
ACTIVALE ... 85
DDOX e 86
CUFSEIECTION. ..t e e e e e 86

[0 =] 1= =P 86

[0 =] PP P PP 86
(110 1= PP UPTRUPPTRPN 86

([ E1:T o PP PPTRPN 86
(1T = S PP PP PP PP 86

S]] PP 86

S0z e 86
SelectioNn MEtNOAS ........viiiiii e 86
SEIECT AU UST. . ee e 87
SElIECt _ANCNOK.. ... 87
SEIECT ClEAN ...t 87
SEIECT_INCIUAES. . .ce e 87

Ky =] 1= o4 ST 87
SCrolling MetNOAS ... ... 87
scan_mark, SCAN_AragtO ........c.uviuuiiieiiei e 87
XVIBW, YVIBW .ot e e e e ees 87
XVEBW, YVIBW .ot e e ees 87
XVEBW, YVIBW L.t e e e e e ees 87
XVEBW, YVIBW L.ttt e et e e e e e e e ees 88
(@ 1 0] o 88
LN 1= L= 10 TRV AVA T oY 90
P A B NI et 90
METNOAS ... e 90
Lo o PPN 90

o [0 I o LT or- To [ 91
add_CheCKkbULtON ......e 91

Vo (o [ oo ¥ o 0 - o Lo U 91
add_radiobULtON ..o 91

Lo (o [T o T U - L (o] PPN 91

[0 =] 1= 1= PSP 91

Vi



ENENYCONTIg. oot 91

BNEIYCONTIGUIE. .. e 91
[T =) PP 91

L TST=T o 91
[T o= T o= T [ 91
iNsert_checkbULION ... ... 91

(1 FsY=T o A oo 1 0] 2 =T o 91
insert_radiobutton..........c.ooiii i 92
INSEIT_SEPATATON ... .ceuiiit ettt e 92
INVOKE ... e 92

POt ettt 92

(U] 0] 0T 1 S PP 92

V4 16 151 1 o o P 92
HeEIPEIS o e 92

(0] o] 110 o [ J PSP PTUPTPPTPPTRP 92
The MenUBULEON WiIQET .....ovuiiieii e 94
=L (] 0 1 PP 94
METNOAS ...t e 94
(@7 1 [0 o 1= 94
The MeSSagE WL .. ..u i e e e e ees 95
L1 K= 0 L PP TP TUPRTPIPPIN 95
METNOAS ..o 95
(@ 110} o 95
The Pack GEOMEtrY Manager.. ... cuuuiii i i et e e e e e aaeees 97
When to use the Pack Manager.........cooueiiiiiiiei e 97
L1 K= 0 L S PP UP PP TUPRTPIPPIN 97
METNOAS ..o e 97
WiIdQet MEtNOUS ....eeeciei e e 97
PACK. ettt 97

PACK _FOrgt. e 97

PACK _INTO() niriin i 97
Manager MethodS.........couiii e 97
PACK_ProPagate() ..ceuueereeieieeeie ettt 98
PACK_SIAVES() ettt 98
(@ 1 0] o 98
The Photolmage Class........ovu it e e e ees 99
P A B NI et 99
METNOAS ... e 99
CONTIGUIE ..ttt et 99

LT e 99
WIdth, height.....o 99
L1702 PP PIPPEPRPPRN 99

[0 =] PP 99

UL e a e 99

=TT TP 99
1 99
DIANK .. 100

(000] o )Y PP PEPPPPR 100

P4 o]0 1 | R PP PP UPTTPT 100
SUDSAMIPIE ..o 100

(O] o] 170 o [ J TP 100

Vii



The Place GeOMETrY MaNAgET .....c.uuiie it e e e e e e e e e e e e e enee 102

WHhEN TO USE PIACE.....uiitii i e e e 102
P AT I IS .. 102
V=3 o T £ PP 103
= o= 103
Place _fOrget. .. i 103
PlaCe _INTO. .. 103
PlAaCE _SIAVES ....uieiii i 104

(O] o] 110 o [ J PRSPPI 104
The RadiobUutton Widget.........covuiiiiii e 105
[RF=To [To] o101 fo] g I8 = U (=] o o 1= 105
V1= o Yo £ 106
AESBIECT. .. 106

FlaSh Lo 106
INVOKE ... 106

KT =] 1= o) 106

(@ 1 0] o 106
The SCale WILQeT. ... e e e e e e e e 109
L L (= 0 P 109
METNOAS e 109
0BT, SBL .o 109

(O] o] 110 o [ J PP TPPT PP 109
The SCrollbar WIdQet ......cu e e e e e e e e 111
L L (T o 0 SRR 111
MEENOAS ..o 111
(o =] | - ST 111
OBSTIOY ottt 111
L= 10d 1 10 o 111

[0 =] ST 111
Nt Lo 111

KB Sttt e 111

L] PP 111

(O] o] 110 o [ J PRSPPI 111
THE TEXEWIAGET ..ottt e 114
(O70] o o1=] o) £ TR 114
T 1= = 114
= PP 116

L= 10 PP 117

P AT I IS e e 119
BaSiC METNOAS. ... e 121
0 ST o 121

0 =T 1= - 121

[0 =1 PP 121

(o [0 T2 4 o JS T 121

S]] PP 121
0 1= 121
(00010 0] 11 £ 121
Methods fOr MarKS ... ...ooieii e 121
0 =T G- 122
MATK _ UNSET ..ot 122
0 1= 122

viii



MAFK _GFaVITY oot e e e e 122

=V S g T Ut LT TP 122
Methods for Embedded WindoWS............coouiiiiiiii e 122
WINAOW _CrBATE. .. ettt 122
TNABX e 123
EIBTE . e 123

171V o L0111V o - PN 123
WINAOW_ CONTIG. i 123
WINAOW _NAIMIES ..ttt et e e e e e e ea e enaes 123
Methods for Embedded IMages ........cc.uviiiiiiiiiii e 124
(L =T [T o =T | = 124
TNABX e e 124
EIBTE . e 124

[[pg Fo Yo [T o] 1= APPSR 124
IMAGE_CONTIG 1.t 125
[[agEoTe TR o T 10 o [T PR PPT PP 125
V1= oo [S30 (o] =T 125
22T [ (o [0 125

L= Vo (=] 0 0 T0 Y P 125

L 1o [0 (=1 1= TSP 125

BAG_ CONTIG. .. i 125
TAg_COBT. . e 125

Tag DN .o 126

1A _UNDING . o 126

=T [ - =S 126

L= o T =0 U = gL [ PP 126

TG PreVIANGE . ..ot 126
BAG . JOWET e 126

L7 Vo - V- 126
L=V = Lo 1= PP 127
Methods fOr SEIECLIONS. ... ceuiiii e 127
Methods for RENAEring ......c.uoiiiii e 127
DO e 127
AHNEINTO L. e 127
Methods fOr Printing ........coooiiiiii e 127
Methods for SEarChing.........covuiii i 128
SBANCH. ..o 128
Methods fOr SCrolling .......coouiiiii e 128
scan_mark, SCAN_Aragto .........c.eiueiuiiiii i 128
XVEBW, YVIBW ..ttt et e e e e et e e eanes 128
XVIBW, YVIBW ettt e e e e e e e e n e e e e eenes 129
XVEBW, YVIBW et e e e e e e e e e e e eanes 129
YVIEW_PICKPIACE vt 129
(@] 1 10] o 1= TP 129
The TOPIeVEl WIAQET.... ..o e 132
METNOAS ..o e 132
(@ 1 0] o 132
Basic Widget Methods .........iviii e e 134
CONTIQUIALION. ..o e 134
CONTIg i 134
(ol0] o) o R PP 134



KB Sttt e e e 134
EVENT PIOCESSING ..evuiirieiii ettt et e r e 135
MAINTOOP «. ettt 135
[0 1 PP 135
U T - U= 135
update _idletasks ......c..viuiiei e 135
FOCUS  SBE oeitiit i e 135
FOCUS_diSPlayof......cooviiiii e 135
FOCUS_FOICE e 135
(0T £ o T S 135
FOCUS _1aStiOr .. e 135
TR FOCUSINEXL. ..ot 135
T TOCUSPIOV .. 136
Orab_CUITENT. ..o e 136
grab_release ........ooiiii i 136
o= o T 136
grab_set_global ... 136
OrabD _ STATUS . ..o 136
Walt_Variable ... ..o 136
Wat_VISIDIIITY ..o 136
WA WINGOW et e e e e e 136
Event CallDacks. ... ..o 136
DN, e 137
UNDING e e 137
DINd_all.. ..o 137
unbind_all .. ... 137
DINA_ClaSS .n e 137
8T o 1 o [ o - U1 137
o1 T -V 137
DINALAGS. . e 137
Alarm handlers and other non-event callbacks .............ccooooiiiiin. 137
AT e 137
After_CaNCel ... oo 138
A BT 138
L (] o [0 1 - 138
WiINAOW ManagemMent.......ooue e e e e e e e e e e 138
1 S PSPPI 138
10)11Y7= PP 138
Window Related INformation.............coooiiii i 138
WINTO_CEIIS e e 139
WINTO_ChIlAIEN. ... 139
WINTO  ClaSS . u it 139
winfo_colormapfull ... 139
WINTO_CONTAINING ...oetiiiii e 139
WINTO_depth ... 139
1T 0T =€ 139
WINTO_PIXEIS e 139
WINTO _gBOMEBLIY .veiiei e 139
winfo_width, winfo_height ... 140
WINTO 0 e e 140



WINTO_ISMAPPEA ... .ot 140

WINTO  MaANAGET .. et e 140
WINTO_ NAMIE. et 140
WINTO_PAIENT ... 140
WINFO_Pathname ..o 140
winfo_reqgheight, winfo_reqwidth ..o 140
winfo_rootx, Winfo_rooty .........coiiiiiiiii 141
WINTO  SCIEBN et 141
WINTO_SCreenCellS. ... ... e 141
WINTO_SCreendeptin... ... 141
winfo_screenwidth, winfo_screenheight .............c.cooiiiiiii i 141
winfo_screenmmwidth, winfo_screenmmbheight ....................o.on 141
WINTO_SCreeNVISUAL........c.uiiiii e 141
WINTO_TOPIBVEL ... 141
WINTO_VISUAL ..cenee e 141
WINTO_ X, WINTO Y i 142
MISCEITANEOUS ..o e 142
DIl 142
clipboard_append .......c.ooiiiiiii 142
Chipboard_Clear .........coiiiii 142
SEIECTION_CIEAN ..t 142
SEIECTION BT ot i 142
selection_handle ..o 142
SEIECLION _OWN ..o 142
SEIECION_OWN_ BT ..ouei i 142
tk_fOCUSFOIIOWSIMOUSE ....oviiiiiiici e 142

TR STFICEMOTIT. .o 142
WINTO_FGD oo 143
Tkinter Interface Methods. ..........oooeiiiiiiiii e 143
GEtDO0IEAN .. et 143
GEtAOUDIE ..ot 143

0 1=Y o ) SO 143
[E=To Y (= PRSPPI PPN 143
WINTO _AtOM Lo e 143
WINTO_atOMINAIME ... 143
OPLION Database. ... c.uiiiiii i 143
OPLION_Add ...oeiii 143

(o] o1 A o] o T o1 [=T- 1 cOu ST 144

o] o1 A To] o T = AP PP 144
OPLION_readfile ... ..o 144
Toplevel WIindow Methods.........c.uiiieiiii e 145
ViSibDility MEtNOAS ....oiei e 145
AEICONITY .o 145
0N Y e 145
WITNAFAW L. e 145
ST .o 145
SEYIE MEtNOUS ..o 145
BT e 145

(S 1010 1 o T PP PRR PRI 145
BrANSIENT .. oo e e 145

o)V =T g o L=t gTo [ =T ox H PP 146

Xi



Window Geometry MethOdS.........oovuiiiiiii e 146

[0 [<T0] 0 11=1 1 PP P PP 146
JEOMETIY et 146
ASPBCT L. 146
LoD . 146
0 ] 2~ 146
FESIZADIE L. 146
FoTo] o I 1Y/ =1 1 1o o [ PR 147
ICONDITMAP. ..ot 147
ICONMASK L.ieiiii e 147
Lot 0] g 0 - U s - S 147
[[oT0] ] 0T XS] 1 { Lo o IS 147
[1oT0] 11,771 g o o V2P 147
Property ACCESS MEthOS ......cuuiiiiiiic e 147
(0] T o 147
COlOrMAPWINAOWS ....ceeiiiii et 147
o0 .0 0. = o 147
FOCUSMOAEL ..o 148
L= 1 = 148
POSITIONTIOM ... 148
PrOTOCOL. ... ettt 148
SIZET IO . e 148

Xii



Preface

This is yet another draft version of my ever-growing Tkinter documentation.

The biggest change since the last version is that I'm using a new editor to edit this
document. As a result, the HTML version of this document looks a bit different. I've tried to
keep most of the old chapter names, but most chapters have been split into several
subpages. The styling has also changed; the document now looks better than before if you
have a CSS-capable browser, but worse if you don't.

By the way, might be interested in hearing that O'Reilly & Associates will be publishing a
Tkinter book (tentatively called Programming Tkinter in Python) later this year. This book
features lots of brand new material written by yours truly, giving you a more thorough
description of Tkinter (and many other things) than you can find anywhere else.

</F>
This document was last updated Jun 21, 1999.






What's Tkinter?

The Tkinter module ("Tk interface") is the standard Python interface to the Tk GUI toolkit
from Scriptics (formerly developed by Sun Labs).

Both Tk and Tkinter are available on most Unix platforms, as well as on Windows and
Macintosh systems. Starting with the most recent release (8.0), Tk also offers native look
and feel on all platforms.

Tkinter consists of a number of modules. The Tk interface is located in a binary module
named _tkinter (this wastkinter in earlier versions). This module contains the low-level
interface to Tk, and should never be used directly by application programmers. It is usually
ashared library (or DLL), but might in some cases be statically linked with the Python
interpreter.

In addition to the Tk interface module, Tkinter includes a number of Python modules. The
two most important modules are the Tkinter itself, and a module called Tkconstants. The
former automatically imports the latter, so to use Tkinter, all you need to do is to import
one module:

import Tkinter
Or, more often:

from Tkinter import *



Hello, Tkinter

But enough talk. Time to look at some code instead.

As you know, every serious tutorial should start with a "hello world"-type example. In this
overview, we'll show you not only one such example, but two.

First, let's look at a pretty minimal version:

Example 1. File: hellol.py

from Tkinter import *
root = Tk()

w = Label(root, text="Hello, world!")
w.pack()

root.mainloop()

Running the Example
To run the program, run the script as usual:

$ python hellol.py

The following window appears.

Figure 1. Running the program

Hella, warld!

To stop the program, just close the window.

Details

We start by importing the Tkinter module. It contains all classes, functions and other
things needed to work with the Tk toolkit. In most cases, you can simply import everything
from Tkinter into your module's namespace:

from Tkinter import *

To initialize Tkinter, we have to create a Tk root widget. This is an ordinary window, with a
title bar and other decoration provided by your window manager. You should only create
one root widget for each program, and it must be created before any other widgets.

root = Tk()

Next, we create aLabelwidget as a child to the root window:



Hello, Tkinter

w = Label(root, text="Hello, world!")
w.pack()

A Labelwidget can display either text or an icon or other image. In this case, we use the
text option to specify which text to display. Next, we call the pack method on this widget,
which tells it to size itself to fit the given text, and make itself visible. But before this
happens, we have to enter the Tkinter event loop:

root.mainloop()

The program will stay in the event loop until we close the window. The event loop doesn't
only handle events from the user (such as mouse clicks and key presses) or the windowing
system (such as redraw events and window configuration messages), it also handle
operations queued by Tkinter itself. Among these operations are geometry management
(queued by thepack method) and display updates. This also means that the application
window will not appear before you enter the main loop.



Hello, Again

When you write larger programs, it is usually a good idea to wrap your code up in one or
more classes. The following example is adapted from the "hello world" program in Matt
Conway's A Tkinter Life Preserver.

Example 1. File: hello2.py

from Tkinter import *

class App:
def __init__ (self, master):

frame = Frame(master)
frame.pack()

self.button = Button(frame, text="QUIT", fg="red", command=frame.quit)
self.button.pack(side=LEFT)

self.hi_there = Button(frame, text="Hello", command=self.say_hi)
self.hi_there.pack(side=LEFT)

def say_hi(self):
print "hi there, everyone!"

root = Tk()
app = App(root)
root.mainloop()

Running the Example

When you run this example, the following window appears.

Figure 1. Running the sample program (using Tk 8.0 on a Windows 95 box)

i M
BUIT | Hella

If you click the right button, the text "hi there, everyone!" is printed to the console. If you
click the left button, the program stops.

Details

This sample application is written as a class. The constructor (the__init__ method) is
called with a parent widget (the master), to which it adds a number of child widgets. The

constructor starts by creating a Frame widget. A frame is a simple container, and is in this
case only used to hold the other two widgets.



Hello, Again

class App:
def __init__ (self, master):

frame = Frame(master)
frame.pack()

The frame instance is stored in a local variable called frame. After creating the widget, we
immediately call the pack method to make the frame visible.

We then create two Button widgets, as children to the frame.

self.button = Button(frame, text="QUIT", fg="red", command=frame.quit)
self.button.pack(side=LEFT)

self.hi_there = Button(frame, text="Hello", command=self.say_hi)
self.hi_there.pack(side=LEFT)

This time, we pass a number of options to the constructor, as keyword arguments. The first
button is labelled "QUIT", and is made red (fg is short for foreground). The second is
labelled "Hello". Both buttons also take acommand option. This option specifies a
function, or (as in this case) a bound method, which will be called when the button is
clicked.

The button instances are stored in instance attributes. They are both packed, but this time
with the side=LEFT argument. This means that they will be placed as far left as possible in
the frame; the first button is placed at the frame's left edge, and the second is placed just to
the right of the first one (at the left edge of the remaining space in the frame, that is). By
default, widgets are packed relative to their parent (which is master for the frame widget,
and the frame itself for the buttons). If the side is not given, it defaults to TOP.

The "hello"” button callback is given next. It simply prints a message to the console
everytime the button is pressed:

def say_hi(self):
print "hi there, everyone!"

Finally, we provide some script level code that creates a Tk root widget, and one instance of
the App class using the root widget as its parent:

root = Tk()

app = App(root)
root.mainloop()

The last call is to the mainloop method on the root widget. It enters the Tk event loop, in
which the application will stay until the quit method is called (just click the QUIT button),
or the window is closed.

More on widget references

In the second example, the frame widget is stored in a local variable named frame, while
the button widgets are stored in two instance attributes. Isn't there a serious problem
hidden in here: what happens when the __init__ function returns and the frame variable
goes out of scope?



Hello, Again

Just relax; there's actually no need to keep a reference to the widget instance. Tkinter
automatically maintains a widget tree (via the master and children attributes of each
widget instance), so a widget won't disappear when the application’s last reference goes
away; it must be explicitly destroyed before this happens (using thedestroy method). But if
you wish to do something with the widget after it has been created, you better keep a
reference to the widget instance yourself.

Note that if you don't need to keep a reference to a widget, it might be tempting to create
and pack iton asingle line:

Button(frame, text="Hello", command=self.hello).pack(side=LEFT)

Don't store the result from this operation; you'll only get disappointed when you try to use
that value (the pack method returns None). To be on the safe side, it might be better to
always separate construction from packing:

w = Button(frame, text="Hello", command=self.hello)
w.pack(side=LEFT)

More on widget names

Another source of confusion, especially for those who have some experience of
programming Tk using Tcl, is Tkinter's notion of thewidget name. In Tcl, you must
explicitly name each widget. For example, the following Tcl command creates a Button
named "ok", as a child to a widget named "dialog" (which in turn is a child of the root
window, ".").

button .dialog.ok
The corresponding Tkinter call would look like:
ok = Button(dialog)

However, in the Tkinter case, ok and dialog are references to widget instances, not the
actual names of the widgets. Since Tk itself needs the names, Tkinter automatically assigns
aunique name to each new widget. In the above case, the dialog name is probably
something like ".1428748," and the button could be named ".1428748.1432920". If you
wish to get the full name of a Tkinter widget, simply use thestr function on the widget
instance:

>>> print str(ok)
.1428748.1432920

(if you print something, Python automatically uses the str function to find out what to
print. But obviously, an operation like "name = ok" won't do the that, so make sure always
to explicitly usestr if you need the name).

If you really need to specify the name of a widget, you can use the name option when you
create the widget. One (and most likely the only) reason for this is if you need to interface
with code written in Tcl.

In the following example, the resulting widget is named ".dialog.ok" (or, if you forgot to
name the dialog, something like ".1428748.0k"):

ok = Button(dialog, name="0k")



Hello, Again

To avoid conflicts with Tkinter's naming scheme, don't use names which only contain

digits. Also note thatname is a "creation only" option; you cannot change the name once
you've created the widget.



TKkinter Classes

Widget classes

Tkinter support 15 core widgets:

Table 1. TKinter Widget Classes

Widget Description

Button A simple button, used to execute a command or other operation.

Canvas Structured graphics. This widget can be used to draw graphs and
plots, create graphics editors, and to implement custom widgets.

Checkbutton Represents a variable that can have two distinct values. Clicking the
button toggles between the values.

Entry A text entry field.

Frame A container widget. The frame can have a border and a background,
and is used to group other widgets when creating an application or
dialog layout.

Label Displays a text or an image.

Listbox Displays a list of alternatives. The listbox can be configured to get
radiobutton or checklist behaviour.

Menu A menu pane. Used to implement pulldown and popup menus.

Menubutton A menubutton. Used to implement pulldown menus.

Message Display a text. Similar to the label widget, but can automatically wrap

text to a given width or aspect ratio.

Radiobutton

Represents one value of a variable that can have one of many values.
Clicking the button sets the variable to that value, and clears all other
radiobuttons associated with the same variable.

Scale Allows you to set a numerical value by dragging a 'slider".

Scrollbar Standard scrollbars for use with canvas, entry, listbox, and text
widgets.

Text Formatted text display. Allows you to display and edit text with
various styles and attributes. Also supports embedded images and
windows.

Toplevel A container widget displayed as a separate, top-level window.

Also note that there's no widget class hierarchy in Tkinter; all widget classes are siblings in
the inheritance tree.

All these widgets provide the Miscand geometry management methods, the configuration

management methods, and additional methods defined by the widget itself. In addition, the




Tkinter Classes

Toplevelclass also provides the window manager interface. This means that a typical
widget class provides some 150 methods.

Mixins
The Tkinter module provides classes corresponding to the various widget types in Tk, and a
number of mixin and other helper classes (amixin is a class designed to be combined with

other classes using multiple inheritance). When you use Tkinter, you should never access
the mixin classes directly.

Implementation mixins

The Miscclass is used as a mixin by the root window and widget classes. It provides a large
number of Tk and window related services, which are thus available for all Tkinter core
widgets. This is done bydelegation; the widget simply forwards the request to the
appropriate internal object.

The Wm class is used as a mixin by the root window and Toplevelwidget classes. It
provides window manager services, also by delegation.

Using delegation like this simplifies your application code: once you have a widget, you can
access all parts of Tkinter using methods on the widget instance.

Geometry mixins

The Grid, Pack, and Place classes are used as mixins by the widget classes. They provide
access to the various geometry managers, also via delegation.

Table 2. Geometry mixins

Manager Description

Grid The grid geometry manager allows you to create table-like layouts, by
organizing the widgets in a 2-dimensional grid. To use this geometry
manager, use thegrid method.

Pack The pack geometry manager lets you create a layout by "packing” the
widgets into a parent widget, by treating them as rectangular blocks
placed in a frame. To use this geometry manager for a widget, use the
pack method on that widget to set things up.

Place The place geometry manager lets you explicitly place a widget in a
given position. To use this geometry manager, use the place method.

Widget configuration management

The Widget class mixes the Misc class with the geometry mixins, and adds configuration
management through the cget and configure methods, as well as through a partial
dictionary interface. The latter can be used to set and query individual options, and is
explained in further detail in the next chapter.




Widget Configuration

To control the appearance of a widget, you usually useoptions rather than method calls.
Typical options include text and color, size, command callbacks, etc. To deal with options,
all core widgets implement the same configuration interface:

Configuration Interface

widgetclass

widgetclass(master, option=value, ...). Create an instance of this widget class, as a child
to the given master, and using the given options. All options have default values, so in the
simplest case, you only have to specify the master. Note that the name option can only be
set when the widget is created.

cget
cget(option). Return the current value of an option. Both the option name, and the
returned value, are strings. To get the name option, use str(widget) instead.
configure
configure(option=value, ...), config(option=value, ...). Set one or more options (given as
keyword arguments).
Note that some options have names that are reserved words in Python (class, from, ...). To
use these as keyword arguments, simply append an underscore to the option name (class_,
from_, ...). Note that you cannot set the name option using this method; it can only be set
when the widget is created.
For convenience, the widgets also implement a partial dictionary interface. The
__setitem___method maps to configure, while __getitem__ maps to cget. As a result, you
can use the following syntax to set and query options:
value = widget[option]
widget[option] = value
Note that each assignment results in one call to Tk. If you wish to change multiple options,
it is usually a better idea to change them with a single call to config or configure
(personally, I prefer to always change options in that fashion).
The following dictionary method also works for widgets:
keys

keys(). Return a list of all options that can be set for this widget. The name option is not
included in this list (it cannot be queried or modified through the dictionary interface
anyway, so this doesn't really matter).

10



Widget Configuration

Compatibility

Keyword arguments were introduced in Python 1.3. Before that, options were passed to the
widget constructors and configure methods using ordinary Python dictionaries. The source
code could then look something like this:

self.button = Button(frame, {"text": "QUIT", "fg": "red", "command": frame.quit})
self.button.pack({"side": LEFT})

The keyword argument syntax is of course much more elegant, and less error prone.
However, for compatibility with existing code, Tkinter still supports the older syntax. You
shouldn't use this syntax in new programs, even if it might be tempting in some cases. For
example, if you create a custom widget which needs to pass configuration options along to
its parent class, you may come up with something like:

def __init__ (self, master, **kw):
Canvas.__init__ (self, master, kw) # kw is a dictionary

This works just fine with the current version of Tkinter, but it may not work with future
versions. A more general approach is to use the apply function:

def __init__ (self, master, **kw):
apply(Canvas.__init__, (self, master), kw)

The apply function takes a function (an unbound method, in this case), a tuple with
arguments (which must include self since we're calling an unbound method), and
optionally, a dictionary which provides the keyword arguments.

11



Widget Styling

All Tkinter standard widgets provide a basic set of "styling" options, which allow you to
modify things like colors, fonts, and other visual aspects of each widget.

Colors

Color

Most widgets allow you to specify the widget and text colors, using thebackground and

foreground options. To specify a color, you can either use a color name, or explicitly specify
the red, green, and blue (RGB) color components.

Names

Tkinter includes a color database which maps color names to the corresponding RGB
values. This database includes common names like Red, Green, Blue, Yellow, and
LightBlue, but also more exotic things like Moccasin, PeachPuff, etc.

On an X window system, the color names are defined by the X server. You might be able to
locate a file named xrgb.txt which contains a list of color names and the corresponding
RGB values. On Windows and Macintosh systems, the color name table is built into Tk.

Under Windows, you can also use the Windows system colors (these can be changed by the
user via the control panel):

SystemActiveBorder, SystemActiveCaption, SystemAppWorkspace, SystemBackground,
SystemButtonFace, SystemButtonHighlight, SystemButtonShadow, SystemButtonText,
SystemCaptionText, SystemDisabledText, SystemHighlight, SystemHighlightText,
SystemlInactiveBorder, SystemlnactiveCaption, SystemlnactiveCaptionText, SystemMenu,
SystemMenuText, SystemScrollbar, SystemWindow, SystemWindowFrame,
SystemWindowText.

On the Macintosh, the following system colors are available:

SystemButtonFace, SystemButtonFrame, SystemButtonText, SystemHighlight,
SystemHighlightText, SystemMenu, SystemMenuActive, SystemMenuActiveText,
SystemMenuDisabled, SystemMenuText, SystemWindowBody.

Color names are case insensitive. Many (but not all) color names are also available with or
without spaces between the words. For example, "lightblue™, "light blue", and "Light Blue"
all specify the same color.

RGB Specifications

If you need to explicitly specify a color, you can use a string with the following format:
#RRGGBB

RR, GG, BB are hexadecimal representations of the red, green and blue values, respectively.
The following sample shows how you can convert a color 3-tuple to a Tk color specification:

tk_rgb = "#%02x%02x%02x" % (128, 192, 200)

Tk also supports the forms "#RGB" and "#RRRRGGGGBBBB" to specify each value with 16
and 65536 levels, respectively.

12



Widget Styling

You can use thewinfo_rgb widget method to translate a color string (either a name or an
RGB specification) to a 3-tuple:

rgb = widget.winfo_rgb("red")
red, green, blue = rgb[0]/256, rgb[1]/256, rgb[2]/256

Note thatwinfo_rgb returns 16-bit RGB values, ranging from O to 65535. To map them into
the more common 0-255 range, you must divide each value by 256 (or shift them 8 bits to
the right).

Fonts

Widgets that allow you to display text in one way or another also allows you to specify
which font to use. All widgets provide reasonable default values, and you seldom have to
specify the font for simpler elements like labels and buttons.

Fonts are usually specifed using the font widget option. Tkinter supports a number of
different font descriptor types:

« Fontdescriptors

» User-defined font names
« System fonts

- X font descriptors

With Tk versions before 8.0, only X font descriptors are supported (see below).

Font descriptors

Starting with Tk 8.0, Tkinter supports platform independent font descriptors. You can
specify a font as tuple containing a family name, a height in points, and optionally a string
with one or more styles. Examples:

("Times", 10, "bold™)
("Helvetica", 10, "bold italic™)
("Symbol", 8)

To get the default size and style, you can give the font name as a single string. If the family
name doesn't include spaces, you can also add size and styles to the string itself:

"Times 10 bold"
"Helvetica 10 bold italic"
"Symbol 8"

Here are some families available on most Windows platforms:

Arial (corresponds to Helvetica), Courier New (Courier), Comic Sans MS, Fixedsys, MS
Sans Serif, MS Serif, Symbol, System, Times New Roman (Times), andVerdana:

13



Widget Styling

arial 14 points: I'd like to have an argu
courier new 12 points: What? Pri
cofic zans ms § points: Pack my box with fiven dozen jugs of
fixedsys 9 points: Here you see some Em
ms sans Serif 17 points: Pack my box with fiven dozen

ms serif 16 points: The quick brown fox jw

oot 12 wowra $eyvps mous our, wordsp Soy
systemn 10 points: Hello, Harry. Now there's the ¢

times new roman 16 points: That turn

verdana 10 points: The quick brown fox jumps |

Note that if the family name contains spaces, you must use the tuple syntax described
above.

The available styles are normal, bold, roman, italic, underline, and overstrike.

Tk 8.0 automatically maps Courier, Helvetica, and Times to their corresponding native
family names on all platforms. In addition, a font specification can never fail under Tk 8.0 -
- if Tk cannot come up with an exact match, it tries to find a similar font. If that fails, Tk
falls back to a platform-specific default font. Tk's idea of what is "similar enough” probably
doesn't correspond to your own view, so you shouldn't rely too much on this feature.

Tk 4.2 under Windows supports this kind of font descriptors as well. There are several
restrictions, including that the family name must exist on the platform, and not all the
above style names exist (or rather, some of them have different names).

Font names

In addition, Tk 8.0 allows you to create named fonts and use their names when specifying
fonts to the widgets.

The tkFont module provides a Font class which allows you to create font instances. You can
use such an instance everywhere Tkinter accepts a font specifier. You can also use a font
instance to get font metrics, including the size occupied by a given string written in that
font.

tkFont.Font(family="Times", size=10, weight=tkFont.BOLD)

tkFont.Font(family="Helvetica", size=10, weight=tkFont.BOLD,
slant=tkFont.ITALIC)

tkFont.Font(family="Symbol", size=8)

If you modify a named font (using theconfig method), the changes are automatically
propagated to all widgets using the font.

The Font constructor supports the following style options:

Table 1.
Option Type Description
family string Font family.
size integer Font size in points. To give the size in pixels, use a
negative value.

14



Widget Styling

weight constant Font thickness. Use one of NORMAL or BOLD.
Default is NORMAL.

slant constant Fontslant. Use one of NORMAL or ITALIC. Default
is NORMAL.

underline flag Font underlining. If 1 (true), the font is underlined.

Default is O (false).

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is O (false).

FIXME: add more information about the tkFont module, or at least a link to the reference
page

System fonts

Tk also supports system specific font names. Under X, these are usually font aliases like
fixed, 6x10, etc. Under Windows, these include ansi, ansifixed, device, oemfixed, system,
and systemfixed:

ansi: | didn't know ants had siv legs, Marcus
anzifized: Another merciless sweep

device: We like dressing up. ve
oenf ixed: One day Ricky the magic p
system: Pretty strong meat there from Sam
systemfized: Simon Zinc Trumpet Har

On the Macintosh, the system font names are application and system.

Note that the system fonts are full font names, not family names, and they cannot be
combined with size or style attributes. For portability reasons, avoid using these names
wherever possible.

X Font Descriptors

X Font Descriptors are strings having the following format (the asterisks represent fields
that are usually not relevant. For details, see the Tk documentation, or an X manual):

The font family is typically something like Times, Helvetica, Courier or Symbol.

The weight is either Bold or Normal. Slant is either R for "roman™ (normal), | for italic, or
O for oblique (in practice, this is just another word for italic).

Size is the height of the font in decipoints (that is, points multiplied by 10). There are
usually 72 points per inch, but some low-resolution displays may use larger "logical” points
to make sure that small fonts are still legible. The character set, finally, is usuallylSO8859-
1 (I1SO Latin 1), but may have other values for some fonts.

The following descriptor requests a 12-point boldface Times font, using the ISO Latin 1
character set:

15




Widget Styling

If you don't care about the character set, or use a font like Symbol which has a special
character set, you can use a single asterisk as the last component:

A typical X server supports at least Times, Helvetica, Courier, and a few more fonts, in

sizes like 8, 10, 12, 14, 18, and 24 points, and in normal, bold, and italic (Times) or oblique
(Helvetica, Courier) variants. Most servers also support freely scaleable fonts. You can use
programs like xIsfonts and xfontsel to check which fonts you have access to on a given
server.

This kind of font descriptors can also be used on Windows and Macintosh. Note that if you
use Tk 4.2, you should keep in mind that the font family must be one supported by
Windows (see above).

Text Formatting

justify, wrap

Borders

Relief

The relief settings control how to draw the widget border:

borderwidth, relief

Focus Highlights

The highlight settings control how to indicate that the widget (or one of its children) has
keyboard focus. In most cases, the highlight region is a border outside the relief. The
following options control how this extra border is drawn:

highlightcolor, highlightbackground, highlightthickness

cursors

The cursor setting control which mouse cursor to use when the mouse is moved over the
widget. If this option isn't set, the widget uses the same mouse pointer as its parent.

Note that some widgets, including the Text and Entry widgets, sets this option by default.

cursor

16



Widget Styling

T 7

® [

A
=

O B & 4+ »* +

B S e d9F9 % £ 3 O
F @ L 2 X E & %

+ 7 A

%

i
9

I & = =t

=4 W E 4
EOE S

T

[~ =1 7+

% 0O + %

r$ 1 & I

17



Events and Bindings

As was mentioned earlier, a Tkinter application spends most of its time inside an event
loop (entered via the mainloop method). Events can come from various sources, including
key presses and mouse operations by the user, and redraw events from the window
manager (indirectly caused by the user, in many cases).

Tkinter provides a powerful mechanism to let you deal with events yourself. For each
widget, you can bind Python functions and methods to events.

widget.bind(event, handler)

If an event matching the event description occurs in the widget, the given handleris called
with an object describing the event.

Here's a simple example:

Example 1. File: bindl.py

from Tkinter import *
root = Tk()

def callback(event):
print "clicked at", event.x, event.y

frame = Frame(root, width=100, height=100)
frame.bind(*'<Button-1=>", callback)

frame.pack()

root.mainloop()

In this example, we use the bind method of the frame widget to bind a callback function to
an event called <Button-1>. Run this program and click in the window that appears. Each
time you click, a message like"clicked at 44 63" is printed to the console window.

Events
Events are given as strings, using a special event syntax:
<modifier-type-detail>

The type field is the most important part of an event specifier. It specifies the kind of event
that we wish to bind, and can be user actions like Button, and Key, or window manager
events like Enter, Configure, and others. The modifier and detail fields are used to give
additional information, and can in many cases be left out. There are also various ways to
simplify the event string; for example, to match a keyboard key, you can leave out the angle
brackets and just use the key as is. Unless it is a space or an angle bracket, of course.

Instead of spending a few pages on discussing all the syntactic shortcuts, let's take a look on
the most common event formats:

18



Table 1.

Events and Bindings

Event

Description

<Button-1>

A mouse button is pressed over the widget. Button 1 is the leftmost
button, button 2 is the middle button (where available), and button 3
the rightmost button. When you press down a mouse button over a
widget, Tkinter will automatically "grab" the mouse pointer, and
mouse events will then be sent to the current widget as long as the
mouse button is held down. The current position of the mouse pointer
(relative to the widget) is provided in the x andy members of the
event object passed to the callback.

You can use ButtonPress instead of Button, or even leave it out
completely: <Button-1>, <ButtonPress-1> and <1> are all synonyms.
For clarity, | prefer the <Button-1> syntax.

<B1-Motion>

The mouse is moved, with mouse button 1 being held down (use B2 for
the middle button, B3 for the right button). The current position of the
mouse pointer is provided in the x and y members of the event object
passed to the callback.

<Button-
Release-1>

Button 1 was released. The current position of the mouse pointer is
provided in the x and y members of the event object passed to the
callback.

<Double-
Button-1>

Button 1 was double clicked. You can use Double or Triple as prefixes.
Note that if you bind to both a single click (<Button-1>) and a double
click, both bindings will be called.

<Enter>

The mouse pointer entered the widget (this event doesn't mean that
the user pressed the Enter key!).

<Leave>

The mouse pointer left the widget.

<Return>

The user pressed the Enter key. You can bind to virtually all keys on
the keyboard. For an ordinary 102-key PC-style keyboard, the special
keys are Cancel (the Break key), BackSpace, Tab, Return (the Enter
key), Shift_L (any Shift key), Control_L (any Control key),Alt_L (any
Alt key), Pause, Caps_Lock, Escape, Prior (Page Up), Next (Page
Down), End, Home, Left, Up, Right, Down, Print, Insert, Delete, F1,
F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, Num_ Lock, and
Scroll_Lock.

<Key>

The user pressed any key. The key is provided in thechar member of
the event object passed to the callback (this is an empty string for
special keys).

The user typed an "a". Most printable characters can be used as is. The
exceptions are space (<space=>) and less than (<less>). Note that 1 is
a keyboard binding, while <1>is a button binding.

<Shift-Up>

The user pressed the Up arrow, while holding the Shift key pressed.
You can use prefixes likeAlt, Shift, and Control.

<Configure>

The widget changed size (or location, on some platforms). The new
size is provided in thewidth and height attributes of the event object

19



Events and Bindings

Event Description

passed to the callback.

The Event Object

The event object is a standard Python object instance, with a number of attributes
describing the event.

Table 2.
Attribute Description
widget The widget which generated this event. This is a valid Tkinter widget
instance, not a name. This attribute is set for all events.
X, Y The current mouse position, in pixels.
char The character code (keyboard events only).
keysym The key symbol (keyboard events only).
keycode The key code (keyboard events only)
width, height The new size of the widget, in pixels (Configure events only).

FIXME: this list is not complete. See my mail on this topic for more details.

Instance and Class Bindings

The bind method we used in the above example creates an instance binding. This means
that the binding applies to a single widget only; if you create new frames, they will not
inherit the bindings.

But Tkinter also allows you to create bindings on the class and application level; in fact, you
can create bindings on four different levels:

- the widget instance, usingbind.

- the widget's toplevel window (Toplevel or root), also using bind.

- the widget class, using bind__class (this is used by Tkinter to provide standard bindings).
- the whole application, using bind_all.

For example, you can usebind_all to create a binding for the F1 key, so you can provide
help everywhere in the application. But what happens if you create multiple bindings for
the same key, or provide overlapping bindings?

First, on each of these four levels, Tkinter chooses the "best match" of the available
bindings. For example, if you create instance bindings for the <Key> and <Return> events,
only the second binding will be called if you press the Enter key.

However, if you add a <Return> binding to the toplevel widget,both bindings will be
called. Tkinter first calls the best binding on the instance level, then the best binding on the
toplevel window level, then the best binding on the class level (which is often a standard
binding), and finally the best available binding on the application level. So in an extreme
case, a single event may call four event handlers.

A common cause of confusion is when you try to use bindings to override the default
behaviour of a standard widget. For example, assume you wish to disable the Enter key in

20



Events and Bindings

the text widget, so that the users cannot insert newlines into the text. Maybe the following
will do the trick?

def ignore(event):
pass
text.bind("<Return=", ignore)

or, if you prefer one-liners:
text.bind("<Return=>", lambda e: None)

(the lambda function used here takes one argument, and returns None)

Unfortunately, the newline is still inserted, since the above binding applies to the instance
level only, and the standard behaviour is provided by a class level bindings.

You could use thebind_class method to modify the bindings on the class level, but that
would change the behaviour of all text widgets in the application. An easier solution is to
prevent Tkinter from propagating the event to other handlers; just return the string
"break" from your event handler:

def ignore(event):
return "break”
text.bind("<Return=", ignore)

or
text.bind("<Return=", lambda e: "break™)

By the way, if you really want to change the behaviour of all text widgets in your
application, here's how to use thebind_class method:

top.bind_class("Text", "<Return=>", lambda e: None)

But there are a lot of reasons why you shouldn't do this. For example, it messes things up
completely the day you wish to extend your application with some cool little Ul component
you downloaded from the net. Better use your own Text widget specialization, and keep
Tkinter's default bindings intact:

class MyText(Text):
def __init__ (self, master, **kw):
apply(Text.__init__, (self, master), kw)
self.bind("<Return>", lambda e: "break")

Protocols

In addition to event bindings, Tkinter also supports a mechanism called protocol handlers.
Here, the term protocol refers to the interaction between the application and the window
manager. The most commonly used protocol is called WM_DELETE_WINDOW, and is
used to define what happens when the user explicitly closes a window using the window
manager.

You can use the protocol method to install a handler for this protocol (the widget must be a
root or Toplevel widget):

widget.protocol("WM_DELETE_WINDOW", handler)

21



Events and Bindings

Once you have installed your own handler, Tkinter will no longer automatically close the
window. Instead, you could for example display a message box asking the user if the
current data should be saved, or in some cases, simply ignore the request. To close the
window from this handler, simply call the destroy method of the window:

Example 2. File: protocoll.py
from Tkinter import *
import tkMessageBox

def callback():
if tkMessageBox.askokcancel("Quit", "Do you really wish to quit?"):
root.destroy()

root = Tk()
root.protocol("WM_DELETE_WINDOW?", callback)

root.mainloop()

Note that even you don't register an handler for WM_DELETE_WINDOW on a toplevel

window, the window itself will be destroyed as usual (in a controlled fashion, unlike X).
However, as of version 1.63, Tkinter will not destroy the corresponding widget instance
hierarchy, so it is a good idea to always register a handler yourself:

top = Toplevel(...)

# make sure widget instances are deleted
top.protocol("WM_DELETE_WINDOW?", top.destroy)

Future versions of Tkinter will most likely do this by default.

FIXME: has this been changed in Python 1.5.2?

Other Protocols

Window managers protocols were originally part of the X window system (they are defined
in a document titled Inter-Client Communication Conventions Manual, or ICCCM). On
that platform, you can install handlers for other protocols as well, like WM_TAKE_FOCUS
and WM_SAVE_YOURSELF. See the ICCCM documentation for details.

22



Application Windows

Coming soon.

Base Windows

In the simple examples we've used this far, there's only one window on the screen; the root
window. This is automatically created when you call the Tk constructor, and is of course
very convenient for simple applications:

from Tkinter import *
root = Tk()
# create window contents as children to root...

root.mainloop()

If you need to create additional windows, you can use the Toplevel widget. It simply creates
a new window on the screen, a window that looks and behaves pretty much like the original
root window:

from Tkinter import *

root = Tk()

# create root window contents...
top = Toplevel()

# create top window contents...

root.mainloop()

There's no need to use pack to display the Toplevel, since it is automatically displayed by
the window manager (in fact, you'll get an error message if you try to use pack or any other
geometry manager with a Toplevel widget).

The Work Area
Menus
Toolbars

Status Bars

Most applications sport a status bar at the bottom of each application window.

Implementing a status bar with Tkinter is trivial: you can simply use a suitably configured
Label widget, and reconfigure thetext option now and then. Here's one way to do it:

23



Application Windows

status = Label(master, text="", bd=1, relief=SUNKEN, anchor=W)
status.pack(side=BOTTOM, fill=X)

The following class wraps a status bar label, providing set and clear methods:

Example 1. File: tkSimpleStatusBar.py

class StatusBar(Frame):

def __init__ (self, master):
Frame.__init__ (self, master)
self.label = Label(self, bd=1, relief=SUNKEN, anchor=W)
self.label.pack(fill=X)

def set(self, format, *args):
self.label.config(text=format % args)
self.label.update_idletasks()

def clear(self):
self.label.config(text="")
self.label.update_idletasks()

Note that the set method works like C's printf function; it takes a format string, possibly
followed by a set of arguments (a drawback is that if you wish to print an arbitrary string,
you must do that as set("%s", string)). Also note that this method calls the
update_idletasks method, to make sure pending draw operations (like the status bar
update) are carried out immediately.

[For compatibility with future versions of Tkinter, we've decided that it is not politically
correct to inherit from any widgets other than the Toplevel and Frame widgets. Should
definitely explain why somewhere in this document]

24



Standard Dialogs

Before we look at what to put in that application work area, let's take a look at another
important part of GUI programming: displaying dialogs and message boxes.

Starting with Tk 4.2, the Tk library provides a set of standard dialogs that can be used to
display message boxes, and to select files and colors. In addition, Tkinter provides some
simple dialogs allowing you to ask the user for integers, floating point values, and strings.
Where possible, these standard dialogs use platform-specific mechanisms, to get the right
look and feel.

Message Boxes

The tkMessageBox module provides an interface to the message dialogs.

The easiest way to use this module is to use one of the convenience functions: showinfo,
showwarning, showerror, askquestion, askokcancel, askyesno, or askretryignore. They all
have the same syntax:

tkMessageBox.function(title, message [, options]). Thetitle argument is shown in the
window title, and the message in the dialog body. You can use newline characters ("\n") in
the message to make it occupy multiple lines. The options can be used to modify the look;
they are explained later in this section.

The first group of standard dialogs is used to present information. You provide the title and
the message, the function displays these using an appropriate icon, and returns when the
user has pressed OK. The return value should be ignored.

Here's an example:

try:
fp = open(filename)
except:
tkMessageBox.showwarning(
"Open file",
"Cannot open this file\n(%6s)" % filename
)

return

Figure 1. showinfo, showwarning, showerror dialogs

Cispam |

@ Eqg Information

25



Standard Dialogs

» Spam i

& Eqg Warning

» Spam i

Q Egg Aler

The second group is used to ask questions. The askquestion function returns the strings

"yes" or "no" (you can use options to modify the number and type of buttons shown), while
the others return a true value of the user gave a positive answer (ok, yes, and retry,
respectively).

if tkMessageBox.askyesno("Print"”, "Print this report?"):
report.print()

Figure 2. askquestion dialog

 Spam =
{ ? Cluestion?
Nej |

26



Standard Dialogs

BT |

& Try again?

[Screenshots made on a Swedish version of Windows 95. Hope you don't mind...]

Message Box Options

If the standard message boxes are not appropriate, you can pick the closest alternative
(askquestion, in most cases), and use options to change it to exactly suit your needs. You
can use the following options (note that message and title are usually given as arguments,
not as options).

Table 1. Message Box Options

Option

Type

Description

default

constant

Which button to make default: ABORT, RETRY,,
IGNORE, OK, CANCEL, YES, or NO (the constants
are defined in the tkMessageBox module).

icon

constant

Which icon to display: ERROR, INFO, QUESTION,
or WARNING

message

string

The message to display (the second argument to the
convenience functions). May contain newlines.

parent

widget

Which window to place the message box on top of.
When the message box is closed, the focus is
returned to the parent window.

title

string

Message box title (the first argument to the
convenience functions).

type

constant

Message box type; that is, which buttons to display:
ABORTRETRYIGNORE, OK, OKCANCEL,
RETRYCANCEL, YESNO, or YESNOCANCEL.

27



Standard Dialogs

Data Entry

The tkSimpleDialog module provides an interface to the following simple dialogs.

FIXME: where to find this module?

Strings

The askstring function in the tkSimpleDialog module prompts the user for a string. You
specify the dialog title and the prompt string, and the function returns when the user closes
the dialog. The prompt string may include newline characters.

tkSimpleDialog.askstring(title, prompt [,options]). Ask the user to enter an string value. If
the user pressed Enter, or clicked OK, the function returns the string. If the user closed the
dialog by pressing Escape, clicking Cancel, or explicitly via the window manager, this
function returns None.

Figure 4. askstring

Spam

Eoqg label
GREEM

F. Cancel |

The following options can be used with this function:

Table 2. askstring Options

Option Type Description
initialvalue string Initial value, if any. Default is an empty string.
parent widget Which window to place the dialog on top of. When

the dialog is closed, the focus is returned to the
parent window.

Numeric Values

The askinteger and askfloat functions is similar to askstring, but they only accept integers
and float values, respectively. You can also use the minvalue and maxvalue options to limit
the input range:

tkSimpleDialog.askinteger(title, prompt [,options]). Ask the user to enter an integer value.
If the entered value is not a valid integer or floating point value, a message box is displayed,
and the dialog is not closed. As with the askstring function, the function returns None if
the dialog box is cancelled.

tkSimpleDialog.askfloat(title, prompt [,options]). Same, but returns a floating point value.

28



Standard Dialogs

Figure 5. askinteger, askfloat

Spam

Eog count

5

Ok

Spam

E gg weight
i tans]

{0.029

Ok

Cancel |

The following options can be used with these functions:

Table 3. askinteger and askfloat options

Option

Type

Description

initialvalue

integer or float

Initial value, if any. Default is an empty string.

parent

widget

Which window to place the dialog on top of. When
the dialog is closed, the focus is returned to the
parent window.

minvalue

integer or float

Minimum value. If exceeded, a message box is
shown when the user clicks OK, and the dialog will
not be closed. Default is no check.

maxvalue

integer or float

Maximum value. If exceeded, a message box is
shown when the user clicks OK, and the dialog will
not be closed. Default is no check.

File Names

The tkFileDialog module (included in the standard dialog kit described earlier) can be used
to get a filename from the user. The module provides two convenience functions, one to get
an existing filename so you can open it, and one to get a new filename, to save things into.

tkFileDialog.askopenfilename([options]). If the dialog is cancelled by the user, the function

returns None.

tkFileDialog.asksaveasfilename([options]).

29



Standard Dialogs

Figure 6. askopenfilename, asksaveasfilename

Oppna

Leta

I _ 4 introduction

dialogl.py
¥ dialog?. py
dialog3.py

Filnarmt:

Filformat;

f l filez [+

Spara som

Spara |

I _ 4 introduction

=l = e

azkokcancel gif @ bind1.py @ dialog3. aif
E’ azkopenfilename. gif @ bttan. him @ dialog3.py
E’ azkquestion. gi @ colorchoozer. gif @ frarme. him
E’ azkretrycancel. gif @ dialogl.py @ arid. kitmn
E azkyesno. gif @ dialag2. qif @ arid1. aif
E bg3. gif @ dialog2. py @ and1.py
« | 2
e N
Filformat: {0l Files (%] =] Avbryt |

The following options can be used with the askopenfilename and asksavefilename

functions:

Table 4. askopenfilename options

Option Type Description

defaultextensio | string An extension to add to the filename, if not explicitly

n given by the user. The string should include the
leading dot (ignored by the open dialog).

filetypes list Sequence of (label, pattern) tuples. The same label
may occur with several patterns. Use "*" as the
pattern to indicate all files.

initialdir string Initial directory.

initialfile string Initial file (ignored by the open dialog)

30



Standard Dialogs

Option Type Description

parent widget Which window to place the message box on top of.
When the dialog is closed, the focus is returned to
the parent window.

title string Message box title.

Colors

The tkColorChooser module (included in the standard dialog kit described earlier) can be
used to specify an RGB color value.

tkColorChooser.askcolor([color [,options]]). The convenience function returns two values;
the firstis the color as a RGB triplet (a 3-tuple containing the red, green and blue values as
integers in the range 0-255), the second a Tk color string. To preset a color when you
display the dialog, you can pass a color (in either format) to the function.

If the dialog is cancelled, the function returns (None, None)

Figure 7. askcolor (in Swedish)

Myans: |160  Rid: |15':'
Mattnad: |0 [Erar: |15':|

| FarglFien farg I__iusst_l,lrka:|151 El&: I'IE"':I

Lagg till egna farger |

[NEfintera eqna farmers =

orE] A

The following options can be used with the askcolor function:

Table 5. askcolor Options

Option Type Description

initialcolor color Color to mark as selected when dialog is displayed
(given as an RGB triplet or a Tk color string). (the
firstargument to the convenience function).

parent widget Which window to place the message box on top of.
When the dialog is closed, the focus is returned to

31



Standard Dialogs

Option Type Description
the parent window.
title string Message box title.

32



Dialog Windows

While the standard dialogs described in the previous section may be sufficient for many
simpler applications, most larger applications require more complicated dialogs. For
example, to set configuration parameters for an application, you will probably want to let
the user enter more than one value or string in each dialog.

Basically, creating a dialog window is no different from creating an application window.
Just use the Toplevel widget, stuff the necessary entry fields, buttons, and other widgets
into it, and let the user take care of the rest. (By the way, don't use the ApplicationWindow
class for this purpose; it will only confuse your users).

But if you implement dialogs in this way, you may end up getting both your users and
yourself into trouble. The standard dialogs all returned only when the user had finished her
task and closed the dialog; but if you just display another toplevel window, everything will
run in parallel. If you're not careful, the user may be able to display several copies of the
same dialog, and both she and your application will be hopelessly confused.

In many situations, it is more practical to handle dialogs in a synchronous fashion; create
the dialog, display it, wait for the user to close the dialog, and then resume execution of
your application. Thewait_window method is exactly what we need; it enters a local event
loop, and doesn't return until the given window is destroyed (either via the destroy
method, or explicitly via the window manager):

widget.wait_window(window)
(Note that the method waits until the window given as an argument is destroyed; the only

reason this is a method is to avoid namespace pollution).

In the following example, the MyDialog class creates a Toplevel widget, and adds some
widgets to it. The caller then useswait_window to wait until the dialog is closed. If the user
clicks OK, the entry field's value is printed, and the dialog is then explicitly destroyed.

Example 1. File: dialogl.py

from Tkinter import *
class MyDialog:
def __init__ (self, parent):
top = self.top = Toplevel(parent)
Label(top, text="Value").pack()

self.e = Entry(top)
self.e.pack(padx=>5)

b = Button(top, text="0K", command=self.ok)
b.pack(pady=5)

def ok(self):

print "value is", self.e.get()

33



Dialog Windows

self.top.destroy()

root = Tk()

Button(root, text="Hello!").pack()
root.update()

d = MyDialog(root)

root.wait_window(d.top)

If you run this program, you can type something into the entry field, and then click OK,
after which the program terminates (note that we didn't call the mainloop method here; the
local event loop handled bywait_window was sufficient). But there are a few problems with
this example:

- The root window is still active. You can click on the button in the root window also when
the dialog is displayed. If the dialog depends on the current application state, letting the
users mess around with the application itself may be disastrous. And just being able to
display multiple dialogs (or even multiple copies of one dialog) is a sure way to confuse
your users.

« You have to explicitly click in the entry field to move the cursor into it, and also click on
the OK button. Pressning Enter in the entry field is not sufficient.

« There should be some controlled way to cancel the dialog (and as we learned earlier, we
really should handle the WM_DELETE_WINDOW protocol too).

To address the first problem, Tkinter provides a method called grab_set, which makes sure
that no mouse or keyboard events are sent to the wrong window.

The second problem consists of several parts; first, we need to explicitly move the keyboard
focus to the dialog. This can be done with the focus_set method. Second, we need to bind
the Enter key so it calls the ok method. This is easy, just use thebind method on the
Toplevel widget (and make sure to modify theok method to take an optional argument so it
doesn't choke on the event object).

The third problem, finally, can be handled by adding an additional Cancel button which
calls the destroy method, and also use bind and protocol to do the same when the user
presses Escape or explicitly closes the window.

The following Dialog class provides all this, and a few additional tricks. To implement your
own dialogs, simply inherit from this class and override the body and apply methods. The
former should create the dialog body, the latter is called when the user clicks OK.

Example 2. File: tkSimpleDialog.py

from Tkinter import *
import os

class Dialog(Toplevel):
def __init__ (self, parent, title = None):

Toplevel.__init__ (self, parent)
self.transient(parent)

if title:

34



Dialog Windows

self.title(title)
self.parent = parent
self.result = None
body = Frame(self)
self.initial_focus = self.body(body)
body.pack(padx=5, pady=>5)
self.buttonbox()

self.grab_set()

if not self.initial_focus:
self.initial_focus = self

self.protocol("WM_DELETE_WINDOW", self.cancel)

self.geometry("+%d+%d" % (parent.winfo_rootx()+50,
parent.winfo_rooty()+50))

self.initial_focus.focus_set()
self.wait_window(self)

H#
# construction hooks

def body(self, master):
# create dialog body. return widget that should have
# initial focus. this method should be overridden
pass
def buttonbox(self):
# add standard button box. override if you don't want the
# standard buttons
box = Frame(self)
w = Button(box, text="0OK", width=10, command=self.ok, default=ACTIVE)
w.pack(side=LEFT, padx=5, pady=5)
w = Button(box, text="Cancel", width=10, command=self.cancel)

w.pack(side=LEFT, padx=5, pady=5)

self.bind("<Return=", self.ok)
self.bind("<Escape=", self.cancel)

box.pack()

#
# standard button semantics

def ok(self, event=None):

if not self.validate():

35



Dialog Windows

self.initial_focus.focus_set() # put focus back
return

self.withdraw()
self.update_idletasks()

self.apply()
self.cancel()
def cancel(self, event=None):
# put focus back to the parent window
self.parent.focus_set()

self.destroy()

#H
# command hooks

def validate(self):
return 1 # override
def apply(self):

pass # override

The main trickery is done in the constructor; first, transient is used to associate this
window with a parent window (usually the application window from which the dialog was
launched). The dialog won't show up as an icon in the window manager (it won't appear in
the task bar under Windows, for example), and if you iconify the parent window, the dialog
will be hidden as well. Next, the constructor creates the dialog body, and then calls
grab_setto make the dialog modal,geometry to position the dialog relative to the parent
window, focus_setto move the keyboard focus to the appropriate widget (usually the
widget returned by the body method), and finallywait_window.

Note that we use the protocol method to make sure an explicit close is treated as a cancel,
and in the buttonbox method, we bind the Enter key to OK, and Escape to Cancel. The
default=ACTIVE call marks the OK button as a default button in a platform specific way.

Using this class is much easier than figuring out how it's implemented; just create the
necessary widgets in the body method, and extract the result and carry out whatever you

wish to do in the apply method. Here's a simple example (we'll take a closer look at the grid
method in a moment).

Example 3. File: dialog2.py
class MyDialog(Dialog):

def body(self, master):

Label(master, text="First:").grid(row=0)
Label(master, text="Second:").grid(row=1)

self.el = Entry(master)
self.e2 = Entry(master)

36



Dialog Windows

self.el.grid(row=0, column=1)
self.e2.grid(row=1, column=1)
return self.el # initial focus

def apply(self):
first = string.atoi(self.el.get())
second = string.atoi(self.e2.get())
print first, second # or something

And here's the resulting dialog:

Figure 1. running the dialog2.py script

tk

First;
Second:

k. Cancel |

Note that the body method may optionally return a widget that should receive focus when
the dialog is displayed. If this is not relevant for your dialog, simply return None (or omit
the return statement).

The above example did the actual processing in the apply method (okay, a more realistic
example should probably to something with the result, rather than just printing it). But
instead of doing the processing in theapply method, you can store the entered data in an
instance attribute:

def apply(self):
first = string.atoi(self.el.get())
second = string.atoi(self.e2.get())
self.result = first, second

d = MyDialog(root)
print d.result

Note that if the dialog is cancelled, theapply method is never called, and the result
attribute is never set. The Dialog constructor sets this attribute to None, so you can simply
test the result before doing any processing of it. If you wish to return data in other
attributes, make sure to initialize them in the body method (or simply setresult to 1 in the
apply method, and test it before accessing the other attributes).

Grid Layouts

While the pack manager was convenient to use when we designed application windows, it
may not be that easy to use for dialogs. A typical dialog may include a number of entry

fields and check boxes, with corresponding labels that should be properly aligned. Consider
the following simple example:

37



Dialog Windows

Figure 2. Simple Dialog Layout

First:  |=entry field=
second:|<entry field=
=checkbutton:=

To implement this using the pack manager, we could create a frame to hold the label
"first:", and the corresponding entry field, and use side=LEFT when packing them. Add a
corresponding frame for the next line, and pack the frames and the checkbutton into an
outer frame using side=TOP. Unfortunately, packing the labels in this fashion makes it
impossible to get the entry fields lined up, and if we use side=RIGHT to pack the entry field
instead, things break down if the entry fields have different width. By carefully usingwidth
options, padding, side and anchor packer options, etc., we can get reasonable results with
some effort. But there's a much easier way: use the Grid manager instead.

This manager splits the master widget (typically a frame) into a 2-dimensional grid, or
table. For each widget, you only have to specify where in this grid it should appear, and the
grid managers takes care of the rest. The following body method shows how to get the
above layout:

Example 4. File: dialog3.py
def body(self, master):

Label(master, text="First:").grid(row=0, sticky=W)
Label(master, text="Second:").grid(row=1, sticky=W)

self.el = Entry(master)
self.e2 = Entry(master)

self.el.grid(row=0, column=1)
self.e2.grid(row=1, column=1)

self.cb = Checkbutton(master, text="Hardcopy")
self.cb.grid(row=2, columnspan=2, sticky=W)

For each widget that should be handled by the grid manager, you call the grid method with
the row and column options, telling the manager where to put the widget. The topmost
row, and the leftmost column, is numbered O (this is also the default). Here, the
checkbutton is placed beneath the label and entry widgets, and the columnspan option is
used to make it occupy more than one cell. Here's the result:

38



Dialog Windows

Figure 3. Using the grid manager

tk

Firzt;
Secaond:

[ Hardcopy

k. Cancel

If you look carefully, you'll notice a small difference between this dialog, and the dialog
shown by the dialog2.py script. Here, the labels are aligned to the left margin. If you
compare the code, you'll find that the only difference is an option calledsticky.

When its time to display the frame widget, the grid geometry manager loops over all
widgets, calculating a suitable width for each row, and a suitable height for each column.
For any widget where the resulting cell turns out to be larger than the widget, the widget is
centered by default. The sticky option is used to modify this behaviour. By setting it to one
of E,W, S, N, NW, NE, SE, or SW, you can align the widget to any side or corner of the cell.
But you can also use this option to stretch the widget if necessary; if you set the option to
E+W, the widget will be stretched to occupy the full width of the cell. And if you set it to
E+W+N+S (or NW+SE, etc), the widget will be stretched in both directions. In practice, the
sticky option replaces thefill, expand, and anchor options used by the pack manager.

The grid manager provides many other options allowing you to tune the look and behaviour
of the resulting layout. These include padx and pady which are used to add extra padding
to widget cells, and many others. The Grid Geometry Manager for details.

Validating Data

What if the user types bogus data into the dialog? In our current example, the apply
method will raise an exception if the contents of an entry field is not an integer. We could of
course handle this with atry/except and a standard message box:

def apply(self):
try:
first = string.atoi(self.el.get())
second = string.atoi(self.e2.get())
dosomething((first, second))
except ValueError:
tkMessageBox.showwarning("Bad input”, "lllegal values, please try again™)

There's a problem with this solution: theok method has already removed the dialog from
the screen when the apply method is called, and it will destroy it as soon as we return. This
design is intentional; if we carry out some potentially lengthy processing in the apply
method, it would be very confusing if the dialog wasn't removed before we finished. The
Dialog class already contain hooks for another solution: a separatevalidate method which
is called before the dialog is removed.

In the following example, we simply moved the code from apply tovalidate, and changed it
to store the result in an instance attribute. This is then used in the apply method to carry
out the work.

39



Dialog Windows

def validate(self):

try:
first= string.atoi(self.el.get())
second = string.atoi(self.e2.get())
self.result = first, second
return 1

except ValueError:
tkMessageBox.showwarning("Bad input"”, "lllegal values, please try again')
return O

def apply(self):
dosomething(self.result)

Note that if we left the processing to the calling program (as shown above), we don't even
have to implement the apply method.

40



The Button Widget

The Button widget is a standard Tkinter widget used to implement various kinds of
buttons. Buttons can contain text or images, and you can associate a Python function or
method with each button. When the button is pressed, Tkinter automatically calls that
function or method.

The button can only display text in a single font, but the text may span more than one line.
In addition, one of the characters can be underlined, for example to mark a keyboard
shortcut. By default, the Tab key can be used to move to a button widget.

Button Patterns

Plain buttons are pretty straightforward to use. Simply specify the button contents (text,
bitmap, or image) and a callback to call when the button is pressed:

b = Button(master, text="0K", command=self.ok)

A button without a callback is pretty useless; it simply doesn't do anything when you press
the button. You might wish to use such buttons anyway when developing an application. In
that case, it is probably a good idea to disable the button to avoid confusing your beta
testers:

b = Button(master, text="Help", state=DISABLED)

If you don't specify a size, the button is made just large enough to hold its contents. You can
use the padx and pady option to add some extra space between the contents and the button
border. You can also use the height and width options to explicitly set the size. If you
display text in the button, these options define the size of the button in text units. If you
display bitmaps or images instead, they define the size in pixels (or other screen units). You
can actually specify the size in pixels even for text buttons, but it takes some magic. Here's
one way to do it (there are others):

f = Frame(master, height=32, width=32)
f.pack_propagate(0) # don't shrink

b = Button(f, text="Sure!")
b.pack(fill=BOTH, expand=1)

Buttons can display multiple lines of text (but only in one font). You can use newlines or
the wraplength option to make the button wrap text by itself. When wrapping text, use the
anchor, justify, and possiblypadx options to make things look exactly as you wish. An
example:

b = Button(master, text=longtext, anchor=W, justify=LEFT, padx=2)

To make an ordinary button look like it's held down, for example if you wish to implement
a toolbox of some kind, you can simply change the relief from RAISED to SUNKEN:

b.config(reliefF=SUNKEN)

You might wish to change the background as well. Note that a possibly better solution is to
use a Checkbutton or Radiobutton with the indicatoron option set to false:

41



The Button Widget

b = Checkbutton(master, image=bold, variable=var, indicatoron=0)

Methods

The Button widgets support the standard Tkinter Widget interface, plus the following
methods:

flash

flash(). Redraw the button several times, alternating between active and normal
appearance.

invoke

invoke(). Call the command associated with the button.

Helpers

The following methods are only relevant if you're implementing your own keyboard
bindings. They are not documented in this version of the Tkinter overview.

tkButtonDown().
tkButtonEnter().
tkButtonlnvoke().
tkButtonLeave().

tkButtonUp(). (Buttononly). These can be used in customized event bindings. All these
methods accept zero or more dummy arguments.

Options

The Button widgets support the following options:

Table 1.

Option Type Description

activebackgrou | color The color to use when the button is activated.

nd,

activeforegrou

nd

anchor constant Controls where in the button the text (or image)
should be located. Use one of N, NE, E, SE, S, SW,
W, NW, or CENTER. Default is CENTER. If you
change this, it is probably a good idea to add some
padding as well, using the padx and/or pady
options.

background, color The button color. The default is platform specific.

foreground

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.

42



The Button Widget

Option

Type

Description

The following bitmaps are available on all
platforms: "error"”, "gray75", "gray50", "gray25",
"grayl2", "hourglass", "info", "questhead",

"question”, and "warning".

AT

F &
E
The following additional bitmaps are available on
the Macintosh only: "document”, "stationery",
"edition", "application”, "accessory", "folder",
"pfolder”, "trash", "floppy", "ramdisk", "cdrom",
"preferences”, "querydoc", "stop", "note", and
"caution”.
You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example

"@sample.xbm".

borderwidth
(bd)

int

The width of the button border. The default is
platform specific, but is usually 1 or 2 pixels.

command

callback

A function or method that is called when the button
is pressed. The callback can be a function, bound
method, or any other callable Python object.

cursor

cursor

The cursor to show when the mouse is moved over
the button.

default

int

If set, the button is a default button. Tk will indicate
this by drawing a platform specific indicator
(usually an extra border). NOTE: The syntax has
changed in 8.0b21!

disabledforegr
ound

color

The color to use when the button is disabled. The
background is shown in thebackground color.

font

font

The font to use in the button. The button can only
contain text in a single font.

highlightbackg
round,
highlightcolor

color

Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in
the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn
ess

distance

Controls the width of the focus highlight border.
Default is typically one or two pixels.

image

image

The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

justify

constant

Defines how to align multiple lines of text. Use
LEFT, RIGHT, or CENTER.

padx, pady

distance

Button padding. These options specify the

43



The Button Widget

Option

Type

Description

horizontal and vertical padding between the text or
image, and the button border.

relief

constant

Border decoration. Usually, the button is SUNKEN
when pressed, and RAISED otherwise. Other
possible values are GROOVE, RIDGE, and FLAT.

state

constant

The button state;: NORMAL, ACTIVE or DISABLED.
Default is NORMAL.

takefocus

flag

Indicates that the user can use the Tab key to move
to this button. Default is an empty string, which
means that the button accepts focus only if it has
any keyboard bindings (defaultis on, in other
words).

text

string

The text to display in the button. The text can
contain newlines. If thebitmap or image options
are used, this option is ignored.

textvariable

variable

Associates a Tkinter variable (usually a StringVar)
to the button. If the variable is changed, the button
text is updated.

underline

int

Defaultis -1.

width, height

distance

The size of the button. If the button displays text,
the size is given in text units. If the button displays
an image, the size is given in pixels (or screen
units). If the size is omitted, it is calculated based on
the button contents.

wraplength

distance

Determines when a button's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

44



The Canvas Widget

The Canvas widget provides structured graphics facilities for Tkinter. This is a highly
versatile widget which are used to draw graphs and plots, create graphics editors, and
implement various kinds of custom widgets.

To display things on the canvas, you create one or more canvas items, which are placed in a
stack. By default, new items are drawn on top of items already on the canvas. Tkinter
provides lots of methods allowing you to manipulate the items in various ways. Among
other things, you can attach (bind) event callbacks to individual items.

Concepts

To be added.

Items

The Canvas widget supports the following standard items:
- arc (arc, chord, or pieslice)

 bitmap (built-in or read from XBM file)

- image (a Bitmaplmage or Photolmage instance)

« line

- oval (acircle or an ellipse)

- polygon

 rectangle

- text

- window

Chords, pieslices, ovals, polygons, and rectangles are drawn as both an outline and an
interior, either of which can be made transparent (if you insist, you can make both
transparent).

Window items are used to place other Tkinter widgets on top of the canvas; for these items,
the Canvas widget simply acts like a geometry manager.

You can also write your own item types in C or C++ and plug them into Tkinter via Python
extension modules.

Coordinate Systems

The Canvas widget uses two coordinate systems; the window coordinate system (with (O,
0) in the upper left corner), and a canvas coordinate system in which the items are drawn.
By scrolling the canvas, you can specify which part of the canvas coordinate system to show
in the window.

The scrollregionoption is used to limit scrolling operations for the canvas. To set this, you
can usually use something like:

canvas.config(scrollregion=canvas.bbox(ALL))

45



The Canvas Widget

To convert from window coordinates to canvas coordinates, use the canvasx and canvasy
methods:

def callback(event):
canvas = event.widget
X = canvas.canvasx(event.x)
y = canvas.canvasx(event.y)
print canvas.find_closest(x, y)

Item Specifiers
The Canvas widget allows you to identify items in several ways. Everywhere a method
expects an item specifier, you can use one of the following:
- item handles
- tags
- ALL
- CURRENT

Item handles are integer values that are used to identify a specific item on the canvas.
Tkinter automatically assigns a new handle to each new item created on the canvas. Item
handles can be passed to the various canvas methods either as integers or as strings.

Tags are symbolic names attached to items. Tags are ordinary strings, and they can contain
anything except whitespace.

An item can have zero or more tags associated with it, and the same tag can be used for
more than one item. However, unlike the Text widget, the Canvas widget doesn't allow you
to create bindings or otherwise configure tags for which there are no existing items. All
such operations are ignored.

You can either specify the tags via an option to the item create method, set them via the
itemconfig method, or add them using the addtag_ withtag method. The tags option take
either a single string, or a tuple of strings.

item = canvas.create_line(0, 0, 100, 100, tags="uno")
canvas.itemconfig(item, tags=("one", "two"))
canvas.addtag_withtag("three", "one")

To get all tags associated with a specific item, use gettags. To get all items having a given
tag, use find_withtag.

>>> print canvas.gettags(item)
(‘one’', 'two', 'three")
>>> print canvas.find_withtag(*'one")

(¢5))
The Canvas widget also provides two predefined tags:

ALL (or "all") matches all items on the canvas.

CURRENT (or "current™) matches the item under the mouse pointer, if any. This can be
used inside mouse event bindings to refer to the item that trigged the callback.

Printing
To be added.

46



The Canvas Widget

Patterns

To be added.

Methods

The first group of methods are used to create and configure items on a canvas.

Create_arc

create_arc(bbox, options). Create an arc canvas item. Returns the item handle.

create_bitmap

create_bitmap(position, options). Create abitmap canvas item. Returns the item handle.

create_image

create_image(position, options). Create an image canvas item. Returns the item handle.

create_line

create_line(coords, options). Create a line canvas item. Returns the item handle.

create_ oval

create_oval(bbox, options). Create an oval canvas item. Returns the item handle.

create_polygon

create_polygon(coords, options). Create a polygon canvas item. Returns the item handle.

create_ rectangle

create_rectangle(bbox, options). Create a rectangle canvas item. Returns the item handle.

create_text

create_text(position, options). Create atext canvas item. Returns the item handle.

create_window

create_window(position, options). Place a Tkinter widget on the canvas. Returns the item
handle.

Note that widgets are drawn on top of the canvas (that is, the canvas acts like a geometry
manager). You cannot draw other canvas items on top of a widget.

delete

delete(items). Delete all matching items. It is not an error to give an item specifier that
doesn't match any items.

47



The Canvas Widget

itemcget

itemcget(item, option). Get the current value for an option. If item refers to more than one
items, this method returns the option value for the first item found.

itemconfig

itemconfig(item, options), itemconfigure(item, options). Change one or more options for
all matching items.

coords
coords(item). Return the coordinates for the given item. If item refers to more than one
items, this method returns the type of the first item found.

coords

coords(item, x0, y0, x1, y1, ..., xn, yn). Change the coordinates for the given item. This
method updates all matching items.

bbox
bbox(items), bbox(). Returns the bounding box for the given items. If the specifier is
omitted, the bounding box for all items are returned. Note that the bounding box is
approximate and may differ a few pixels from the real value.

canvasx
canvasx(screenx), canvasy(screeny). Convert a window coordinate (for example, the x and
y coordinates from the structure passed to an event handler) to a canvas coordinate.

tag_bind
tag_bind(item, sequence, callback), tag_bind(item, sequence, callback, "+"). Add an
event binding to all matching items. Usually, the new binding replaces any existing binding
for the same event sequence. The second form can be used to add the new callback to the
existing binding.
Note that the new bindings are associated with the items, not the tag. For example, if you
attach bindings to all items having the "movable" tag, they will only be attached to any
existing items with that tag. If you create new items tagged as "movable", they will not get
those bindings.

tag_unbind
tag_unbind(item, sequence). Remove the binding, if any, for the given event sequence.
This applies to all matching items.

type

type(item). Return the type of the given item: "arc", "bitmap", "image", "line", "oval",

"polygon", "rectangle”, "text", or "window". If item refers to more than one items, this
method returns the type of the first item found.

48



lift

The Canvas Widget

lift(item), tkraise(item). Move the given item to the top of the canvas stack. If multiple item
matches, they are all moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use lift on the widget

instance instead.

lower

lower(item). Move the given item to the bottom of the canvas stack. If multiple item
matches, they are all moved, with their relative order preserved.

This method doesn't work with window items. To change their order, use loweron the
widget instance instead.

move

move(item, dx, dy). Move all items dx canvas units to the right, anddy canvas units
downwards. Both coordinates can be negative.

postscript

postscript(options). Generate a Postscript rendering of the canvas contents. Images and

embedded widgets are not included.

Table 1.
Option Type Description
colormap None
colormode None
file None
fontmap None
height None
pageanchor None
pageheight None
pagewidth None
pagex None
pagey None
rotate None
width None
X None
y None

49



The Canvas Widget

scale

scale(item, xscale, yscale). Scale all items according to the given scale factors. Note that
this method modifies the item coordinates; you may loose precision if you use this method
multiple times on the same items.

Searching for Items

The following methods are used to find certain groups of items, for later processing. Note
that for each find method, there is a corresponding addtag method. Instead of processing
the individual items returned by a find method, you can often get better performance by
adding a temporary tag to a group of items, process all items with that tag in one go, and
then remove the tag.

find_above

find_above(item). Returns the item just above the given item.

find_all

find_all(). Return a list containing the identity of all items on the canvas, with the topmost
item last (that is, if you haven't change the order using lift or lower, the items are returned
in the order you created them). This is shortcut for find_withtag(ALL).

find_below

find_below(item). Returns the item just below the given item.

find_closest

find_closest(x, y). Returns the item closest to the given position. Note that the position is
given in canvas coordinates, and that this method always succeeds if there's at least one
item in the canvas. To find items within a certain distance from a position, use
find_overlapping with a small rectangle centered on the position.

find_enclosed

find_enclosed(x1, y1, x2, y2). Returns a list of all items completely enclosed by the
rectangle (x1,y1, x2,y2).

find_overlapping

find_overlapping(x1, y1, x2, y2). Returns a list of all items that overlap the given
rectangle, or that are completely enclosed by it.

find_withtag

find_withtag(item). Returns a list of all items having the given specifier.

Manipulating Tags

The following methods are used to manipulate the tags, rather than the items themselves.

50



The Canvas Widget

addtag_above

addtag_above(newtag, item). Add newtag to the item just above the given item.

addtag_all

addtag_all(newtag). Add newtag to all items on the canvas. This is shortcut for
addtag_withtag(newtag, ALL).

addtag_below

addtag_below(newtag, item). Add newtag to the item just below the given item.

addtag_closest

addtag_closest(newtag, X, y). Add newtag to the item closest to the given coordinate. See
find__closest for more information.

addtag_enclosed

addtag_enclosed(newtag, x1, y1, x2, y2). Add newtag to all items enclosed by the given
rectangle. See find_enclosed for more information.

addtag_overlapping

addtag_overlapping(newtag, x1, y1, x2, y2). Add newtag to all items overlapping the
given rectangle. See find_overlapping for more information.

addtag_withtag

addtag_withtag(newtag, tag). Add newtag to all items having the given tag.

dtag
dtag(item, tag). Remove the given tag from all matching items. If the tag is omitted, all
tags are removed from the matching items. It is not an error to give a specifier that doesn't
match any items.

gettags

gettags(item). Return all tags associated with the item.

Special Methods for Text Items

The following methods can be used with text items, as well as with any extension item type
that supports a keyboard focus and an insertion cursor.

dchars

dchars().

51



The Canvas Widget

focus

focus().

icursor

icursor().

index

index().

insert

insert().

select adjust

select_adjust(item, index).

select_clear

select_clear().

select _from

select_from(item, index).

select_item

select_item().

select_to

select_to(item, index).

Scrolling

The following methods are used to scroll the canvas in various ways. The scan methods can

be used to implement fast mouse pan/roam operations, while the xview and yview
methods are used with standard scrollbars.

scan_mark, scan_dragto

scan_mark(x, y), scan_dragto(x, y). scan_mark sets the scanning anchor for fast

horizontal scrolling to the given mouse coordinate. scan_dragto scrolls the widget contents
sideways according to the given mouse coordinate. The text is moved 10 times the distance
between the scanning anchor and the new position.

52



xXview, yview

The Canvas Widget

xview(MOVETO, offset), yview(MOVETO, offset). Adjust the canvas so that the given offset
is at the left (top) edge of the canvas. Offset 0.0 is the beginning of the scrollregion, 1.0 the
end. These methods are used by the Scrollbar bindings.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use the
string "moveto" instead.

Xview, yview

xview(SCROLL, step, what), yview(SCROLL, step, what). Scroll the canvas horizontally
(vertically) by the given amount. The what argument can be either UNITS (lines) or
PAGES. These methods are used by the Scrollbar bindings.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the
strings "scroll”, "units"”, and "pages" instead.

Options
Table 2.

Option Type Description

background color

(bg)

borderwidth distance

(bd)

closeenough

confine

cursor cursor

height distance

highlightbackg | color Controls how to draw the focus highlight border.

round, When the widget has focus, the border is drawn in

highlightcolor the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn | distance Controls the width of the focus highlight border.

ess Default is one or two pixels.
Note that the focus highlight border is drawn on top
of the canvas coordinate systems; if you don't use
scrollbars, a one pixel border covers items drawn at
canvas coordinate (0, 0).

insertbackgrou | color Color used for the insertion cursor.

nd

insertborderwi | distance Borderwidth for the insertion cursor.

dth

53



The Canvas Widget

Option Type Description

insertofftime, time Controls cursor blinking.

insertontime

insertwidth distance Width of the insertion cursor.

relief constant Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE,
and RIDGE.
Note that to show the border, you need to change
the borderwidth from it's default value of 0. Also
note that the border is drawn on top of the canvas
coordinate system.

scrollregion 4-tuple The bounding box of the scrollable area. If this
option is not set, the scrolling is not bounded.

selectbackgrou | color

nd

selectborderwi | distance

dth

selectforegrou | color

nd

takefocus flag Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the canvas accepts focus only if it has
any keyboard bindings (default is off, in other
words).

width distance

xscrollcomman | callback

d

xscrollincreme | distance

nt

yscrollcomman | callback

d

yscrollincreme | distance

nt

54



The Canvas Arc Item

An arc item is a section of oval, delimited by two angles (start and extent). An arc item can
be drawn in one of three ways:

- pieslice (lines are drawn from the perimeter to the oval's center)
- chord (the ends are connected with a straight line)
- arc (only the perimeter section is drawn)

Pieslices and chords can be filled.

Figure 1. Pieslice Example (see methods section for corresponding code)

canvasarc]_py =]

Methods

The following methods are used to create and configure arc items:

Create_arc

create_arc(xO0, y0, x1, y1, options...), create_arc(box, options...). Create a arc item
enclosed by the given rectangle. The start and extent options control which section to draw.
If they are set to 0.0 and 360.0, a full oval is drawn which touches the rectangle's four
edges.

Xy = 20, 20, 300, 180
canvas.create_arc(xy, start=0, extent=270, fill="red")

canvas.create_arc(xy, start=270, extent=60, fill="blue")
canvas.create_arc(xy, start=330, extent=30, fill="green")

delete

delete(item). Delete an arc item.

55



The Canvas Arc Item

coords

coords(item, x0, y0, x1, y1). Change the enclosing rectangle for one or more arc items.

itemconfigure

itemconfigure(item, options...). Change the options for one or more arc items.

Options

The arc item supports the following options, via thecreate_arc method, and the
itemconfig and itemcget configuration methods.

Table 1. Canvas Arc Options

Option Type Description

style constant Specifies how to draw the arc item (see above). Use
one of PIESLICE, CHORD, or ARC. The default is
PIESLICE.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "pieslice",
"chord", and "arc" instead.

start, extent angle The arc is drawn from the start angle (measured
counter-clockwise from three o'clock) to the start
angle plus the extent. Both angles are given in
degrees, and can be negative.

By default, the arc starts at 0.0 degrees (three
o'clock), and extends 90.0 degrees counter-
clockwise (twelve o'clock).

fill color The color to use for the arc's interior. If an empty
string is given, the interior is not drawn. Note that
arc's having the arc style cannot be filled. Default is
empty (transparent).

stipple bitmap The name of a bitmap which is used as a stipple
brush when filling the arc's interior. Typical values
are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

As of Tk 8.0p2, the stipple option is ignored on the
Windows platform. To draw stippled pieslices or
chords, you have to create corresponding polygons.

outline color The color to use for the arc's outline. If an empty
string is given, the outline is not drawn. Default is
"black".

outlinestipple bitmap The name of a bitmap which is used as a stipple

brush when drawing the arc's outline. Typical values
are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

width distance The width of the arc's outline. Default is 1 pixel.

56



The Canvas Arc Item

Option

Type

Description

tags

tuple

One or more tags to associate with this item. If only
asingle tag is to be used, you can use a single string

instead of a tuple of strings.

57



The Canvas Bitmap Item

The bitmap item draws a bitmap on the canvas.

You can use either a builtin bitmap, such as "hourglass", "info", "question", or "warning",
or load a bitmap from an XBM file.

Figure 1. Bitmap Example

canvasbitmap1.py

For more flexible image support, usecreate_image instead (with a Tkinter Bitmaplmage
instance, or an instance of the corresponding Python Imaging Library class).

Methods

The following methods are used to create and configure bitmap items:

create_bitmap

create_bitmap(x0, yO, options...). Create a bitmap item placed relative to the given
position.

item = canvas.create_bitmap(100, 100, bitmap="info", foreground="gold")

delete

delete(item). Delete a bitmap item.

coords

coords(item, x0, y0). Move one or more bitmap items.

58



itemconfigure

The Canvas Bitmap Item

itemconfigure(item, options...). Change the options for one or more bitmap items.

Options

The bitmap item supports the following options, via thecreate_bitmap method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option

Type

Description

bitmap

bitmap

The name of the bitmap.
The following bitmaps are available on all

platforms: "error", "gray75", "gray50", "gray25",

"grayl2", "hourglass", "info", "questhead",
"question”, and "warning".

Sl

The following additional bitmaps are available on

the Macintosh only: "document”, "stationery",

"edition", "application”, "accessory", "folder",

"pfolder”, "trash”, "floppy", "ramdisk", "cdrom"”,
"preferences”, "querydoc”, "stop", "note", and
“"caution”.

You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example

"@sample.xbm".

AT

1

L3

anchor

constant

Specifies which part of the bitmap that should be
placed at the given position. Use one of N, NE, E,
SE, S, SW, W, NW, or CENTER. Default is
CENTER.

foreground

color

The color to use for the bitmap's foreground pixels
(that is, non-zero pixels). If an empty string is given,
the foreground pixels are not drawn. Default is
"black".

background

color

The color to use for the bitmap's background pixels
(that is, zero pixels). If an empty string is given, the
background pixels are not drawn. Default is empty

(transparent).

tags

tuple

One or more tags to associate with this item. If only
asingle tag is to be used, you can use a single string
instead of a tuple of strings.

59



The Canvas Image Item

Methods

The following methods are used to create and configure image items:

create_image

create_image(x0, yO, options...). Create a image item placed relative to the given position.
Note that the image itself is given by the image option.

Example:

photo = Photolmage(file="sample.gif")
item = canvas.create_image(10, 10, anchor=NW, image=photo)

[FIXME: add note on image ownership]

delete

delete(item). Delete an image item.

coords

coords(item, x0, y0). Move one or more image items.

itemconfigure

itemconfigure(item, options...). Change the options for one or more image (or other)
items.

Options

The image item supports the following options, via the create_image method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option Type Description

image image The image object (a Tkinter Photolmage or
Bitmaplmage instance, or instances of the
corresponding Python Imaging Library classes).

anchor constant Specifies which part of the image that should be
placed at the given position. Use one of N, NE, E,
SE, S, SW, W, NW, or CENTER. Default is
CENTER.

tags tuple One or more tags to associate with this item. If only
asingle tag is to be used, you can use a single string
instead of a tuple of strings.

60



The Canvas Line Item

Methods

create_line

create_line(x0, y0, x1, y1, ..., xn, yn, options...). Create a line item.

delete

delete(item). Delete a line item.

coords

coords(item, x0, y0, x1, y1, ..., xn, yn). Change the coordinates for one or more line

items.

itemconfigure

itemconfigure(item, options...). Change the options for one or more line items.

Options

The line item supports the following options, via thecreate_line method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option Type Description

width distance The width of the line. Default is 1 pixel.

fill color The color to use for the line. Default is "black".

stipple bitmap The name of a bitmap which is used as a stipple
brush when drawing the line. Typical values are
"grayl2", "gray25", "gray50", or "gray75". Default is
a solid brush (no bitmap).

arrow constant If set to a value other than NONE, the line is drawn
as an arrow. The option value defines where to draw
the arrow head: FIRST, LAST, or BOTH. Default is
NONE.
The FIRST and LAST constants are not defined in
Python 1.5.2 and earlier. For compatibility, use the
strings "first" and "last" instead.

arrowshape 3-tuple Controls the shape of the arrow. Default is (8, 10, 3).

capstyle constant For wide lines, this option controls how to draw the
line ends. Use one of BUTT, PROJECTING,
ROUND. Default is BUTT.

61




The Canvas Line ltem

Option

Type

Description

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "butt”,
"projecting”, and "round" instead.

joinstyle

const

For wide lines, this option controls how to draw the
joins between edges. Use one of BEVEL, MITER, or
ROUND. Default is ROUND.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "bevel",
"miter"”, and "round" instead.

smooth

flag

If non-zero, the given coordinates are interpreted as
b-spline vertices.

splinesteps

int

The number of steps to use when smoothing this
line. Default is 12.

tags

tags

One or more tags to associate with this item. If only
asingle tag is to be used, you can use a single string
instead of a tuple of strings.

62



The Canvas Oval Item

Methods

create_ oval

create_oval(x0, yO, options...). Create a oval item at the given position, using the given
options. Note that the oval string itself is given by theoval option.

delete

delete(item). Delete an oval item.

coords

coords(item, x0, y0). Move one or more oval items.

itemconfigure

itemconfigure(item, options...). Change the options for one or more oval (or other) items.

Options

The oval item supports the following options, via thecreate_oval method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option

Type

Description

fill

colour

The colour to use for the interior. If an empty string
is given, the interior is not drawn. Default is empty
(transparent).

stipple

bitmap

The name of a bitmap which is used as a stipple
brush when filling the oval's interior. Typical values
are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

As of Tk 8.0p2, the stipple option is ignored on the
Windows platform. To draw stippled ovals, you
have to create corresponding polygons.

outline

colour

The colour to use for the outline. If an empty string
is given, the outline is not drawn. Default is "black".

width

distance

The width of the outline. Default is 1 pixel.

tags

tuple

One or more tags to associate with this item. If only
asingle tag is to be used, you can use a single string
instead of a tuple of strings.

63



The Canvas Polygon Item

Methods

The following methods are used to create and configure polygon items:

create_polygon

create_polygon(xy, options...).

create_polygon(x0, y0, x1, y1, x2, y2, ..., xn, yn, options...). Create a polygon item. You
must specify at least 3 vertices when you create a new polygon.

delete

delete(item). Delete a polygonitem.

coords

coords(item, x0, y0, x1, y1, x2, y2, ..., xn, yn). Change the coordinates for one or more
polygon items. Note that the coordinates must be given as separate arguments; you cannot
use a sequence as with create_polygon.

itemconfigure

itemconfigure(item, options...). Change the options for one or more polygon items.

Options

The polygon item supports the following options, via thecreate_polygon method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option Type Description

fill None The colour to use for the polygon interior. If an
empty string is given, the interior is not drawn.
Default is empty (transparent).

stipple bitmap The name of a bitmap which is used as a stipple
brush when filling the polygon's interior. Typical
values are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

outline None The colour to use for the polygon outline. If an
empty string is given, the outline is not drawn.
Default is "black™.

width distance The width of the polygon's outline. Default is 1 pixel.

smooth None If non-zero, the given coordinates are interpreted as

64



The Canvas Polygon Item

Option Type Description
b-spline vertices.

splinesteps None The number of steps to use when smoothing the
polygon outline. Defaultis 12.

tags tuple One or more tags to associate with the polygon. If

only a single tag is to be used, you can use a single
string instead of a tuple of strings.

65



The Canvas Rectangle Item

Methods

The following methods are used to create and configure rectangle items:

create_ rectangle

create_rectangle(xO0, y0, x1, y1, options...). Create a rectangle item between the given
coordinates. The rectangle item is created with the given options.

delete

delete(item). Delete a rectangle item.

coords

coords(item, x0, y0, x1, y1). Change the coordinates for one or more rectangle items. The
item argument can match one or more rectangle items, rectangles, or any other item taking
exactly four coordinates.

itemconfigure

itemconfigure(item, options...). Change the options for one or more rectangle items.

Options

The rectangle item supports the following options, via the create_rectangle method, and
the itemconfig and itemcget configuration methods.

Table 1.

Option Type Description

fill None The colour to use for the rectangle interior. If an
empty string is given, the interior is not drawn.
Default is empty (transparent).

outline None The colour to use for the outline. If an empty string
is given, the outline is not drawn. Default is "black".

stipple None The name of a bitmap which is used as a stipple
brush when filling the rectangle's interior. Typical
values are "grayl12", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

tags None One or more tags to associate with the rectangle. If
only asingle tag is to be used, you can use a single
string instead of a tuple of strings.

width distance The width of the rectangle's outline. Default is 1
pixel.

66



The Canvas Text Item

Methods

The following methods are used to create and configure text items:

create_text

create_text(x0, yO, options...). Create a text item at the given position, using the given
options. Note that the text string itself is given by the text option.

delete

delete(item). Delete a text item.

coords

coords(item, x0, y0). Move one or more text items.

itemconfigure

itemconfigure(item, options...). Change the options for one or more text (or other) items.

Options

The text item supports the following options, via the create_text method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option Type Description

anchor constant Specifies which part of the text (the text's bounding
box, more exactly) that should be placed at the
given position. Use one of N, NE, E, SE, S, SW, W,
NW, or CENTER. Default is CENTER.

fill colour The colour to use for the text. If an empty string is
given, the text is not drawn. Default is empty
(transparent).

font font

justify constant

stipple bitmap

tags tuple One or more tags to associate with the text. If only a
single tag is to be used, you can use a single string
instead of a tuple of strings.

text string The text string.

67




The Canvas Text Item

Option

Type

Description

width

distance

68



The Canvas Window ltem

Methods

The following methods are used to create and configurewindow items:

create_window

create_window(x0, yO, options...). Embed a window at the given position, using the given
options. Note that the widget to use is given by thewindow option.

delete

delete(item). Delete a window item.

coords

coords(item, x0, y0). Move one or more window items.

itemconfigure

itemconfigure(item, options...). Change the options for one or more window (or other)
items.

Options

The window item supports the following options, via thecreate_window method, and the
itemconfig and itemcget configuration methods.

Table 1.

Option Type Description

window window The widget to embed in the canvas.

anchor constant Specifies which part of the window that should be
placed at the given position. Use one of N, NE, E,
SE, S, SW, W, NW, or CENTER. Default is
CENTER.

height, width distance The height and width of the window. If omitted, the
height and width defaults to the actual window size.

tags tuple One or more tags to associate with the window. If
only asingle tag is to be used, you can use a single
string instead of a tuple of strings.

69



The Checkbutton Widget

The Checkbutton widget is a standard Tkinter widgets used to implement on-off selections.
Checkbuttons can contain text or images, and you can associate a Python function or
method with each button. When the button is pressed, Tkinter automatically calls that
function or method.

The button can only display text in a single font, but the text may span more than one line.
In addition, one of the characters can be underlined, for example to mark a keyboard
shortcut. By default, the Tab key can be used to move to a button widget.

Each Checkbutton widget should be associated with a variable.

Checkbutton Patterns

(Also see the Button patterns).

To use aCheckbutton, you must create a Tkinter variable:

var = IntVar()
¢ = Checkbutton(master, text="Expand", variable=var)

By default, the variable is set to 1 if the button is selected, and O otherwise. You can change
these values using theonvalue and offvalue options. The variable doesn't have to be an
integer variable:

var = StringVar()

¢ = Checkbutton(
master, text="Color image", variable=var,
onvalue="RGB", offvalue="L"

)

If you need to keep track of both the variable and the widget, you can simplify your code
somewhat by attaching the variable to the widget reference object.

v = IntVar()
¢ = Checkbutton(master, text="Don't show this again”, variable=v)
c.var=v

If your Tkinter code is already placed in a class (as it should be), it is probably cleaner to
store the variable in an attribute, and use a bound method as callback:

def __init__(self, master):
self.var = IntVar()
¢ = Checkbutton(master, text="Enable Tab",
variable=self.var, command=self.cb)
c.pack()

def cb(self, event):
print "variable is", self.var.get()

70



The Checkbutton Widget

Methods

The Checkbutton widgets support the standard Tkinter Widget interface, plus the following
methods:

deselect

deselect(). Deselect the button.

flash

flash(). Redraw the button several times, alternating between active and normal
appearance.

invoke

invoke(). Call the command associated with the button.

select

select(). Select the button.

toggle

toggle(). Toggle the selection state.

Options

The Checkbutton widgets support the following options:

Table 1.

Option Type Description

activebackgrou | color The color to use when the button is activated.

nd,

activeforegrou

nd

anchor constant Controls where in the button the text (or image)
should be located. Use one of N, NE, E, SE, S, SW,
W, NW, or CENTER. Default is CENTER. If you
change this, it is probably a good idea to add some
padding as well, using the padx and/or pady
options.

background, color The button color. The default is platform specific.

foreground

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all
platforms: "error", "gray75", "gray50", "gray25",
"grayl2", "hourglass", "info", "questhead",

71



The Checkbutton Widget

Option

Type

Description

"question”, and "warning".

&

The following additional bitmaps are available on

the Macintosh only: "document”, "stationery",

"edition", "application”, "accessory", "folder",

"pfolder”, "trash”, "floppy", "ramdisk", "cdrom"”,
"preferences”, "querydoc”, "stop", "note", and
“"caution”.

You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example

"@sample.xbm".

borderwidth
(bd)

int

The width of the button border. The default is
platform specific.

command

callback

A function or method that is called when the button
is pressed. The callback can be a function, bound
method, or any other callable Python object.

cursor

cursor

The cursor to show when the mouse is moved over
the button.

default

int

If set, the button is a default button. Tk will indicate
this by drawing a platform specific indicator
(usually an extra border). NOTE: The syntax has
changed in 8.0b2!!!

disabledforegr
ound

color

The color to use when the button is disabled. The
background is shown in thebackground color.

font

font

The font to use in the button. The button can only
contain text in a single font.

highlightbackg
round,
highlightcolor

color

Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in
the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn
ess

distance

Controls the width of the focus highlight border.
Default is typically one or two pixels.

image

image

The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

indicatoron

bool

Controls if the indicator should be drawn or not.
This is on by default.

Setting this option to false means that the relief will
be used as the indicator. If the button is selected, it
is drawn as SUNKEN instead of RAISED.

justify

constant

Defines how to align multiple lines of text. Use

72



The Checkbutton Widget

Option

Type

Description

LEFT, RIGHT, or CENTER.

offvalue,
onvalue

value

The values corresponding to a non-checked or
checked button, respectively. Defaults are O and 1.

padx, paxy

distance

Button padding. These options specify the
horizontal and vertical padding between the text or
image, and the button border.

relief

constant

Border decoration. This is usually FLAT for
checkbuttons, unless they use the border as
indicator (via the indicatoron option).

selectcolor

color

Color to use for the selector.

selectimage

image

Graphic image to use for the selector.

state

constant

The button state: NORMAL, ACTIVE or DISABLED.
Default is NORMAL.

takefocus

flag

Indicates that the user can use the Tab key to move
to this button. Default is an empty string, which
means that the button accepts focus only if it has
any keyboard bindings (defaultis on, in other
words).

text

string

The text to display in the button. The text can
contain newlines. If thebitmap or image options
are used, this option is ignored.

textvariable

variable

Associates a Tkinter variable (usually a StringVar)
to the button. If the variable is changed, the button
text is updated.

Also see thevariable option.

underline

int

Defaultis -1.

variable

variable

Associates a Tkinter variable to the button. When
the button is pressed, the variable is toggled
between offvalue and onvalue. Explicit changes to
the variable are automatically reflected by the
buttons.

width, height

distance

The size of the button. If the button displays text,
the size is given in text units. If the button displays
an image, the size is given in pixels (or screen
units). If the size is omitted, it is calculated based on
the button contents.

wraplength

distance

Determines when a button's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

73



The Entry Widget

The Entry widget is a standard Tkinter widget used to enter or display a single line of text.

Concepts

Indexes

The Entry widget allows you to specify character positions in a number of ways:
« Numerical indexes

« ANCHOR

- END

» INSERT

« Mouse coordinates

Numerical indexes work just like Python list indexes. The characters in the string are
numbered from 0 and upwards. You specify ranges just like you slice lists in Python; for
example, (0, 5) corresponds to the first five characters in the entry widget.

ANCHOR (or "anchor") corresponds to the start of the selection, if any. You can use the
select_from method to change this from the program.

END (or "end") corresponds to the position just after the last character in the entry widget.
The range (0, END) corresponds to all characters in the widget.

INSERT (or "insert™) corresponds to the current position of the text cursor. You can use the
icursor method to change this from the program.

Finally, you can use the mouse position for the index, using the following syntax:
u@%dn % X

where x is given in pixels relative to the left edge of the entry widget.
Patterns

Methods

The Entry widget support the standard Tkinter Widget interface, plus the following
methods:

insert

insert(index, text). Insert text at the given index. Use insert(INSERT, text) to insert text at
the cursor, insert(END, text) to append text to the widget.

delete

delete(index), delete(from, to). Delete the character at index, or within the given range.
Use delete(0, END) to delete all text in the widget.

74



The Entry Widget

icursor

icursor(index). Move the insertion cursor to the given index. This also sets the INSERT
index.

get

get(). Get the current contents of the entry field.

index

index(index). Return the numerical position corresponding to the given index.
Selection Methods

selection_adjust

selection_adjust(index), select_adjust(index). Adjust the selection to include also the
given character. If index is already selected, do nothing.

selection_clear

selection_clear(), select_clear(). Clear the selection.

selection_from
selection_from(index), select_from(index). Starts a new selection. This also sets the
ANCHOR index.

selection_present
selection_present(), select_present(). Returns true (non-zero) if some part of the text is
selected.

selection_range

selection_range(start, end), select_range(start, end). Explicitly set the selection. Start
must be smaller than end. Use selection_range(0, END) to select all text in the widget.

selection_to
selection_to(index), select_to(index). Select all text between ANCHOR and the given
index.

Scrolling Methods

These methods are used to scroll the entry widget in various ways. The scan methods can
be used to implement fast mouse panning operations (they are bound to the middle mouse
button, if available), while thexview method is used with a standard scrollbar widget.

75



The Entry Widget

scan_mark, scan_dragto

scan_mark(x), scan_dragto(x). scan_mark sets the scanning anchor for fast horizontal
scrolling to the given mouse coordinate. scan_dragto scrolls the widget contents sideways
according to the given mouse coordinate. The text is moved 10 times the distance between
the scanning anchor and the new position.

Xview

xview(index). Make sure the given index is visible. The widget is scrolled if necessary.

Xview_moveto

xview_moveto(fraction).

xview _scroll

xview_scroll(number, what).

Options

The Entry widget support the following options:

Table 1.

Option Type Description

background color Widget background.

(bg)

borderwidth distance Border width.

(bd)

cursor cursor Widget cursor. The default is a text insertion cursor
(typically an "I beam" cursor, e.g.xterm).

exportselection | flag If true, selected text is automatically exported to the
clipboard. Default is true.

font font Widget font. The default is system specific.

foreground color Textcolor.

(fg)

highlightbackg | color Controls how to draw the focus highlight border.

round, When the widget has focus, the border is drawn in

highlightcolor the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn | distance Controls the width of the focus highlight border.

ess Default is typically one or two pixels.

insertbackgrou | color Color used for the insertion cursor.

nd

76



The Entry Widget

Option Type Description

insertborderwi | color

dth

insertofftime, int Controls cursor blinking.

insertontime

insertwidth int Width of the insertion cursor.

justify const

relief const Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE,
and RIDGE.

selectbackgrou | color Selection background color. The default is system

nd and display specific.

selectborderwi | int Selection border width. The default is system

dth specific.

selectforegrou | color Selection text color. The default is system and

nd display specific.

show character Controls how to display the contents of the widget.
If non-empty, the widget displays a string of
characters instead of the actual contents. To geta
password entry widget, use "*".

state const One of NORMAL or DISABLED. Default is
NORMAL. Note that if you set this to DISABLED,
calls to insert or delete are ignored.

takefocus flag Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the canvas accepts focus only if it has
any keyboard bindings (default is on, in other
words).

textvariable variable

width int

xscrollicomman | callback

d

77




The Font Class
Patterns

Methods

copy

copy(). Return a distinct copy of the current font.

actual

actual(), actual(option). Return actual font attributes. If no option is given, returns all
actual font attribtues as a dictionary.

cget

cget(option). Get configured font attribute.

config, configure
config(), configure(). Get full set of configured font attributes as a dictionary.

config(options), configure(options...). Modify one or more font attributes.

measure

measure(text). Return text width.

metrics

metrics(), metrics(options...). Return one or more font metrics. If no arguments are given,
all metrics are returned as a dictionary.

For best performance, make sure that this font is in use before calling this method. If
necessary, you can create a dummy widget using the font.

Functions

families

families(). Get a list of available font families.

names

names(). Get a list of the names of names of all user-defined fonts.

78



The Font Class

Options
The constructor and theconfig method supports the following options.
Table 1.

Option Type Description

font font Font specifier (name, system font, or (family, size,
style)-tuple). If you use this option,

family string Font family.

size integer Font size in points. To give the size in pixels, use a
negative value.

weight constant Font thickness. Use one of NORMAL or BOLD.
Default is NORMAL.
Note that these constants are defined in the tkFont
module.

slant constant Fontslant. Use one of NORMAL or ITALIC. Default
is NORMAL.
Note that these constants are defined in the tkFont
module.

underline flag Font underlining. If 1 (true), the font is underlined.
Default is O (false).

overstrike flag Font strikeout. If 1 (true), a line is drawn over text
written with this font. Default is O (false).

79



The Frame Widget

A frame is rectangular region on the screen. The frame widget is mainly used as a geometry
master for other widgets, or to provide padding between other widgets.

Patterns

The frame widget can be used as a place holder for video overlays and other external

processes

To use a frame widget in this fashion, set the background color to an empty string (this
prevents updates, and leaves the color map alone), pack it as usual, and use thewindow__id
method to get the window handle corresponding to the frame.

frame = Frame(width=768, height=576, bg="", colormap="new")

frame.pack()

video.attach_window(frame.window_id())

Methods

Except for the standard widget interface (config, etc), the Frame widget has no methods.

Options

The Frame widget supports the following options:

Table 1.

Option

Type

Description

height, width

distance

Frame size.

background
(bg)

color

The background color to use in this frame. This
defaults to the application background color. To
prevent updates, set the color to an empty string.

colormap

window

Some displays support only 256 colors (some use
even less). Such displays usually provide a color
map to specify which 256 colors to use. This option
allows you to specify which color map to use for this
frame, and its child widgets.

By default, a new frame uses the same color map as
its parent. Using this option, you can reuse the color
map of another window instead (this window must
be on the same screen and have the same visual
characteristics). You can also use the value "new" to
allocate a new color map for this frame.

You cannot change this option once you've created
the frame.

cursor

cursor

The cursor to show when the mouse pointer is
placed over the button widget. Default is a system

80



The Frame Widget

Option Type Description
specific arrow cursor.

relief constant Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE,
and RIDGE.
Note that to show the border, you need to change
the borderwidth from it's default value of O.

borderwidth distance Border width. Defaults to O (no border).

(bd)

takefocus flag Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the frame accepts focus only if it has any
keyboard bindings (default is off, in other words).

highlightbackg | color Controls how to draw the focus highlight border.

round, When any child to the frame has focus, the border is

highlightcolor drawn in thehighlightcolor color. Otherwise, it is
drawn in thehighlightbackground color. The
defaults are system specific.

highlightthickn | distance Controls the width of the focus highlight border.

ess

Default is O (no border).

8l



The Grid Geometry Manager

The Grid geometry manager puts the widgets in a 2-dimensional table. The master widget
is splitinto a number of rows and columns, and each "cell" in the resulting table can hold a
widget.

When to use the Grid Manager

The grid manager is the most flexible of the geometry managers in Tkinter. If you don't
want to learn how and when to use all three managers, you should at least make sure to
learn this one.

The grid manager is especially convenient to use when designing dialog boxes. If you're
using the packer for that purpose today, you'll be surprised how much easier it is to use the
grid manager instead. Instead of using lots of extra frames to get the packing to work, you
can in most cases simply pour all the widgets into a single container widget (I tend to use
two; one for the dialog body, and one for the button box at the bottom), and use the grid
manager to get them all where you want them.

Consider the following example:

Figure 1.

<label 1=|<entry 2=

<image=

<label 1= |<entry 2

zcheckbutton:= <hutton 1=]<button 2=

Creating this layout using the pack manager is possible, but it takes a number of extra
frame widgets, and a lot of work to make things look good. If you use the grid manager
instead, you only need one call per widget to get everything laid out properly (see next
section for the code needed to create this layout).

WARNING: Never mix grid and pack in the same master window. Tkinter will happily
spend the rest of your lifetime trying to negotiate a solution that both managers are happy
with. Instead of waiting, kill the application, and take another look at your code. Acommon
mistake is to use the wrong parent for some of the widgets.

Patterns

Using the grid manager is easy. Just create the widgets, and use the grid method to tell the
manager in which row and column to place them. You don't have to specify the size of the
grid beforehand; the manager automatically determines that from the widgets in it.

Label(master, text="First").grid(row=0)
Label(master, text="Second").grid(row=1)

el = Entry(master)
e2 = Entry(master)

82



The Grid Geometry Manager
el.grid(row=0, column=1)
e2.grid(row=1, column=1)

Note that the column number defaults to O if not given.

Running the above example produces the following window:

Figure 2. Figure: simple grid example

Firzt: I

Second: I

Empty rows and columns are ignored. The result would have been the same if you had
placed the widgets in row 10 and 20 instead.

Note that the widgets are centered in their cells. You can use the sticky option to change
this; this option takes one or more values from the set N, S, E, W. To align the labels to the
left border, you could use W (west):

Label(master, text="First™).grid(row=0, sticky=W)
Label(master, text="Second").grid(row=1, sticky=W)

el = Entry(master)
e2 = Entry(master)

el.grid(row=0, column=1)
e2.grid(row=1, column=1)

Figure 3. Figure: using the sticky option

First: I

Second: I

You can also have the widgets span more than one cell. Thecolumnspan option is used to
let a widget span more than one column, and the rowspan option lets it span more than
one row. The following code creates the layout shown in the previous section:

labell.grid(sticky=E)
label2.grid(sticky=E)

entryl.grid(row=0, column=1)
entry2.grid(row=1, column=1)

checkbutton.grid(columnspan=2, sticky=W)

image.grid(row=0, column=2, columnspan=2, rowspan=2,
sticky=W+E+N+S, padx=5, pady=5)

buttonl.grid(row=2, column=2)
button2.grid(row=2, column=3)

83



The Grid Geometry Manager

There are plenty of things to note in this example. First, no position is specified for the
label widgets. In this case, the column defaults to 0, and the row to the first unused row in
the grid. Next, the entry widgets are positioned as usual, but the checkbutton widget is
placed on the next empty row (row 2, in this case), and is configured to span two columns.
The resulting cell will be as wide as the label and entry columns combined. The image
widget is configured to span both columns and rows at the same time. The buttons, finally,
is packed each in a single cell:

Figure 4. Figure: using column and row spans

tk Hi=] E3

Height: |
it C%

[ Preserve aspect Z000 in

Zoom out

Widget Methods

The following methods are available on widgets managed by the grid manager:

grid

grid(option=value, ...), grid_configure(option=value, ...). Place the widget in a grid as
described by the options (see below).

grid_forget

grid_forget(). Remove the widget. The widget is not destroyed, and can be displayed again
by grid or any other manager.

grid_info

grid_info(). Return a dictionary containing the current options.

grid_remove

grid_remove(). Remove the widget. The widget is not destroyed, and can be displayed
again by grid or any other manager.

Manager Methods

The following methods are available on widgets that are used as grid managers (that is, the
geometry masters for widgets managed by the grid manager).

columnconfigure, rowconfigure

columnconfigure(column, option=value, ...), rowconfigure(row, option=value, ...). Set
options for the given column (or row).

84



The Grid Geometry Manager

To change this for a given widget, you have to call this method on the widget's parent.

Table 1.

Option Type Description

minsize integer Defines the minimum size for the column (row).
Note that if a column or row is completely empty, it
will not be displayed, even if this option is set.

pad integer Padding to add to the size of the largest widget in
the column (row) when setting the size of the whole
column.

weight integer A relative weight used to distribute additional space
between columns (rows). A column with the weight
2 will grow twice as fast as a column with weight 1.
The default is O, which means that the column will
not grow at all.

grid_location

grid_location(x, y). Returns the grid cell under (or closest to) the given pixel coordinate.
The resultis a 2-tuple: (column, row).

grid_propagate

grid_propagate().

grid_size

grid_size(). Returns the current grid size. This is defined as indexes of the first empty
column and row in the grid, in that order. The result is a 2-tuple: (column, row).

grid_slaves

grid_slaves(). Returns a list of the "slave" widgets managed by this widget. The widgets are
returned as Tkinter widget references.

Options

The following options can be used with the grid and grid__configure methods:

Table 2.

Option Type Description

column integer Insert the widget at this column. Column numbers
start with O. If omitted, defaults to O.

columnspan integer If given, indicates that the widget cell should span
more than one column.

in (in_) widget Place widget inside to the given widget. You can
only place a widget inside its parent, or in any

85



The Grid Geometry Manager

Option

Type

Description

decendant of its parent. If this option is not given, it
defaults to the parent.

Note thatin is a reserved word in Python. To use it
as a keyword option, append an underscore (in_).

ipadx, ipady

distance

Optional internal padding. Works like padx and
pady, but the padding is added inside the widget
borders. Defaultis O.

padx, pady

distance

Optional padding to place around the widget in a
cell. Default is O.

row

integer

Insert the widget at this row. Row numbers start
with 0. If omitted, defaults to the first empty row in
the grid.

rowspan

integer

If given, indicates that the widget cell should span
more than one row.

sticky

constant

Defines how to expand the widget if the resulting
cell is larger than the widget itself. This can be any
combination of the constants S, N, E, and W, or
NW, NE, SW, and SE. For example, W (west) means
that the widget should be aligned to the left cell
border. W+E means that the widget should be
stretched horizontally to fill the whole cell.
W+E+N+S means that the widget should be
expanded in both directions. Default is to center the
widget in the cell.

86



The Label Widget

The Labelwidget is a standard Tkinter widget used to display a text or image on the screen.
The button can only display text in a single font, but the text may span more than one line.
In addition, one of the characters can be underlined, for example to mark a keyboard
shortcut.

Patterns

To use a label, you just have to specify what to display in it (this can be text, a bitmap, or an
image):

w = Label(master, text="Hello, world!")

If you don't specify a size, the label is made just large enough to hold its contents. You can
also use theheight and width options to explicitly set the size. If you display text in the
label, these options define the size of the label in text units. If you display bitmaps or
images instead, they define the size in pixels (or other screen units). See the Button
description for an example how to specify the size in pixels also for text labels.

You can specify which color to use for the label with the foreground (or fg) and
background (or bg) options. You can also choose which font to use in the label (the
following example uses Tk 8.0 font descriptors). Use colors and fonts sparingly; unless you
have a good reason to do otherwise, you should stick to the default values.

w = Label(master, text="Rouge", fg="red")
w = Label(master, text="Helvetica", font=("Helvetica", 16))

Labels can display multiple lines of text. You can use newlines or use thewraplength

option to make the label wrap text by itself. When wrapping text, you might wish to use the
anchor and justify options to make things look exactly as you wish. An example:

w = Label(master, text=longtext, anchor=W, justify=LEFT)

You can associate a variable with the label. When the contents of the variable changes, the
label is automatically updated:

v = StringVar()
Label(master, textvariable=v).pack()
v.set("New Text!")

Methods

The Label widget supports the standard Tkinter Widget interface. There are no additional
methods.

Options

The following options can be used for the Label widget.

87



Table 1.

The Label Widget

Option

Type

Description

text

string

The text to display in the label. The text can contain
newlines. If the bitmap or image options are used,
this option isignored.

bitmap

bitmap

The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all

platforms: "error", "gray75", "gray50", "gray25",

"grayl2", "hourglass", "info", "questhead",
"question”, and "warning".

&

The following additional bitmaps are available on

the Macintosh only: "document”, "stationery",

"edition", "application”, "accessory", "folder",

"pfolder”, "trash”, "floppy", "ramdisk", "cdrom"”,
"preferences”, "querydoc", "stop", "note"”, and
"caution”.

You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example

"@sample.xbm".

AT

i

image

image

The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

width, height

int

The size of the label. If the label displays text, the
size is given in text units. If the label displays an
image, the size is given in pixels (or screen units). If
the size is omitted, it is calculated based on the label
contents.

relief

constant

Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE,
and RIDGE.

Note that to show the border, you need to change
the borderwidth from it's default value of O.

borderwidth

dimension

The width of the label border. The default is O (no
border).

background

(bg),
foreground

(fo)

color

The label color (the foreground value is used for text
and bitmap labels only). The default is platform
specific.

font

font

The font to use in the label. The label can only
contain text in a single font.

justify

constant

Defines how to align multiple lines of text. Use
LEFT, RIGHT, or CENTER.

88



The Label Widget

Option Type Description

anchor constant Controls where in the label the text (or image)
should be located. Use one of N, NE, E, SE, S, SW,
W, NW, or CENTER. Default is CENTER.

wraplength distance Determines when a label's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

textvariable variable Associates a Tkinter variable (usually a StringVar)
to the label. If the variable is changed, the label text
is updated.

underline int Default is -1.

cursor cursor The cursor to show when the mouse is moved over
the label.

89



The Listbox Widget

The Listbox widget is a standard Tkinter widget used to display a list of alternatives. The
listbox can only contain text items, and all items must have the same font and color.
Depending on the widget configuration, the user can choose one or more alternatives from
the list.

Patterns

When you first create the listbox, it is empty. The first thing to do is usually to insert one or
more lines of text. The insert method takes an index and a string to insert. The index is
usually an item number (O for the first item in the list), but you can also use some special
indexes, including ACTIVE, which refers to the "active" item (set when you click on an
item, or by the arrow keys), and END, which is used to append items to the list.

listbox = Listbox(master)
listbox.insert(END, "a list entry")

for item in ["one”, "two", "three", “four"]:
listbox.insert(END, item)

To remove items from the list, use the delete method. The most common operation is to
delete all items in the list (something you often need to do when updating the list).

listbox.delete(0, END)
listbox.insert(END, newitem)

You can also delete individual items. In the following example, a separate button is used to
delete the ACTIVEitem from a list.

Ib = Listbox(master)
b = Button(master, text="Delete",
command=lambda Ib=Ib: Ib.delete(ANCHORY))

The listbox offers four different selection modes through the selectmode option. These are
SINGLE (just a single choice), BROWSE (same, but the selection can be moved using the
mouse), MULTIPLE (multiple item can be choosen, by clicking at them one at a time), or
EXTENDED (multiple ranges of items can be chosen, using the Shift and Control keyboard
modifiers). The default is BROWSE. Use MULTIPLEto get “"checklist" behaviour, and
EXTENDED when the user would usually pick only one item, but sometimes would like to
select one or more ranges of items.

Ib = Listbox(selectmode=EXTENDED)

To query the selection, use curselection method. It returns a list of item indexes, but a bug

in Tkinter 1.101 (Python 1.5.1) and earlier versions causes this list to be returned as a list of
strings, instead of integers. This will most likely be fixed in later versions of Tkinter, so you
should make sure that your code is written to handle either case. Here's one way to do that:

items = list.curselection()
try:

90



The Listbox Widget

items = map(string.atoi, items)
except ValueError: pass

In Python 1.5 and later, you can use the builtin int function instead of string.atoi, but that's
actually slightly slower.

Use the get method to get the list item corresponding to a given index.

You can also use a listbox to represent arbitrary Python objects. In the next example, we
assume that the input data is represented as a list of tuples, where the first item in each
tuple is the string to display in the list. For example, you could display a dictionary by using
the items method to get such a list.

self.lb.delete(0, END) # clear
for key, value in data:

self.lb.insert(END, key)
self.data = data

When querying the list, simply fetch the items indexed by the selection list:

items = self.lb.curselection()
try:
items = map(string.atoi, items)
except ValueError: pass
items = map(lambda i,d=self.data: d[i], items)

Unfortunately, the listbox doesn't provide acommand option allowing you to track changes
to the selection. The standard solution is to bind adouble-click event to the same callback
as the OK (or Select, or whatever) button. This allows the user to either select an alternative
as usual, and click OK to carry out the operation, or to select and carry out the operation in
one go by double-clicking on an alternative. This solution works best in BROWSE and
EXTENDED modes.

Ib.bind("<Double-Button-1>", self.ok)

If you wish to track arbitrary changes to the selection, you can either rebind the whole
bunch of selection related events (see the Tk manual pages for a complete list of Listbox
event bindings), or, much easier, poll the list using a timer:

def __init__ (self, master):
self.list = Listbox(selectmode=EXTENDED)
self.list.pack()
self.current = None
self.poll() # start polling the list

def poll(self):
now = self.list.curselection()
if now != self.current:
self.list_has_changed(now)
self.current = now
self.after(250, self.poll)

By default, the selection is exported via the X selection mechanism (or the clipboard, on
Windows). If you have more than one listbox on the screen, this really messes things up for
the poor user. If she selects something in one listbox, and then selects something in
another, the original selection disappears. It is usually a good idea to disable this

91



The Listbox Widget

mechanism in such cases. In the following example, three listboxes are used in the same
dialog:

bl = Listbox(exportselection=0)
for item in families:
bl.insert(END, item)

b2 = Listbox(exportselection=0)
for item in fonts:
b2.insert(END, item)

b3 = Listbox(exportselection=0)
for item in styles:
b3.insert(END, item)

The listbox itself doesn't include a scrollbar. Attaching a scrollbar is pretty straightforward.
Simply set the xscrollcommand and yscrollcommand options of the listbox to the set
method of the corresponding scrollbar, and thecommand options of the scrollbars to the
corresponding xview and yview methods in the listbox. Also remember to pack the
scrollbars before the listbox. In the following example, only a vertical scrollbar is used. For
more examples, see pattern section in the Scrollbar description.

frame = Frame(master)

scrollbar = Scrollbar(frame, orient=VERTICAL)

listbox = Listbox(frame, yscrollcommand=scrollbar.set)
scrollbar.config(command=listbox.yview)
scrollbar.pack(side=RIGHT, fill=Y)
listbox.pack(side=LEFT, fill=BOTH, expand=1)

With some more trickery, you can use a single vertical scrollbar to scroll several lists in
parallel. This assumes that all lists have the same number of items. Also note how the
widgets are packed in the following example.

def __init__ (self, master):
scrollbar = Scrollbar(master, orient=VERTICAL)
self.b1l = Listbox(master, yscrollcommand=scrollbar.set)
self.b2 = Listbox(master, yscrollcommand=scrollbar.set)
scrollbar.config(command=self.yview)
scrollbar.pack(side=RIGHT, fill=Y)
self.bl.pack(side=LEFT, fil=BOTH, expand=1)
self.b2.pack(side=LEFT, fil=BOTH, expand=1)

def yview(self, *args):

apply(self.b1l.yview, args)
apply(self.b2.yview, args)

Methods

The Listbox widget supports the standard Tkinter Widget interface, plus the following
methods:

activate

activate(index). Activate the given index (it will be marked with an underline). The active
item can be refered to using the ACTIVEindex.

92



The Listbox Widget

bbox

bbox(index). Get the bounding box of the given item text. The bounding box is returned as
a 4-tuple giving (xoffset, yoffset, width, height). If the item is not visible, this method
returns None.

curselection

curselection(). Get a list of the currently selected alternatives. The list contains the indexes
of the selected alternatives (beginning with O for the first alternative in the list). In Tkinter
1.101 (Python 1.5.1), the list contains strings instead of integers. Since this may change in
future versions, you should make sure your code can handle either case. See the patterns
section for a suggested solution.

delete

delete(index), delete(first, last). Delete one or more items. Use delete(0, END) to delete all
items in the list.

get
get(index), get(first, last). Get one or more items from the list. This function returns the
string corresponding to the given index (or the strings in the given index range). Use get(O,
END) to get a list of all items in the list. Use ACTIVEto get the active (underlined) item.
Index
index(index). Return the numerical index (O to size()-1) corresponding to the given index.
This is typicallyACTIVE, but can also be ANCHOR, or a string having the form "@x,y"
where x and y are widget-relative pixel coordinates.
insert
insert(index, items). Insert one or more items at given index (this works as for Python
lists; index O is before the first item). Use END to append items to the list. Use ACTIVEto
insert items before the the active (underlined) item.
nearest
nearest(y). Return the index nearest to the given coordinate (a widget-relative pixel
coordinate).
see
see(index). Make sure the given list index is visible. You can use an integer index, or END.
size

size(). Return the number of items in the list. The valid index range goes from O to size()-1.

Selection Methods

The following methods are used to manipulate the listbox selection.

93



The Listbox Widget

select_adjust

select_adjust(index). Extend the selection to include the given index.

select _anchor

select_anchor(index). Set the selection anchor to the given index. The anchor can be
refered to using the ANCHOR index.

select_clear

select_clear(). Clear the selection.

select_includes

select_includes(index). Returns true if the given item is selected.

select_set

select_set(index), select_set(first, last). Add one or more items to the selection.

Scrolling Methods

These methods are used to scroll the listbox widget in various ways. The scan methods can
be used to implement fast mouse scrolling operations (they are bound to the middle mouse
button, if available), while theyview method is used with a standard scrollbar widget.

scan_mark, scan_dragto

scan_mark(x, y), scan_dragto(x, y). scan_mark sets the scanning anchor for fast

horizontal scrolling to the given mouse coordinate. scan_dragto scrolls the widget contents
according to the given mouse coordinate. The text is moved 10 times the distance between
the scanning anchor and the new position.

xXview, yview

xview(), yview(). Determine which part of the full list that is visible in the horizontal
(vertical) direction. This is given as the offset and size of the visible part, given in relation
to the full size of the list (1.0 is the full list). These methods are used by the Scrollbar
bindings.

Xview, yview

xview(column), yview(index). Adjust the list so that the given character column (list item)
is at the left (top) edge of the listbox. To make sure that a given item is visible, use the see
method instead.

Xview, yview

xview(MOVETO, offset), yview(MOVETO, offset). Adjust the list so that the given offset is
at the left (top) edge of the listbox. Offset 0.0 is the beginning of the list, 1.0 the end. These
methods are used by the Scrollbar bindings when the user drags the scrollbar slider.

94



The Listbox Widget

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use the
string "moveto" instead.

Xview, yview

xview(SCROLL, step, what), yview(SCROLL, step, what). Scroll the list horizontally
(vertically) by the given amount. The what argument can be either UNITS (lines) or
PAGES. These methods are used by the Scrollbar bindings when the user clicks on a
scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the
strings "scroll", "units", and "pages" instead.

Options

The Listbox widget supports the following options:

Table 1.

Option Type Description

background, color The listbox color. The default is platform specific.

foreground

cursor cursor The cursor to show when the mouse is placed over
the listbox.

exportselection | bool If set, the list selection is automatically exported via
the X selection mechanism. The defaultis on. If you
have more than one list in the same dialog, it is
probably best to disable this mechanism.

font font The font to use in the listbox. The listbox can only
contain text in a single font.

relief constant Border decoration. The default is SUNKEN. Other
possible values are FLAT, RAISED, GROOVE, and
RIDGE.

borderwidth distance The width of the listbox border. The default is

(bd) platform specific, butis usually 1 or 2 pixels.

selectbackgrou | color Selection color settings.

nd,

selectforegrou

nd

selectborderwi | dimension Selection border width. The selection is always

dth raised.

selectmode constant Selection mode. One of SINGLE, BROWSE,
MULTIPLE, or EXTENDED. Default is BROWSE.
Use MULTIPLE to get checklist behaviour,
EXTENDED if the user usually selects one item, but
sometimes would like to select one or more ranges
of items. See the patterns section for more

95



The Listbox Widget

Option Type Description
information.

setgrid bool

takefocus bool Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the listbox accepts focus only if it has
any keyboard bindings (defaultis on, in other
words).

width, height distance The size of the listbox, in text units.

xscrollcomman | command Used to connect a listbox to a scrollbar. These

d,
yscrollcomman
d

options should be set to the set methods of the
corresponding scrollbars.

96



The Menu Widget
Patterns

Methods

add

add(itemType, options...).

Table 1.
Option Type Description
activebackgrou | color
nd
activeforegrou | color
nd
accelerator string
background color
bitmap bitmap
columnbreak flag
command callback
font font
foreground color
hidemargin flag
image image
indicatoron flag
label string
menu widget
offvalue value
onvalue value
selectcolor color
selectimage image
state constant
underline integer
value value

97




The Menu Widget

variable

variable

add_cascade

add_cascade(options...).

add_checkbutton

add_checkbutton(options...).

add_command

add_command(options...).

add_radiobutton

add_radiobutton(options...).

add_separator

add_separator(options...).

delete

delete(index), delete(start, stop).

entryconfig

entryconfig(index, options...).

entryconfigure

entryconfigure(index, options...).

index

index(index).

insert

insert(index, itemType, options...).

iInsert_cascade

insert_cascade(index, options...).

insert_checkbutton

insert_checkbutton(index, options...).

insert_command

insert_command(index, options...).

98



insert_radiobutton

insert_radiobutton(index, options...).

Insert_separator

insert_separator(index, options...).

invoke

invoke(index).
post
post(X, y).

unpost

unpost().

yposition

yposition(index).

Helpers

The Menu Widget

The following methods are only relevant if you're implementing your own keyboard
bindings. They are not documented in this version of the Tkinter overview.

tk_bindForTraversal().

tk_firstMenu().

tk_getMenuButtons().

tk_invokeMenu().

tk_mbButtonDown().

tk_mbPost().
tk_mbUnpost().

tk_nextMenu(count).

tk_nextMenuEntry(count).

tk_popup(x, y, entry=").

tk_traverseToMenu(char).

tk_traverseWithinMenu(char).

Options

Table 2.

Option

Type

Description

activebackgrou

color

99



The Menu Widget

Option Type Description

nd

activeborderwi | distance
dth

activeforegrou | color

nd

background color

(bg)

borderwidth distance

(bd)

cursor cursor The cursor to show when the mouse pointer is

placed over the button widget. Default is a system
specific arrow cursor.

disabledforegr | color

ound

font font

foreground color

(fg)

postcommand | callback

relief constant Border decoration. The default is RAISED. Other
possible values are FLAT, SUNKEN, GROOVE, and
RIDGE.

selectcolor color

takefocus flag Indicates that the user can use the Tab key to move

to this widget. Default is an empty string, which
means that the menu accepts focus only if it has any
keyboard bindings (default is on, in other words).

tearoff flag

tearoffcomman | callback

d
title string
type constant

100



The Menubutton Widget

Patterns
Methods

Options

101



The Message Widget
Patterns

Methods

The Message widget supports the standard Tkinter Widget interface. There are no
additional methods.

Options
The Message widget support the following options:
Table 1.

Option Type Description

anchor constant

aspect value

background color

(bg)

cursor cursor The cursor to show when the mouse pointer is
placed over the message widget. Default is a system
specific arrow cursor.

font font

foreground color

(fo)

highlightbackg | color Controls how to draw the focus highlight border.

round, When the widget has focus, the border is drawn in

highlightcolor the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn | distance Controls the width of the focus highlight border.

ess Default is O (no border).

justify constant

padx, pady distance

relief constant Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE,
and RIDGE.
Note that to show the border, you need to change
the borderwidth from it's default value of 0.

borderwidth distance Border width. The default is O (no border).

102




The Message Widget

Option Type Description

(bd)

takefocus flag Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the message accepts focus only if it has
any keyboard bindings (default is off, in other
words).

text string

textvariable variable

width distance

103



The Pack Geometry Manager

The Pack geometry manager packs widgets in rows or columns. You can use options like
fill, expand, and side to control this geometry manager.

When to use the Pack Manager

To be added.

Warning

Don't mix grid and pack in the same master window. Tkinter will happily spend the rest of
your lifetime trying to negotiate a solution that both managers are happy with. Instead of
waiting, kill the application, and take another look at your code. A common mistake is to
use the wrong parent for some of the widgets.

Patterns

To be added.

Methods

The following methods are available on widgets managed by the pack manager:

Widget Methods

The following methods are available on widgets managed by the pack manager:

pack

pack(option=value, ...), pack_configure(option=value, ...). Pack the widget as described
by the options (see below).

pack forget

pack_forget(). Remove the widget. The widget is not destroyed, and can be displayed again
by packor any other manager.

pack _info()

pack_info(). Return a dictionary containing the current options.

Manager Methods

The following methods are available on widgets that are used as pack managers (that is, the
geometry masters for widgets managed by the pack manager).

104



The Pack Geometry Manager

pack propagate()

pack_propagate().

pack_slaves()

pack_slaves(). Returns a list of the "slave"” widgets managed by this widget. The widgets
are returned as Tkinter widget references.

Options
The following options can be used with the pack and pack_configure methods:

Table 1.

Option Type Description

side constant Specifies which side to pack the widget against. To
pack widgets vertically, use TOP (default). To pack
widgets horizontally, use LEFT.

You can also pack widgets along the BOTTOM and
RIGHT edges. You can mix sides in a single
geometry manager, but the results may not be what
you expect. While you can create pretty complicated
layouts by nesting Frame widgets, you may prefer
using the grid geometry manager for all non-trivial
layouts.

fill constant Specifies whether the widget should occupy all the
space given to it by the master. If NONE (default),
keep the widget's original size. If X (horizontally),Y
(vertically), or BOTH, fill the given space along that
direction.

To make a widget fill the entire master widget, set
fill to BOTHand expand to a non-zero value.

expand flag Specifies whether the widgets should be expanded
to fill any extra space in the geometry master. If
zero (default), the widget is not expanded.

in (in_) widget Pack widget inside the given widget. You can only
pack a widget inside its parent, or in any decendant
of its parent. This option should usually be left out,
in which case the widget is packed inside its parent.
Note thatin is a reserved word in Python. To use it
as a keyword option, append an underscore (in_).

105



The Photolmage Class

Patterns

Methods

configure

cget

configure(options), config(options). Change one or more configuration options.

cget(option). Return the value of the given configuration option.

width, height

type

get

put

read

write

width(), height(). Returns the width (height) of the image, in pixels.

type(). Returns the string "photo".

get(x, y). Fetch the pixel at the given position (where (0, 0) is in the upper left corner).

As of Python 1.5.2, this method returns a string containing one or three pixel components.
Here's how to convert this string to either an integer or a 3-tuple of integers:

optionvalue = im.get(x, y)
if type(value) == type("):
try:
value = int(value)
except ValueError:
value = tuple(map(int, string.split(value)))

put(data), put(data, bbox). Write pixel data to the image.

read(). Not supported in 1.5.2 or earlier.

write(filename, options). Save the contents of the Photolmage to a file using the given
format. The following options can be used:

106



The Photolmage Class

Table 1.
Option Type Description
format string Specifies the format handler to use when writing
this image. This is typically "gif" or "ppm"
from_coords tuple Save only a part of the image. If a 2-tuple is given,
write saves the rectangle between that position, and
the lower right corner of the image. If a 4-tuple is
given, it specifies which rectangle to save.
blank
blank(). Clears the image. The size is left as it is, but the contents are made completely
transparent.
copy
copy(). Duplicate the current Photolmage instance.
Z00m
zoom(xscale, yscale), zoom(scale). Resize the image to (xscale*width, yscale*height)
pixels, using nearest neighbour resampling. In other words, each pixel in the source image
will be expanded to xscale*yscale pixels. If only one scale is given, it is used for both
directions.
subsample

subsample(xscale, yscale), subsample(scale). Resize the image to (xscale/width,
yscale/height) pixels, using nearest neighbour resampling. If only one scale is given, it is
used for both directions.

Options
The Photolmage class supports the following options.

Table 2.

Option Type Description

file string Read image data from the given file. The file can
contain GIF, PGM (grayscale), or PPM (truecolor)
data. Transparent regions in the GIF file are made
transparent.

To handle other file formats, use the corresponding
class in the Python Imaging Library.

data string Read image data from a string. In the current
version of Tk, this only works for base64-encoded
GIF files. If thefile option is given, this option is
ignored.

107




The Photolmage Class

Option Type Description

width, height integer The width (height) of the image memory. Note that
this is the requested size, not the actual size. To get
the actual size, use the corresponding methods.

format string If several file handlers can handle the given file, this
option can be used to specify which handler to use.
If you haven't installed extra file handlers, there's
no need to use this option.

gamma float The image gamma. To get fully accurate colors, this
should be set to a combination of the gamma values
for the image and display. Default is 1.0 (no gamma
correction).

palette integeror Specifies the number of palette entries to use when

string displaying this image. You can either use a single

integer to display the image as a grayscale image
with that number of grayscale levels, or a string with
three numbers separated by slashes, to display the
image as a color image with that number of red,
green, and blue values. The default is system
specific.

108



The Place Geometry Manager

The Place geometry manager is the simplest of the three general geometry managers
provided in Tkinter. It allows you explicitly set the position and size of a window, either in
absolute terms, or relative to another window.

You can access the place manager through the place method which is available for all
standard widgets.

When to use place

It is usually not a good idea to use place for ordinary window and dialog layouts; its simply
to much work to get things working as they should. Use the pack or grid managers for such
purposes.

However, place has its uses in more specialized cases. Most importantly, it can be used by
compound widget containers to implement various custom geometry managers. Another
use is to position control buttons in dialogs.

Patterns

Let's look at some usage patterns. The following command centers a widget in its parent:
w.place(relx=0.5, rely=0.5, anchor=CENTER)

Here's another variant. It packs aLabel widget in a frame widget, and then places a
DrawnButton in the upper right corner of the frame. The button will overlap the label.

pane = Frame(master)

Label(pane, text="Pane Title").pack()

b = DrawnButton(pane, (12, 12), launch_icon, command=self.launch)
b.place(relx=1, x=-2, y=2, anchor=NE)

The following excerpt from a Notepad widget implementation displays a notepad page
(implemented as a Frame) in the notepad body frame. It first loops over the available
pages, calling place_forget for each one of them. Note that it's not an error to "unplace" a
widget that it's not placed in the first case:

for w in self.___pages:
w.place_forget()
self.__pages[index].place(in_=self.__ body, x=bd, y=bd)

You can combine the absolute and relative options. In such cases, the relative option is

applied first, and the absolute value is then added to that position. In the following
example, the widgetw is almost completely covers its parent, except for a 5 pixel border
around the widget.

w.place(x=5, y=5, relwidth=1, relheight=1, width=-10, height=-10)

You can also place a widget outside another widget. For example, why not place two
widgets on top of each other:

w2.place(in_=wl1, relx=0.5, y=-2, anchor=S, bordermode="outside")

109



The Place Geometry Manager

Note the use of relx and anchor options to center the widgets vertically. You could also use
(relx=0, anchor=SW) to get left alignment, or (relx=1, anchor=SE) to get right alignment.
By the way, why not combine this way to use the packer with the launch button example

shown earlier. The following example places two buttons in the upper right corner of the
pane:

bl = DrawnButton(pane, (12, 12), launch_icon, command=self.launch)
bl.place(relx=1, x=-2, y=2, anchor=NE)

b2 = DrawnButton(pane, (12, 12), info_icon, command=self.info)
b2.place(in_=b1, x=-2, anchor=NE, bordermode="outside")

Finally, let's look at a piece of code from an imaginary SplitWindow container widget. The
following piece of code splits frame into two subframes called fl and f2.

fl = Frame(frame, bd=1, relief=SUNKEN)

f2 = Frame(frame, bd=1, relief=SUNKEN)

split = 0.5

fl.place(rely=0, relheight=split, relwidth=1)
f2.place(rely=split, relheight=1.0-split, relwidth=1)

To change the split point, set split to something suitable, and call the place method again.
If you haven't changed an option, you don't have to specify it again.

f1.place(relheight=split)
f2.place(rely=split, relheight=1.0-split)

You could add a small frame to use as a dragging handle, and add suitable bindings to it,
e.g:

f3 = Frame(frame, bd=2, relief=RAISED, width=8, height=8)
f3.place(relx=0.9, rely=split, anchor=E)
f3.bind("<B1-Motion=", self.adjust)

Methods

place

place(option=value, ...), place_configure(option=value, ...). Place the widget as described
by the options (see below).

place_configure is not available in the Tkinter version shipped with Python 1.4. For
compatibility, use place instead.

place forget

place_forget(). Remove the widget. The widget is not destroyed, and can be displayed
again by place or any other manager.

place_info

place_info(). Return adictionary containing the current options.

110



place_ slaves

The Place Geometry Manager

place_slaves(). Returns a list of the "slave” widgets managed by this widget. The widgets
are returned as Tkinter widget references.

Options

The following options can be used with the place and place_configure methods:

Table 1.

Option

Type

Description

anchor

constant

Specifies which part of the widget that should be
placed at the given position. Valid values are N, NE,
E, SE, SW, W, NW, or CENTER. Default is NW (the
upper left corner, that is).

bordermode

constant

If INSIDE, the size and position are relative to the
reference widget's inner size, excluding any border.
If OUTSIDE, it's relative to the outer size, including
the border. Default isINSIDE.

These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "inside"
and "outside" instead.

in (in_)

widget

Place widget relative to the given widget. You can
only place a widget relative to its parent, or to any
decendant of its parent. If this option is not given, it
defaults to the parent. Note thatin is a reserved
word in Python. To use it as a keyword option,
append an underscore (in_).

relwidth,
relheight

float

Size, relative to the reference widget.

relx, rely

float

Position, relative to the reference widget (usually
the parent, unless otherwise specified by the in
option). 0.0 is the left (upper) edge, 1.0 is the right
(lower) edge.

width, height

integer

Size, in pixels. If omitted, it defaults to the widget's
"natural” size.

X,y

integer

Absolute position, in pixels. If omitted, defaults to
0.

111



The Radiobutton Widget

The Radiobuttonis a standard Tkinter widget used to implement one-of-many selections.
Radiobuttons can contain text or images, and you can associate a Python function or
method with each button. When the button is pressed, Tkinter automatically calls that
function or method.

The button can only display text in a single font, but the text may span more than one line.
In addition, one of the characters can be underlined, for example to mark a keyboard
shortcut. By default, the Tab key can be used to move to a button widget.

Each group of Radiobutton widgets should be associated with single variable. Each button
then represents a single value for that variable.

Radiobutton Patterns

The Radiobutton widget is very similar to the check button. To get a proper radio
behaviour, make sure to have all buttons in a group point to the same variable, and use the
value option to specify what value each button represents:

v = IntVar()
Radiobutton(master, text="0One", variable=v, value=1).pack(anchor=Ww)
Radiobutton(master, text="Two", variable=v, value=2).pack(anchor=W)

If you need to get notified when the value changes, attach acommand callback to each
button.

To create a large number of buttons, use a loop:

MODES = [
("Monochrome", "1"),
("Grayscale", "L"),
("True color", "RGB"),
("Color separation”, "CMYK"),
1

v = StringVar()
v.set("L") # initialize

for text, mode in MODES:
b = Radiobutton(master, text=text,
variable=v, value=mode)
b.pack(anchor=Ww)

112



The Radiobutton Widget

Figure 1. Standard radiobuttons

i tdonochroms
" Grayscale
" True color

" Color zeparation

To turn the above example into a "button box" rather than a set of radio buttons, set the

indicatoron option to 0. In this case, there's no separate radio button indicator, and the
selected button is drawn as SUNKEN instead of RAISED:

Figure 2. Using indicatoron=0

! b onochrome

[arayzcale

True calar

Color zeparation

Methods

The Radiobutton widget supports the standard Tkinter Widget interface, plus the following
methods:

deselect

deselect(). Deselect the button.

flash

flash(). Redraw the button several times, alternating between active and normal
appearance.

invoke

invoke(). Call the command associated with the button.

select

select(). Select the button.

113



The Radiobutton Widget

Options

The Radiobutton widget supports the following options:

Table 1.

Option Type Description

activebackgrou | color The color to use when the button is activated.

nd,

activeforegrou

nd

anchor constant Controls where in the button the text (or image)
should be located. Use one of N, NE, E, SE, S, SW,
W, NW, or CENTER. Default is CENTER. If you
change this, it is probably a good idea to add some
padding as well, using the padx and/or pady
options.

background, color The button color. The default is platform specific.

foreground

bitmap bitmap The bitmap to display in the widget. If the image
option is given, this option is ignored.
The following bitmaps are available on all
platforms: "error", "gray75", "gray50", "gray25",
"grayl2", "hourglass", "info", "questhead",
"question”, and "warning".

F &
B | ¢

The following additional bitmaps are available on
the Macintosh only: "document", "stationery",
"edition", "application”, "accessory", "folder",
"pfolder”, "trash”, "floppy", "ramdisk", "cdrom",
"preferences”, "querydoc”, "stop", "note", and
“"caution™.
You can also load the bitmap from an XBM file. Just
prefix the filename with an at-sign, for example
"@sample.xbm".

borderwidth int The width of the button border. The default is

(bd) platform specific, butis usually 1 or 2 pixels.

command callback A function or method that is called when the button
is pressed. The callback can be a function, bound
method, or any other callable Python object.

cursor cursor The cursor to show when the mouse is moved over
the button.

default int If set, the button is a default button. Tk will indicate
this by drawing a platform specific indicator
(usually an extra border). NOTE: The syntax has

114



The Radiobutton Widget

Option

Type

Description

changed in 8.0b2!!

disabledforegr
ound

color

The color to use when the button is disabled. The
background is shown in thebackground color.

font

font

The font to use in the button. The button can only
contain text in a single font.

highlightbackg
round,
highlightcolor

color

Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in
the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn
ess

distance

Controls the width of the focus highlight border.
Default is typically one or two pixels.

image

image

The image to display in the widget. If specified, this
takes precedence over the text and bitmap options.

indicatoron

bool

Controls if the indicator should be drawn or not. For
check and radio buttons, this is on by default.
Setting this option to false means that the relief will
be used as the indicator. If the button is selected, it
is drawn as SUNKEN instead of RAISED. For a
menu button, this is off by default. Setting it to true
draws a small indicator to the right. This is used by
the OptionMenu widget.

justify

constant

Defines how to align multiple lines of text. Use
LEFT, RIGHT, or CENTER.

padx, paxy

distance

Button padding. These options specify the
horizontal and vertical padding between the text or
image, and the button border.

relief

constant

Border decoration. Usually, the button is SUNKEN
when pressed, and RAISED otherwise. Other
possible values are GROOVE, RIDGE, and FLAT.

selectcolor

color

Color to use for the selector.

selectimage

image

Graphic image to use for the selector.

state

constant

The button state: NORMAL, ACTIVE or DISABLED.
Default is NORMAL.

takefocus

flag

Indicates that the user can use the Tab key to move
to this button. Default is an empty string, which
means that the button accepts focus only if it has
any keyboard bindings (default is on, in other
words).

text

string

The text to display in the button. The text can
contain newlines. If thebitmap or image options
are used, this option is ignored.

115



The Radiobutton Widget

Option

Type

Description

textvariable

variable

Associates a Tkinter variable (usually a StringVar)
to the button. If the variable is changed, the button
text is updated.

underline

int

Default is -1.

value

None

The value to assign to the associated variable when
the button is pressed.

variable

variable

Associates a Tkinter variable to the button. When
the button is pressed, the variable is either toggled
between offvalue and onvalue (for a Checkbutton),
or set tovalue (for a Radiobutton). Explicit changes
to the variable are automatically reflected by the
buttons.

width, height

distance

The size of the button. If the button displays text,
the size is given in text units. If the button displays
an image, the size is given in pixels (or screen
units). If the size is omitted, it is calculated based on
the button contents.

wraplength

distance

Determines when a button's text should be wrapped
into multiple lines. This is given in screen units.
Default is no wrapping.

116



The Scale Widget

Patterns

Methods

get, set

get().

set(value).

Options

Table 1.
Option Type Description
activebackgrou | color
nd
background color
(bg)

bigincrement value

command callback

cursor cursor The cursor to show when the mouse pointer is
placed over the scale widget. Default is a system
specific arrow cursor.

digits value

font font

foreground color

(fa)

from (from_) value

highlightbackg | color
round,
highlightcolor

Controls how to draw the focus highlight border.
When the widget has focus, the border is drawn in
the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn | distance

Controls the width of the focus highlight border.

ess Default is O (no border).
label string
length distance

117




The Scale Widget

Option Type Description

orient constant

relief constant Border decoration. The default is FLAT. Other
possible values are SUNKEN, RAISED, GROOVE,
and RIDGE.

borderwidth distance The width of the button border. The default is

(bd) platform specific, but is usually 1 or 2 pixels.

repeatdelay time

repeatinterval | time

resolution value

showvalue flag

sliderlength distance

sliderrelief constant

state constant

takefocus flag Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the scale accepts focus only if it has any
keyboard bindings (default is off, in other words).

tickinterval time

to value

troughcolor color

variable variable

width distance

118



The Scrollbar Widget

Patterns

Methods

delta

delta(deltax, deltay).

destroy

destroy().

fraction

fraction(x, y).

get

get().

identify

identify(x, y).

keys

keys().

set

set(args).

Options

Note that most options are ignored on Windows and Macintosh, where the scrollbar is
drawn via the native Ul toolbox. For best results, use only thecommand andorient options

in your programs.

Table 1.
Option Type Description
orient constant Defines how to draw the scrollbar. Use one of
HORIZONTAL or VERTICAL. Default is
VERTICAL.
command callback Used to update the associated widget. This is
typically the xview or yview method of the scrolled

119



The Scrollbar Widget

Option Type Description
widget.
If the user drags the scrollbar slider, the command
is called ascallback(MOVETO, offset), where offset
0.0 means that the slider is in its topmost (or
leftmost) position, and offset 1.0 means thatitisin
its bottommost (or rightmost) position.
If the user clicks the arrow buttons, or clicks in the
trough, the command is called ascallback(SCROLL,
step, what). The second argument is either "-1" or
"1" depending on the direction, and the third
argument is UNITS to scroll lines (or other units
relevant for the scrolled widget), or PAGES to scroll
full pages.
These constants are not defined in Python 1.5.2 and
earlier. For compatibility, use the strings "moveto",
"scroll", "units", and "pages" instead.

activebackgrou | color

nd

activerelief constant

background color

(bg)

cursor cursor The cursor to show when the mouse pointer is
placed over the scrollbar widget. Default is a system
specific arrow cursor.

elementborder | distance

width

highlightbackg | color Controls how to draw the focus highlight border.

round, When the widget has focus, the border is drawn in

highlightcolor the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn | distance Controls the width of the focus highlight border.

ess Default is O (no border).
Note that this option is ignored under Windows.

jump constant

relief constant Border decoration. The default is SUNKEN. Other
possible values are FLAT, RAISED, GROOVE, and
RIDGE.
Note that this option is ignored under Windows.

borderwidth distance Border width. The default is O (no border).

(bd) Note that this option is ignored under Windows.

repeatdelay time

repeatinterval | time

120



The Scrollbar Widget

Option Type Description

takefocus flag Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the scrollbar accepts focus only if it has
any keyboard bindings (default is off, in other
words).

troughcolor color

width distance

121



The Text Widget

The Text widget provides formatted text display. It allows you to display and edit text with
various styles and attributes. The widget also supports embedded images and windows.

Concepts

The text widget stores and displays lines of text.

The text body can consist of characters, marks, and embedded windows or images.
Different regions can be displayed in different styles, and you can also attach event
bindings to regions.

By default, you can edit the text widget's contents using the standard keyboard and mouse
bindings. To disable editing, set the state option to DISABLED (but if you do that, you'll
also disable the insert and delete methods).

Indexes

Indexes are used to point to positions within the text handled by the text widget. Like
Python sequence indexes, text widget indexes correspond to positions between the actual
characters.

Tkinter provides a number of different index types:
« line/column ("line.column™)

« lineend ("line.end")

« INSERT

« CURRENT

- END

- user-defined marks

« user-defined tags ("tag.first", "tag.last")

» selection (SEL_FIRST, SEL_LAST)

- window coordinate ("@x,y")

« embedded object name (window, images)
- expressions

line/column indexes are the basic index type. They are given as strings consisting of a line
number and column number, separated by a period. Line numbers start at 1, while column
numbers start at O, like Python sequence indexes. You can construct indexes using the
following syntax:

"%d.%d" % (line, column)

Itis not an error to specify line numbers beyond the last line, or column numbers beyond
the last column on a line. Such numbers correspond to the line beyond the last, or the
newline character endingaline.

122



The Text Widget

Note that line/column indexes may look like floating point values, but it's seldom possible
to treat them as such (consider position 1.25 vs. 1.3, for example). | sometimes usel.0
instead of "1.0" to save a few keystrokes when referring to the first character in the buffer,
but that's about it.

You can use the index method to convert all other kinds of indexes to the corresponding
line/column index string.

A line end index is given as a string consisting of a line number directly followed by the text
".end". Aline end index correspond to the newline character ending a line.

INSERT (or "insert") corresponds to the insertion cursor.

CURRENT (or "current") corresponds to the character closest to the mouse pointer.
However, it is only updated if you move the mouse without holding down any buttons (if
you do, it will not be updated until you release the button).

END (or "end™) corresponds to the position just after the last character in the buffer.

User-defined marks are named positions in the text. INSERT and CURRENT are
predefined marks, but you can also create your own marks. See below for more
information.

User-defined tags represent special event bindings and styles that can be assigned to
ranges of text. For more information on tags, see below.

You can refer to the beginning of a tag range using the syntax "tag.first" (just before the
first character in the text using that tag), and "tag.last" (just after the last character using
that tag).

"%s.first" % tagname
"%s.last" % tagname

If the tag isn't in use, Tkinter raises a TCIError exception.

The selection is a special tag named SEL (or "sel") that corresponds to the current selection.
You can use the constants SEL_FIRST and SEL__ LAST to refer to the selection. If there's no
selection, Tkinter raises a TclError exception.

You can also usewindow coordinates as indexes. For example, in an event binding, you
can find the character closest to the mouse pointer using the following syntax:

"@%d,%d" % (event.x, event.y)

Embedded object name can be used to refer to windows and images embedded in the text
widget. To refer to a window, simply use the corresponding Tkinter widget instance as an
index. To refer to an embedded image, use the corresponding Tkinter Photolmage or
Bitmaplmage object.

Expressions can be used to modify any kind of index. Expressions are formed by taking the
string representation of an index (use str if the index isn't already a string), and append
one or more modifiers:

"+ count chars" moves the index forward. The index will move over newlines, but not
beyond the END index.

"- count chars" moves the index backwards. The index will move over newlines, but not
beyond index "1.0".

123



The Text Widget

"+ count lines" and "- count lines" moves the index full lines forward (or backwards). If
possible, the index is kept in the same column, but if the new line is too short, the index is
moved to the end of that line.

"linestart™ moves the index to the first position on the line.
"lineend"” moves the index to the last position on the line (the newline, that is).

"wordstart” and "wordend" moves the index to the beginning (end) of the current word.
Words are sequences of letters, digits, and underline, or single non-space characters.

The keywords can be abbreviated and spaces can be omitted as long as the result is not
ambigous. For example, "+ 5 chars" can be shortened to "+5c".

For compatibility with implementations where the constants are not strings, you should
use str or formatting operations to create the expression string. For example, here's how to
remove the character just before the insertion cursor:

def backspace(event):
event.widget.delete("%s-1c" % INSERT, INSERT)

Marks

Marks are (usually) invisible objects embedded in the text managed by the widget. Marks
are positioned between character cells, and moves along with the text.

- user-defined marks

» INSERT

« CURRENT

You can use any number of user-defined marks in a text widget. Mark names are ordinary
strings, and they can contain anything except whitespace (for convenience, you should
avoid names that can be confused with indexes, especially names containing periods). To
create or move a mark, use the mark_set method.

Two marks are predefined by Tkinter, and have special meaning:

INSERT (or "insert") is a special mark that is used to represent the insertion cursor.
Tkinter draws the cursor at this mark's position, so it isn't entirely invisible.

CURRENT (or "current") is a special mark that represents the character closest to the
mouse pointer. However, it is only updated if you move the mouse without holding down
any buttons (if you do, it will not be updated until you release the button).

Special marks can be manipulated as other user-defined marks, but they cannot be deleted.

If you insert or delete text before a mark, the mark is moved along with the other text. To
remove a mark, you must use the mark_unset method. Deleting text around a mark doesn't
remove the mark itself.

If you insert textat a mark, it may be moved to the end of that text or left where it was,
depending on the mark's gravity setting (LEFT or RIGHT; default is RIGHT). You can use
the mark_gravity method to change the gravity setting for a given mark.

In the following example, the "sentinel” mark is used to keep track of the original position
for the insertion cursor.

text.mark_set(""sentinel"”, INSERT)
text.mark_gravity(sentinel", LEFT)

124



Tags

The Text Widget

You can now let the user enter text at the insertion cursor, and use text.get("sentinel",
INSERT) to pick up the result.

Tags are used to associated a display style and/or event callbacks with ranges of text.
« user-defined tags
- SEL

You can define any number of user-defined tags. Any text range can have multiple tags,
and the same tag can be used for many different ranges. Unlike the Canvas widget, tags
defined for the text widget are not tightly bound to text ranges; the information associated
with a tag is kept also if there is no text in the widget using it.

Tag names are ordinary strings, and they can contain anything except whitespace.

SEL (or "sel") is a special tag which corresponds to the current selection, if any. There
should be at most one range using the selection tag.

The following options areused withtag_config to specify the visual style for text using a
certain tag.

Table 1.

Option Type Description

background color The background color to use for text having this tag.
Note that the bg alias cannot be used with tags; itis
interpreted as bgstipple rather than background.

bgstipple (bg) | bitmap The name of a bitmap which is used as a stipple
brush when drawing the background. Typical values
are "grayl2", "gray25", "gray50", or "gray75".
Default is a solid brush (no bitmap).

borderwidth distance The width of the text border. The defaultis O (no
border).
Note that the bd alias cannot be used with tags.

fgstipple (fg) bitmap The name of a bitmap which is used as a stipple
brush when drawing the text. Typical values are
"grayl2", "gray25", "gray50", or "gray75". Default is
a solid brush (no bitmap).

font font The font to use for text having this tag.

foreground color The color to use for text having this tag.
Note that the fg alias cannot be used with tags; it is
interpreted as fgstipple rather than foreground.

justify constant Controls text justification (the first character on a
line determines how to justify the whole line). Use
one of LEFT, RIGHT, or CENTER. Default is LEFT.

Imarginl distance The left margin to use for the first line in a block of
text having this tag. Default is O (no left margin).

Imargin2 distance The left margin to use for every line but the firstin a

125



The Text Widget

block of text having this tag. Default is O (no left
margin).

offset distance Controls if the text should be offset from the
baseline. Use a positive value for superscripts, a
negative value for subscripts. Defaultis O (no
offset).

overstrike flag If non-zero, the text widget draws a line over the
text that has this tag. For best results, you should
use overstrike fonts instead.

relief constant The border style to use for text having this tag. Use
one of SUNKEN, RAISED, GROOVE, RIDGE, or
FLAT. Default is FLAT (no border).

rmargin distance The right margin to use for blocks of text having this
tag. Default is O (no right margin).

spacingl distance Spacing to use above the first line in a block of text
having this tag. Default is O (no extra spacing).

spacing2 distance Spacing to use between the lines in a block of text
having this tag. Default is O (no extra spacing).

spacing3 distance Spacing to use after the last line of text in a block of
text having this tag. Default is O (no extra spacing).

tabs string

underline flag If non-zero, the text widget underlines the text that
has this tag. For example, you can get the standard
hyperlink look with (foreground="blue",
underline=1). For best results, you should use
underlined fonts instead.

wrap constant The word wrap mode to use for text having this tag.

Use one of NONE, CHAR, or WORD.

If you attach multiple tags to a range of text, style options from the most recently created
tag override options from earlier tags. In the following example, the resulting text is blue on
ayellow background.

text.tag_config("n", background="yellow", foreground="red")
text.tag_config("a", foreground="blue")
text.insert(contents, ("n", "a"))

Note that it doesn't matter in which order you attach tags to a range; it's the tag creation
order that counts.

You can change the tag priority using thetag_raise and tag_lower. If you add a
text.tag_lower("a") to the above example, the text becomes red.

The tag_bind method allows you to add event bindings to text having a particular tag. Tags
can generate mouse and keyboard events, plus Enter and Leave events. For example, the
following code snippet creates a tag to use for any hypertext links in the text:

text.tag_config('a", foreground="blue", underline=1)

126



The Text Widget

text.tag_bind("<Enter>", show_hand_cursor)
text.tag_bind("'<Leave>", show_arrow_cursor)
text.tag_bind("<Button-1>", click)
text.config(cursor="arrow")

text.insert(INSERT, "click here!", "a™)

Patterns

When you create a new text widget, it has no contents. To insert text into the widget, use
the insert method and insert text at the INSERT or ENDindexes:

text.insert(END, "hello, ")
text.insert(END, "world™)

You can use an optional third argument to the insert method to attach one or more tags to
the newly inserted text:

text.insert(END, "thisis a ™)
text.insert(END, "link", ("a", "href'+href))

To insert embedded objects, use thewindow__create or image_create methods:

button = Button(text, text="Click", command=click)
text.window_create(INSERT, window=button)

To delete text, use the delete method. Here's how to delete all text from the widget (this
also deletes embedded windows and images, but not marks):

text.delete(1.0, END)

To delete a single character (or an embedded window or image), you can use delete with
only one argument:

text.delete(INSERT)
text.delete(button)

To make the widget read-only, you can change the state option from NORMAL to
DISABLED:

text.config(state=NORMAL)
text.delete(1.0, END)
text.insert(END, text)
text.config(state=DISABLED)

Note that you must change the state back to NORMAL before you can modify the widget
contents from within the program. Otherwise, calls to insert and delete will be silently
ignored.

To fetch the text contents of the widget, use the get method:
contents = text.get(1.0, END)

FIXME: add material on the dump method, and how to use it on 1.5.2 and earlier

Here's a simple way to keep track of changes to the text widget:

import md5

127



The Text Widget

def getsignature(contents):
return md5.md5(contents).digest()

text.insert(END, contents) # original contents
signature = getsignature(contents)

contents = text.get(1.0, END)
if signature != getsignature(contents):
print "contents have changed!"

FIXME: modify to handle ending linefeed added by text widget

The index method converts an index given in any of the supported formats to a
line/column index. Use this if you need to store an "absolute™ index.

index = text.index(index)

However, if you need to keep track of positions in the text even after other text is inserted
or deleted, you should use marks instead.

text.mark_set("here", index)
text.mark_unset("here")

The following function converts any kind of index to a (line, column)-tuple. Note that you
can directly compare positions represented by such tuples.

def getindex(text, index):
return tuple(map(int, string.split(text.index(index), ".")))

if getindex(text, INSERT) < getindex(text, “"sentinel”):
text.mark_set(INSERT, "sentinel™)

The following example shows how to enumerate all regions in the text that has a given tag.

ranges = text.tag_ranges(tag)
for i in range(0, len(ranges), 2):
start = rangesyi]
stop = ranges[i+1]
print tag, repr(text.get(start, stop))

The search method allows you to search for text. You can search for an exact match
(default), or use a Tcl-style regular expression (call with the regexp option set to true).

text.insert(END, "hello, world™)

start = 1.0
while 1:
pos = text.search("o", start, stopindex=END)
if not pos:
break
print pos
start = pos + "+1c"

Given an empty text widget, the above example prints1.4 and 1.8 before it stops. If you
omit the stopindex option, the search wraps around if it reaches the end of the text.

128



The Text Widget

To search backwards, set thebackwards option to true (to find all occurences, start at
END, set stopindex to 1.0 to avoid wrapping, and use "-1c" to move the start position).

Basic Methods

The Listbox widget supports the standard Tkinter Widget interface, plus the following
methods:

insert

insert(index, text), insert(index, text, tags). Insert text at the given position (typically
INSERT or END). If you provide one or more tags, they are attached to the new text.

If you insert text on a mark, the mark is moved according to its gravity setting.

delete

delete(index), delete(start, stop). Delete the character (or embedded object) at the given
position, or all text in the given range. Any marks within the range are moved to the
beginning of the range.

get

get(index), get(start, stop). Return the character at the given position, or all text in the
givenrange.

dump

dump(index, options...), dump(start, stop, options...). Return a list of widget contents at
the given position, or for all text in the given range. This includes tags, marks, and
embedded objects. Not implemented in Python 1.5.2 and earlier.

see

see(index), yview(index). If necessary, scroll the text widget to make sure the text at the

given position is visible. The see method scrolls the widget only if the given position isn't
visible at all, whileyview always scrolls the widget to move the given position to the top of
the window.

index

index(index). Return the "line.column" index corresponding to the given index.

compare

compare(indexl1, op, index2). Compare the two positions, and return true if the condition
held. Theop argument is one of "<", "<=", "=="">="">" or "I=" (Python's "<>" syntax is
not supported).

Methods for Marks

The following methods are used to manipulate builtin as well as user-defined marks.

129



The Text Widget

mark_set

mark_set(mark, index). Move the mark to the given position. If the mark doesn't exist, it is
created (with gravity set to RIGHT). You also use this method to move the predefined
INSERT and CURRENT marks.

mark_unset

mark_unset(mark). Remove the given mark from the widget. You cannot remove the
builtin INSERT and CURRENT marks.

index

index(mark). Return the line/column position corresponding to the given mark (or any
other index specifier; see above).

mark_gravity

mark_gravity(mark). Return the current gravity setting for the given mark (LEFT or
RIGHT).

mark_gravity(mark, gravity). Sets the gravity for the given mark. The gravity setting
controls how to move the mark if text is inserted exactly on the mark. If LEFT, the mark is
not moved if text is inserted at the mark (that is, the text is inserted just after the mark). If
RIGHT, the mark is moved to the right end of the text (that is, the text is inserted just
before the mark). The default gravity setting isRIGHT.

mark names

mark_names(). Return a tuple containing the names of all marks used in the widget. This
includes the INSERT and CURRENT marks (but not END, which is a special index, not a
mark).

Methods for Embedded Windows

The Text widget allows you to embed windows into the widget. Embedded windows occupy
asingle character position, and moves with the text flow.

window _create

window_create(index, options...). Insert a widget at the given position. You can either

create the widget (which should be a child of the text widget itself) first, and insert it using
the window option, or provide a callback which is called when the window is first

displayed.
Table 2.
Option Type Description
align constant Defines how to align the window on the line. Use

one of TOP, CENTER, BOTTOM, or BASELINE.
The last alignment means that the bottom of the
window is aligned with the text baseline -- that is,

130



The Text Widget

the same alignment that is used for all text on the
line).

create

callback

This callback is called when the window is first
displayed by the text widget. It should create the
window (as a child to the text widget), and return
the resulting widget instance.

padx, pady

distance

Adds horizontal (vertical) padding between the
window and the surrounding text. Default is O (no
padding).

stretch

flag

If zero (or OFF), the window will be left as is also if
the line is higher than the window. If non-zero (or
ON), the window is stretched to cover the full line
(in this case, the alignment is ignored).

window

widget

Gives the widget instance to insert into the text.

index

index(window) Return the line/column position corresponding to the given window (or

any other index specifier; see above).

delete

delete(window). Remove the given window from the text widget, and destroy it.

window_cget

window_cget(index, option). Return the current value of the given option. If there's no
window on the given position, this method raises a TclError exception.

window _config

window_config(index, options...), window_configure(index, options...). Modifies one or
more options. If there's no window on the given position, this method raisesa TclError

exception.

window_names

window_names(). Return a tuple containing all windows embedded in the text widget. In

1.5.2 and earlier, this method returns the names of the widgets, rather than the widget
instances. This will most likely be fixed in future versions.

Here's how to convert the names to a list of widget instances in a portable fashion:

windows = text.window_names()

try:

windows = map(text._nametowidget, windows)
except TclError: pass

131




The Text Widget

Methods for Embedded Images

The Text widget allows you to embed images into the widget. Embedded images occupy a
single character position, and moves with the text flow.

Note that the image interface is not available in early version of Tkinter (it's not
implemented by Tk versions before 8.0). For such platforms, you can display images by

embedding Label widgets instead.

Image_ create

image_create(index, options...). Insert an image at the given position. The image is given
by the image option, and must be a Tkinter Photolmage or Bitmaplmage instance (or an
instance of the corresponding PIL classes).

This method doesn't work with Tk versions before 8.0.

Table 3.

Option

Type

Description

align

constant

Defines how to align the image on the line. Use one
of TOP, CENTER, BOTTOM, or BASELINE. The last
alignment means that the bottom of the image is
aligned with the text baseline -- that is, the same
alignment that is used for all text on the line).

image

image

Gives the image instance to insert into the text.

name

string

Gives the name to use when referring to this image
in the text widget. The default is the name of the
image object (which is usually generated by
Tkinter).

padx, pady

distance

Adds horizontal (vertical) padding between the
image and the surrounding text. Default is O (no
padding).

index

index(image). Return the line/column position corresponding to the given image (or any

other index specifier; see above).

delete

delete(image). Remove the given image from the text widget, and destroy it.

image_cget

image_cget(index, option). Return the current value of the given option. If there's no
image on the given position, this method raises a TclError exception. Not implemented in
Python 1.5.2 and earlier.

132



The Text Widget

image_config

image_config(index, options...), image_configure(index, options...). Modifies one or
more options. If there's no image on the given position, this method raises a TclError
exception. Not implemented in Python 1.5.2 and earlier.

Image__names

image_names(). Return a tuple containing the names of all images embedded in the text
widget. Tkinter doesn't provide a way to get the corresponding Photolmage or
Bitmaplmage objects, but you can keep track of those yourself using a dictionary (using

str(image) as the key).

This method is not implemented in Python 1.5.2 and earlier.

Methods for Tags

The following methods are used to manipulate tags and tag ranges.

tag_add

tag_add(tag, index), tag_add(tag, start, top). Add tag to the character at the given
position, or to the given range.

tag_remove

tag_remove(tag, index), tag_remove(tag, start, stop). Remove the tag from the character
at the given position, or from the given range. The information associated with the tag is
not removed (not even if you use tag_remove(1.0, END)).

tag delete

tag_delete(tag), tag_delete(tags...). Remove the given tags from the widget. All style and
binding information associated with the tags are also removed.

tag_config
tag_config(tag, options...), tag_configure(tag, options...). Set style options for the given
tag. If the tag doesn't exist, it is created.

Note that the style options are associated with tags, not text ranges. Any text having a given
tag will be rendered according to its style options, even if it didn't exist when the binding
was created. If a text range has several tags associated with it, the Text widget combines the
style options for all tags. Tags towards the top of the tag stack (created later, or raised using
tag_raise) have precedence.

tag_cget

tag_cget(tag, option). Get the current value for the given option.

133



The Text Widget

tag_bind

tag_bind(tag, sequence, func), tag_bind(tag, sequence, func, "+"). Add an event binding
to the given tag. Tag bindings can use mouse- and keyboard-related events, plus Enter and
Leave. If the tag doesn't exist, it is created. Usually, the new binding replaces any existing
binding for the same event sequence. The second form can be used to add the new callback
to the existing binding.

Note that the new bindings are associated with tags, not text ranges. Any text having the

tag will fire events, even if it didn't exist when the binding was created. To remove
bindings, use tag_remove or tag_unbind.

tag _unbind

tag_unbind(tag, sequence). Remove the binding, if any, for the given tag and event
sequence combination.

tag_names

tag_names(). Return a tuple containing all tags used in the widget. This includes the SEL
selection tag.

tag_names(index). Return a tuple containing all tags used by the character at the given
position.

tag_nextrange

tag_nextrange(tag, index), tag_nextrange(tag, start, stop). Find the next occurence of
the given tag, starting at the given index. If two indexes are given, search only fromstartto
stop. Note that this method looks for the start of a range, so if you happen to starton a
character that has the given tag, this method will return that range only if that character is
the first in the range. Otherwise, the current range is skipped.

tag_prevrange

tag_prevrange(tag, index), tag_prevrange(tag, start, stop). Find the next occurence of
the given tag, starting at the given index and searching towards the beginning of the text. If
two indexes are given, search from start to stop. As for nextrange, this method looks for
the start of a range, beginning at the start index. So if you start on a character that has the
given tag, this method will return that range unless the search started on the first character
in that tag range.

tag_lower

tag_lower(tag), tag_lower(tag, below). Move the given tag to the bottom of the tag stack
(or place it just under thebelow tag). If multiple tags are defined for a range of text, options
defined by tags towards the top of the stack have precedence.

tag_raise

tag_raise(tag), tag_raise(tag, above). Move the given tag to the top of the tag stack (or
place it just over theabove tag).

134



The Text Widget

tag_ranges

tag_ranges(tag). Return a tuple with start- and stop-indexes for each occurence of the
given tag. If the tag doesn't exist, this method returns an empty tuple. Note that the tuple
contains two items for each range.

Methods for Selections

To manipulate the selection, use tag methods like tag_add and tag_remove on the SEL
tag. There are no selection-specific methods provided by the Text widget.

But if you insist, here's how how to emulate the Entry widget selection methods:

def selection_clear(text):
text.tag_remove(SEL, 1.0, END)

def selection_from(text, index):
text._anchor = index

def selection_present(text):
return len(text.tag_ranges(SEL)) =0

def selection_range(text, start, end):
text.tag_remove(SEL, 1.0, start)
text.tag_add(SEL, start, end)
text.tag_remove(SEL, end, END)

def selection_to(text, index):
if text.compare(index, "<", text._anchor):
selection_range(text, index, text._anchor)
else:
selection_range(text, text._anchor, index)

Methods for Rendering

The following methods only work if the text widget is updated. To make sure this is the
case, call the update_idletasks method before you use any of these.

bbox
bbox(index). Returns the bounding box for the given character, as a 4-tuple: (x, y, width,
height). If the character is not visible, this method returns None.

dlineinfo

dlineinfo(index). Returns the bounding box for the line containing the given character, as a
5-tuple: (x,y, width, height, offset). The last tuple member is the offset from the top of the
line to the baseline. If the line is not visible, this method returns None.

Methods for Printing

The Text widget doesn't contain any builtin support for printing. To print the contents, use
get ordump and pass the resulting text to a suitable output device.

135



The Text Widget

If you have a Postscript printer, you can use PIL's PSDraw module.

Methods for Searching

search

search(pattern, index, options...). Search for text in the widget. Returns the first matching
position if successful, or an empty string if there was no match.

Table 4.

Option Type Description

forwards, flag Search from the given position towards the end of

backwards the buffer (forwards), or the beginning
(backwards). Default is forwards.

exact, regexp flag Interpret the pattern as a literal string (exact), or a
Tcl-style regular expression (regexp). Default is
exact.

nocase flag Enable case-insensitive search. Default is case
sensitive.

stopindex index Don't search beyond this position. Default is to
search the whole buffer, and wrap around if the
search reaches the end of the buffer. To prevent
wrapping, set stopindex to ENDwhen searching
forwards, and 1.0 when searching backwards.

count variable Return the length of the match in the given variable.
If given, this variable should be a TkinterIntVar.

Methods for Scrolling

These methods are used to scroll the text widget in various ways. The scan methods can be

used to implement fast mouse pan/roam operations (they are bound to the middle mouse
button, if available), while thexview and yview methods are used with standard scrollbars.

scan_mark, scan_dragto

scan_mark(x, y), scan_dragto(x, y). scan_mark sets the scanning anchor for fast
horizontal scrolling to the given mouse coordinate. scan_dragto scrolls the widget contents
sideways according to the given mouse coordinate. The text is moved 10 times the distance
between the scanning anchor and the new position.

Xview, yview

xview(), yview(). Returns a tuple containing two values; the first value corresponds to the

relative offset of the first visible line (column), and the second corresponds to the relative
offset of the line (column) just after the last one visible on the screen. Offset 0.0 is the
beginning of the text, 1.0 the end.

136



The Text Widget

xXview, yview

xview(MOVETO, offset), yview(MOVETO, offset). Adjust the text widget so that the given
offset is at the left (top) edge of the text. Offset 0.0 is the beginning of the text, 1.0 the end.
These methods are used by the Scrollbar bindings when the user drags the scrollbar slider.

The MOVETO constant is not defined in Python 1.5.2 and earlier. For compatibility, use the
string "moveto" instead.

Xview, yview

xview(SCROLL, step, what), yview(SCROLL, step, what). Scroll the text widget
horizontally (vertically) by the given amount. The what argument can be either UNITS
(lines, characters) or PAGES. These methods are used by the Scrollbar bindings when the
user clicks at a scrollbar arrow or in the trough.

These constants are not defined in Python 1.5.2 and earlier. For compatibility, use the

strings "scroll", "units"”, and "pages" instead.

yview_pickplace

yview_pickplace(index). Same as see, but only handles the vertical position correctly. New
code should use see instead.

Options

The Text widget supports the following options.

FIXME: sortin relevance order

Table5.

Option Type Description

background color The background color for this widget. Default is

(bg) system specific (usually "white"). If you change the
background color, you should make sure to change
the foreground color as well.

borderwidth distance Border width. Default is platform dependent, but is

(bd) usually one or two pixels.

cursor cursor The cursor to show when the mouse pointer is
placed over the text widget. The default is a text
insertion cursor (typically an "I beam" cursor, e.g.
xterm).

exportselection | flag If true, selected text is automatically exported to the
clipboard. Default is true.

font font Widget font. The default is system specific (usually
"black™).

foreground color Textcolor.

(fg)

height distance Widget height, in text units.

137



The Text Widget

Option Type Description

highlightbackg | color Controls how to draw the focus highlight border.

round, When the widget has focus, the border is drawn in

highlightcolor the highlightcolor color. Otherwise, it is drawn in
the highlightbackground color. The defaults are
system specific.

highlightthickn | distance Controls the width of the focus highlight border.

ess Default is O (no border).

insertbackgrou | color

nd

insertborderwi | distance

dth

insertofftime, time

insertontime

insertwidth distance Controls cursor blinking and style. It's usually best
to leave these as they are.

padx, pady distance Extra padding between the widget's inner border
and the text body. Default is O (no padding).

relief constant Border decoration. The default is SUNKEN. Other
possible values are FLAT, RAISED, GROOVE, and
RIDGE.

selectbackgrou | color Selection background color. The default is system

nd and display specific.

selectborderwi | distance Selection border width. The default is system

dth specific.

selectforegrou | color Selection text color. The default is system and

nd display specific.

setgrid flag If true, Tkinter attempts to resize the window
containing the text widget in full character steps
(based on the font option).

spacingl distance Spacing to use above the first line in a block of text.
Default is O (no extra spacing).

spacing2 distance Spacing to use between the lines in a block of text
wrapped by the widget. Default is O (no extra
spacing).

spacing3 distance Spacing to use after the last line of text in a block of
text having this tag. Default is O (no extra spacing).

state constant One of NORMAL or DISABLED. Default is
NORMAL. Note that if you set this to DISABLED,
calls to insert or delete are ignored.

tabs string

138



The Text Widget

Option Type Description

takefocus flag If true, you can use Tab to move focus to this widget
(but not from it; the default bindings for the Text
widget insert the tab character). Default is an empty
string, which means that the text widget accepts
focus only if it has any keyboard bindings (default is
on, in other words).

width distance Widget width, in text units.

wrap constant Word wrap mode. Use one of NONE, CHAR, or
WORD. Default is NONE

xscrollcomman | callback Scrollbar callbacks. These options should be set to

d, the set method for the corresponding scrollbar.

yscrollcomman
d

139



The Toplevel Widget

The Toplevel widget work pretty much like Frame, but it is displayed in a separate, top-
level window. Such windows usually have title bars, borders, and other "window
decorations".

Methods

Except for the standard widget interface (config, etc), the Toplevel widget has no methods.

Options

Table 1.

Option Type Description

height, width distance Toplevel window size.

background color The background color to use in this toplevel. This
(bg) defaults to the application background color. To
prevent updates, set the color to an empty string.

colormap widget Some displays support only 256 colors (some use
even less). Such displays usually provide a color
map to specify which 256 colors to use. This option
allows you to specify which color map to use for this
toplevel window, and its child widgets.

By default, a new toplevel window uses the same
color map as the root window. Using this option,
you can reuse the color map of another window
instead (this window must be on the same screen
and have the same visual characteristics). You can
also use the value "new" to allocate a new color map
for this window.

You cannot change this option once you've created
the window.

menu widget A menu to associate with this toplevel window. On
Unix and Windows, the menu is placed at the top of
the toplevel window itself. On Macs, the menu is
displayed at the top of the screen when the toplevel
window is selected.

cursor cursor The cursor to show when the mouse pointer is
placed over the toplevel widget. Default is a system
specific arrow cursor.

relief constant Border decoration: either FLAT, SUNKEN,
RAISED, GROOVE, or RIDGE. The default is FLAT.

borderwidth distance Width of the 3D border. Defaults to O (no border).
(bd)

140



The Toplevel Widget

Option

Type

Description

takefocus

flag

Indicates that the user can use the Tab key to move
to this widget. Default is an empty string, which
means that the toplevel accepts focus only if it has
any keyboard bindings (default is off, in other
words).

highlightbackg
round,
highlightcolor

color

Controls how to draw the focus highlight border.
When any child to the toplevel window has focus,
the border is drawn in the highlightcolorcolor.
Otherwise, it is drawn in the highlightbackground
color. The defaults are system specific.

highlightthickn
ess

distance

Controls the width of the focus highlight border.
Default is O (no border).

class (class_)

class

visual

visual

Controls the "visual" type to use for this window.
This option should usually be omitted. In that case,
the visual type is inherited from the root window.
Some more advanced displays support "mixed
visuals”. This typically means that the root window
is a 256-color display (the "pseudocolor” visual
type), but that individual windows can be displayed
as true 24-bit color (the "truecolor" visual type). On
such displays, you may wish to explicitly set the
visual option to "truecolor” for any windows used to
display full-color images.

Other possible values include "directcolor”,
"staticcolor", "grayscale", or "staticgray". See your X
window documentation for details.

You cannot change this option once you've created
the window.

screen

screen

container

container

use

widget

141



Basic Widget Methods

The following methods are provided by all widgets (including the root window). In the
method descriptions, self refer to the widget via which you reached the method.

The root window and other Toplevel windows provide additional methods. See the Window
Methods section for more information.

Configuration

config

config(options...), configure(options...). Change one or more options for self.

config

cget

keys

config(), configure(). Return a dictionary containing the current settings for all widget
options. For each option key in the dictionary, the value is either a five-tuple (option,
option database key, option database class, default value, current value), or a two-tuple
(option alias, option). The latter case is used for aliases like bg (background) and bd
(borderwidth).

Note that the value fields aren't correctly formatted for some option types. See the
description of the keys method for more information, and a workaround.

cget(option). Return the current value for the given option.

Note that option values are always returned as strings (also if you gave a nonstring value
when you configured the widget). Use int and float where appropriate.

keys(). Return a tuple containing the options available for this widget. You can usecgetto
get the corresponding value for each option.

Note that the tuple currently include option aliases (like bd, bg, and fg). To avoid this, you
can use config instead. On the other hand, config doesn't return valid option values for
some option types (such as font names), so the best way is to use a combination of config
and cget:

for item in w.config():
if len(item) ==
option = item[O]
value = w.cget(option)
print option, value

142



Basic Widget Methods

Event processing

mainloop

mainloop(). Enter Tkinter's main event loop. To leave the event loop, use thequit method.
Event loops can be nested; it's ok to call mainloop from within an event handler.

quit
quit(). Leaves Tkinter's main event loop. Note that you can have nested event loops; each
call to quit terminates the outermost event loop.

update

update(). Process all pending events, call event callbacks, complete any pending geometry

management, redraw widgets as necessary, and call all pending idle tasks. This method
should be used with care, since it may lead to really nasty race conditions if called from the
wrong place (from within an event callback, for example, or from a function that can in any
way be called from an event callback, etc.)

update idletasks

update_idletasks(). Call all pending idle tasks, without processing any other events. This
can be used to carry out geometry management and redraw widgets if necessary, without
calling any callbacks.

focus_set

focus_set(), focus(). Move keyboard focus to self. This means that all keyboard events sent
to the application will be routed to self.

focus_displayof

focus_displayof().

focus_ force

focus_force(). Force keyboard focus to self.

FIXME: what's the difference between "moving" and "forcing"?

focus get

focus_get().

focus_lastfor

focus_lastfor().

tk _focusNext

tk_focusNext(). Return the next widget (following self) that should have focus. This is used
by the default bindings for the Tab key.

143



Basic Widget Methods

tk focusPrev

tk_focusPrev(). Return the previous widget (preceding self) that should have focus. This is
used by the default bindings for the Shift-Tab key.

grab_ current

grab_current().

grab_release

grab_release(). Release the event grab.

grab_set

grab_set(). Route all events for this application to self.

grab_set global

grab_set_global(). Route all events for the entire screen to self.

This should only be used in very special circumstances, since it blocks all other applications
running on the same screen. And that probably includes your development environment,
so you better make sure your application won't crash or lock up until it has properly
released the grab.

grab_status

grab_status().

wait_variable

wait_variable(variable). Wait for the given Tkinter variable to change. This method enters
alocal event loop, so other parts of the application will still be responsive. The local event
loop is terminated when the variable is updated (setting it to it's current value also counts).

wait_visibility

wait_visibility(widget). Wait for the given widget to become visible. This is typically used to
wait until a new toplevel window appears on the screen. Like wait_variable, this method
enters a local event loop, so other parts of the application will still work as usual.

wait_window

wait_window(widget). Wait for the given widget to be destroyed. This is typically used to
wait until a destroyed window disappears from the screen. Likewait_variable and
wait_visibility, this method enters a local event loop, so other parts of the application will
still work as usual.

Event callbacks

All event callbacks take one argument; an event descriptor. See the introduction for more
information on this descriptor.

144



Basic Widget Methods

bind

bind(sequence, callback), bind(sequence, callback, "+"). Add an event binding to self.
Usually, the new binding replaces any existing binding for the same event sequence. The
second form can be used to add the new callback to the existing binding.

unbind

unbind(sequence). Remove any bindings for the given event sequence, for self.

bind_all

bind_all(sequence, callback), bind_all(sequence, callback, "+"). Add an event binding to
the application level. Usually, the new binding replaces any existing binding for the same
event sequence. The second form can be used to add the new callback to the existing
binding.

unbind_all

unbind_all(sequence). Remove any bindings for the given event sequence, on the
application level.

bind_class

bind_class(class, sequence, func), bind_class(class, sequence, func, "+"). Add an event
binding to the given widget class. Usually, the new binding replaces any existing binding
for the same event sequence. The second form can be used to add the new callback to the
existing binding.

unbind_class

unbind_class(class, sequence). Remove any bindings for the given event sequence, for the
given binding class.

bindtags

bindtags(). Return a tuple containing the binding search order used for self. By default, this
tuple contains the self's widget name (str(self)), the widget class (e.g. Button), the root
window's name, and finally the special name all which refers to the application level.

bindtags

bindtags(bindings). Modify the binding search order for self.

Alarm handlers and other non-event callbacks

after

after(delay_ms, callback, args...). Register an alarm callback that is called after the given

number of milliseconds (Tkinter only guarantees that the callback will not be called earlier
than that; if the system is busy, the actual delay may be much longer). The callback is only

145



Basic Widget Methods

called once for each call toafter. To keep calling the callback, you need to reregister the
callback inside itself:

class App:
def __init__ (self, master):

self.master = master
self.poll() # start polling

def poll(self):
self.master.after(100, self.poll)

You can provide one or more arguments which are passed to the callback. This method
returns an alarm id which can be used with after_cancelto cancel the callback.

after_cancel

after_cancel(id). Cancels the given alarm callback.

after
after(delay_ms). Wait for the given number of milliseconds. Note that in the current
version, this also blocks the event loop. In practice, this means that you might as well do:
time.sleep(delay_ms*0.001)
after_idle

after_idle(callback, args...). Register an idle callback which is called when the system is
idle (that is, when there are no more events to process in the mainloop). The callback is
only called once for each call to after_idle.

Window management

lift
lift(), tkraise(), lift(above), tkraise(above). Move self to the top of the window stack. If self
is a child window, it is moved to the top of it's toplevel window. If self is a toplevel window
(the root or a Toplevel window), it is moved in front of all other windows on the display. If
an argument is given, the widget (or window) is moved so it's just above the given widget
(window).

lower

lower(), lower(below). Same as lift, but moves the widget to the bottom of the stack (or
places it just under thebelow widget).

Window Related Information

This group of methods provide information related to the widget (self) to which the method
belongs.

146



Basic Widget Methods

winfo_cells
winfo_cells(). Return the number of "cells" in the color map for self. This is typically a value
between 2 and 256 (also for true color displays, by some odd reason).
winfo_children

winfo_children(). Return a list containing widget instances for all children of self. The
windows are returned in stacking order from bottom to top. If the order doesn't matter, you

can get the same information from thechildren widget attribute (it's a dictionary mapping
Tk widget names to widget instances, sowidget.children.values() gives you a list of
instances).

winfo_class
winfo_class(). Returns the Tkinter widget class name for self. If self is a Tkinter base
widget, widget.winfo_class() is the same aswidget. _class__.  name__.

winfo_colormapfull

winfo_colormapfull(). Return true if the color map for self is full.

winfo_containing

winfo_containing(x, y). Return the widget at the given position, or None if there is no such
window, or itisn't owned by this application. The coordinates are given relative to the
screen's upper left corner.

winfo_depth

winfo_depth(). Return the bit depth used to display self. This is typically 8 for a 256-color
display device, 15 or 16 for a "hicolor" display, and 24 or 32 for a true color display.

winfo_exists

winfo_exists(). Return true if there is Tk window corresponding to self. Unless you've done
something really strange, this method should always return true.

winfo_pixels

winfo_pixels(distance), winfo_fpixels(distance). Convert the given distance (in any form
accepted by Tkinter) to the corresponding number of pixels.winfo_pixels returns an
integer value,winfo_fpixels a floating point value.

winfo geometry

winfo_geometry(). Returns a string describing self's "geometry". The string has the
following format:

"%dx%d%+d%+d" % (width, height, xoffset, yoffset)

where all coordinates are given in pixels.

147



Basic Widget Methods

winfo_width, winfo height

winfo_width(), winfo_height(). Return the width (height) of self, in pixels. Note that if the
window isn't managed by a geometry manager, these methods returns 1. To you get the real
value, you may have to call update_idletasks first. You can also usewinfo_regheight to get
the widget's requested height (that is, the "natural” size as defined by the widget itself
based on it's contents).

winfo_id

winfo_id(). Return a string containing a system-specific window identifier corresponding to

self. For Unix, this is the X window identifier. For Windows, this is the HWND cast to a
long integer.

winfo_ismapped

winfo_ismapped(). Return true if there is window corresponding to self in the underlying
window system (an X window, a Windows HWND, etc).

winfo_manager

winfo_manager(). Return the name of the geometry manager used to keep manage self
(typically one of grid, pack, place, canvas, or text).

FIXME: this is not implemented by Tkinter (or isit, in 1.5.2?)

winfo_name

winfo_name(). Return the Tk widget name. This is the same as the last part of the full
widget name (which you can get viastr(widget)).

winfo_parent

winfo_parent(). Return the full widget name of self's parent, or an empty string if self
doesn't have a parent (if self is the root window, that is).

To get the widget instance instead, you can simply use the master attribute instead of
calling this method (the master attribute is None for the root window). Or if you insist, use
__nametowidget to map the full widget name to an instance.

winfo_pathname

winfo_pathname(id). Return the full window name for the window having the given

identity (see winfo_id for details). If the window doesn't exist, or it isn't owned by this
application, Tkinter raises a TclIError exception.

To convert the full name to a widget instance, use _nametowidget.

winfo_regheight, winfo_reqwidth

winfo_regheight(), winfo_reqwidth(). Return the "natural” height (width) for self. The
natural size is the minimal size needed to display the widget's contents, including padding,
borders, etc. This size is calculated by the widget itself, based on the given options. The

148



Basic Widget Methods

actual widget size is then determined by the widget's geometry manager, based on this
value, the size of the widget's master, and the options given to the geometry manager.
winfo_rootx, winfo_rooty
winfo_rootx(), winfo_rooty(). Return the pixel coordinates for self's upper left corner,
relative to the screen's upper left corner.
winfo_screen

winfo_screen(). Return the X window screen name for the current window. The string has
the following format:

":%d.%d" % (display, screen)

On Windows and Macintosh, this is always ":0.0".

winfo_screencells
winfo_screencells(). Returns the number of “cells" in the default color map for self's
screen.

winfo_screendepth

winfo_screendepth(). Return the default bit depth for self's screen.

winfo_screenwidth, winfo screenheight
winfo_screenwidth(), winfo_screenheight(). Return the width (height) of self's screen, in
pixels.

winfo_screenmmwidth, winfo_screenmmheight

winfo_screenmmwidth(), winfo_screenmmbheight(). Return the width (height) of self's
screen, in millimetres. This may not be accurate on all platforms.

FIXME: does this take the logical resolution into account on Windows?

winfo_screenvisual

winfo_screenvisual(). Return the "visual” type used for self. This is typically "pseudocolor™
(for 256-color displays) or "truecolor” (for 16- or 24-bit displays).

non

Other possible values (on X window systems only) include "directcolor”, "staticcolor”,
"grayscale”, or "staticgray".

winfo_toplevel

winfo_toplevel(). Return the toplevel window (or root) window for self, as a widget
instance.

winfo_visual

winfo_visual(). Return a string describing the display type (the X window "visual™) for self's
screen. This is one of staticgray, grayscale, staticcolor, psuedocolor, directcolor, or

149



Basic Widget Methods

truecolor. For most display devices, this is either psuedocolor (an 8-bit colormapped
display), ortruecolor (a 15- or 24-bit truecolor display).

winfo_ X, winfo_y

winfo_x(), winfo_y(). Return the pixel coordinates for self's upper left corner, relative to its
parent's upper left corner.

Miscellaneous

bell

bell(). Generate a system-dependent sound (typically a short beep).

clipboard_append

clipboard_append(string). Add text to the clipboard.

clipboard_clear

clipboard_clear(). Clear the clipboard.

selection_clear

selection_clear().

selection_get

selection_get().

selection_handle

selection_handle(command).

selection_own

selection_own().

selection_own_get

selection_own_get().

tk focusFollowsMouse

tk_focusFollowsMouse().

tk_strictMotif

tk_strictMotif(flag). Under Unix, this method can be called to enforce strict Motif look and
feel. To use this, create a root window by calling the Tk constructor, and then call this
method with flag set to 1 before you create any other widgets. This method has no effect on
other platforms.

150



Basic Widget Methods

winfo_rgb

winfo_rgb(color). Convert a color string (in any form accepted by Tkinter) to a 3-tuple
containing the corresponding red, green, and blue component. Note that the tuple contains
16-bit values (0..65535).

Tkinter Interface Methods

The following methods are used by Tkinter's inner workings. Don't use these unless you
know exactly what you are doing, and why you should do that.

getboolean

getboolean(s). Convert a string to a boolean (flag) value, using Tcl's conventions.

getdouble

getdouble(s). Convert a string to a floating point value, using Tcl's conventions. In practice,
this is equivalent to float and string.atof.

getint

getint(s). Convert a string to an integer point value, using Tcl's conventions. In practice,
this is equivalent to int and string.atoi.

register

register(callback). Register a Tcl to Python callback. Returns the name of a Tcl wrapper
procedure. When that procedure is called from a Tcl program, it will call the corresponding
Python function with the arguments given to the Tcl procedure. Values returned from the
Python callback are converted to strings, and returned to the Tcl program.

winfo_atom

winfo_atom(string). Map the given to a unique integer. Everytime you call this method
with the same string, the same integer will be returned.

winfo_atomname

winfo_atomname(id). Return the string corresponding to the given integer (obtained by a
call towinfo_atom). If the integer isn't in use, TKinter raises a TclError exception. Note
that Tkinter predefines a bunch of integers (typically 1-80 or so). If you're curious, you can
use winfo_atomname to find out what they are used for.

Option Database

Not yet documented.

option_add

option_add(pattern, value).

151



option_clear

option_clear().

option_get

option_get(name, className).

option_readfile

option_readfile(fileName).

Basic Widget Methods

152



Toplevel Window Methods

This group of methods are used to communicated with the window manager. They are
available on the root window (Tk), as well as on all Toplevel instances.

Note that different window managers behave in different ways. For example, some window
managers don't support icon windows, some don't support window groups, etc.

Visibility Methods
deiconify

deiconify(). Display the window. New windows are displayed by default, so you only have to
use this method if you have used iconify or withdraw to remove the window from the
screen.

iconify

iconify(). Turn the window into an icon (without destroying it). To redraw the window, use
deiconify. Under Windows, the window will show up in the taskbar.

When the window has been iconified, the state method returns "iconic".

withdraw

withdraw(). Remove the window from the screen (without destroying it). To redraw the
window, use deiconify.

When the window has been withdrawn, the state method returns "withdrawn".

state

state(). Returns the current state of self. This is one of the values "normal”, "iconic" (see
iconify), "withdrawn" (seewithdraw) or "icon" (see iconwindow).

Style Methods

title

title(string), title(). Set (get) the window title.

group

group(window). Adds self to the window group controlled by the given window. A group
member is usually hidden when the group owner is iconified or withdrawn (the exact
behaviour depends on the window manager in use).

transient

transient(master). Make self a transient window for the given master (if omitted, master
defaults to self's parent). A transient window is always drawn on top of its master, and is

153



Toplevel Window Methods

automatically hidden when the master is iconified or withdrawn. Under Windows,
transient windows don't show show up in the task bar.

overrideredirect

overrideredirect(flag), overrideredirect(). Set (get) the override redirectflag. If non-zero,
this prevents the window manager from decorating the window. In other words, the

window will not have a title or a border, and it cannot be moved or closed via ordinary
means.

Window Geometry Methods

geometry

geometry(). Returns a string describing self's "geometry". The string has the following
format:

"%dx%d%+d%+d" % (width, height, xoffset, yoffset)

where all coordinates are given in pixels.

geometry

geometry(geometry). Change the geometry for self. The string format is as described
above.

aspect

aspect(minNumer, minDenom, maxNumer, maxDenom), aspect(). Control the aspect

ratio (the relation between width and height) of this window. The aspect ratio is
constrained to lie between minNumer/minDenom and maxNumer/maxDenom.

If no arguments are given, this method returns the current constraints as a 4-tuple, if any.

maxsize

maxsize(width, height), maxsize(). Set (get) the maximum size for this window.
minsize
minsize(width, height), minsize(). Set (get) the minimum size for this window.

resizable

resizable(width, height), resizable(). Set (get) the resize flags. Thewidth flag controls
whether the window can be resized horizontally by the user. The height flag controls
whether the window can be resized vertically.

154



Toplevel Window Methods

Icon Methods

iconbitmap

iconbitmap(bitmap), iconbitmap(). Set (get) the icon bitmap to use when this window is
iconified. This method are ignored by some window managers (including Windows).

Note that this method can only be used to display monochrome icons. To display a color
icon, putitinalLabel widget and display it using the iconwindow method instead (see
below).

iconmask

iconmask(bitmap), iconmask(). Set (get) the icon bitmap mask to use when this window is
iconified. This method are ignored by some window managers (including Windows).

iconname

iconname(newName=None), iconname(). Set (get) the icon name to use when this window
is iconified. This method are ignored by some window managers (including Windows).

iconposition

iconposition(x, y), iconposition(). Set (get) the icon position hint to use when this window
is iconified. This method are ignored by some window managers (including Windows).

iconwindow

iconwindow(window), iconwindow(). Set (get) the icon window to use as an icon when this
window is iconified. This method are ignored by some window managers (including
Windows).

Property Access Methods

client

client(name), client(). Set (get) the WM_CLIENT_MACHINE property. This property is
used by window managers under the X window system. It is ignored on other platforms.

To remove the property, set it to an empty string.

colormapwindows

colormapwindows(wilist...), colormapwindows(). Set (get) the
WM_COLORMAP_WINDOWS property. This property is used by window managers under
the X window system. It is ignored on other platforms.

command

command(value), command(). Set (get) the WM_COMMAND property. This property is
used by window managers under the X window system. It is ignored on other platforms.

To remove the property, set it to an empty string.

155



Toplevel Window Methods

focusmodel

focusmodel(model), focusmodel(). Set (get) the focus model.

frame

frame(). Return a string containing a system-specific window identifier corresponding to
self's outermost parent. For Unix, this is the X window identifier. For Windows, this is the
HWND cast to a long integer.

Note that if the window hasn't been reparented by the window manager, this method
returns the window identifier corresponding to self.

positionfrom

positionfrom(who), positionfrom(). Set (get) the position controller.

protocol

protocol(name, function). Register function as a callback which will be called for the given
protocol. The name argument is typically one of BWM_DELETE_WINDOW (the window
is about to be deleted), WM_SAVE_YOURSELF (called by X window managers when the
application should save a snapshot of its working set) or WM_TAKE_FOCUS (called by X
window managers when the application receives focus).

sizefrom

sizefrom(who), sizefrom(). Set (get) the size controller.

156



